Вконтакте Facebook Twitter Лента RSS

Как сделать индукционный нагреватель своими руками по схеме. Как сделать индукционный нагреватель своими руками из сварочного инвертора Компоненты и катушка

Индукционные отопительные котлы – это приборы, которые отличаются очень высоким КПД. Они позволяют заметно снизить затраты на электроэнергию по сравнению с традиционными приборами, оборудованными ТЭНами.

Модели промышленного производства недешевы. Однако сделать индукционный нагреватель своими руками сможет любой домашний мастер, владеющий нехитрым набором инструментов. Ему в помощь мы предлагаем подробное описание принципа действия и сборки эффективного обогревателя.

Индукционный нагрев невозможен без использования трех основных элементов:

Индуктор представляет собой катушку, обычно выполненную из медной проволоки, с ее помощью генерируют магнитное поле. Генератор переменного тока используют для получения высокочастотного потока из стандартного потока домашней электросети с частотой 50 Гц.

В качестве нагревательного элемента применяется металлический предмет, способный поглощать тепловую энергию под воздействием магнитного поля. Если правильно соединить эти элементы, можно получить высокопроизводительный прибор, который прекрасно подходит для подогрева жидкого теплоносителя и .

С помощью генератора электрический ток с необходимыми характеристиками подается на индуктор, т.е. на медную катушку. При прохождении через нее поток заряженных частиц формирует магнитное поле.

Принцип действия индукционных нагревателей основан на возникновении электротоков внутри проводников, появляющихся под воздействием магнитных полей

Особенность поля состоит в том, что оно обладает способностью на высоких частотах изменять направление электромагнитных волн. Если в это поле поместить какой-нибудь металлический предмет, он начнет нагреваться без непосредственного контакта с индуктором под воздействием созданных вихревых токов.

Высокочастотный электрический ток, поступающий от инвертора к индукционной катушке, создает магнитное поле с постоянно изменяющимся вектором магнитных волн. Помещенный в это поле металл быстро разогревается

Отсутствие контакта позволяет сделать потери энергии при переходе из одного вида в другой ничтожными, чем и объясняется повышенный КПД индукционных котлов.

Чтобы подогреть воду для отопительного контура, достаточно обеспечить ее контакт с металлическим нагревателем. Часто в качестве нагревательного элемента используют металлическую трубу, через которую просто пропускают поток воды. Вода попутно охлаждает нагреватель, что значительно увеличивает срок его службы.

Электромагнит индукционного прибора получают путем намотки проволоки вокруг сердечника из ферромагнита. Полученная в результате катушка индукции разогревается и передает тепло нагреваемому телу или протекающему рядом теплоносителю через теплообменник

Преимущества и недостатки прибора

“Плюсов” у вихревого индукционного нагревателя великое множество. Это простая для самостоятельного изготовления схема, повышенная надежность, высокий КПД, относительно низкие затраты на электроэнергию, длительный срок эксплуатации, малая вероятность возникновения поломок и т.п.

Производительность прибора может быть значительной, агрегаты этого типа успешно используются в металлургической промышленности. По скорости нагрева теплоносителя устройства этого типа уверенно соперничают с традиционными электрическими котлами, температура воды в системе быстро достигает необходимого уровня.

Во время функционирования индукционного котла нагреватель слегка вибрирует. Эта вибрация стряхивает со стенок металлической трубы известковый осадок и другие возможные загрязнения, поэтому в очистке такой прибор нуждается крайне редко. Конечно, отопительную систему следует защитить от этих загрязнений с помощью механического фильтра.

Индукционная катушка нагревает металл (трубу или куски проволоки), помещенные внутри нее, с помощью высокочастотных вихревых токов, контакт не обязателен

Постоянный контакт с водой сводит к минимуму и вероятность перегорания нагревателя, что является довольно частой проблемой для традиционных котлов с ТЭНами. Несмотря на вибрацию, котел работает исключительно тихо, дополнительная шумоизоляция в месте установки прибора не понадобится.

Еще индукционные котлы хороши тем, что они практически никогда не протекают, если только монтаж системы выполнен правильно. Это очень ценное качество для , так как исключает или значительно сокращает вероятность возникновения опасных ситуаций.

Отсутствие протечек обусловлено бесконтактным способом передачи тепловой энергии нагревателю. Теплоноситель с помощью описанной выше технологии можно разогреть чуть ли не до парообразного состояния.

Это обеспечивает достаточную тепловую конвекцию, чтобы стимулировать эффективное перемещение теплоносителя по трубам. В большинстве случаев отопительную систему не придется оборудовать циркуляционным насосом, хотя все зависит от особенностей и схемы конкретной системы отопления.

Выводы и полезное видео по теме

Ролик #1. Обзор принципов индукционного нагрева:

Ролик #2. Интересный вариант изготовления индукционного нагревателя:

Для установки индукционного нагревателя не нужно получать разрешение контролирующих органов, промышленные модели таких устройств вполне безопасны, они подходят и для частного дома, и для обычной квартиры. Но владельцам самодельных агрегатов не следует забывать о технике безопасности.

Привет всем. Сегодня рассмотрим популярную штуку - индукционный нагреватель прямиком с Китая, точнее с магазина бенггуд.

Такие платы китайцы выпускают с разными модификациями, на любой вкус.


Мой образец не из самых бюджетных бюджетных, в комплекте есть индуктор, нынче достать медную трубу нужного диаметра довольно трудно, поэтому если брать такую плату, то лучше сразу с индуктором.



Итак, это популярная схема ZVS драйвера, на базе которого можно построить все, что угодно, от простых преобразователей до индукционных нагревателей, я намерен детально протестировать этот образец, раскрыть потенциал, и сделать все возможные замеры, поэтому одной статьей не ограничимся.

В комплекте плата и сам индуктор, схема нагревателя сейчас перед вами.


Заявленная мощность 1киловатт, входное напряжение от 12 до 36 Вольт при максимальном токе в 20 Ампер, тут китайцы опровергают самих себя, ведь даже при максимальном напряжении и токе потребляемая мощность будет не более 720 ватт, но зная эту схему, скажу, что она может питаться и от большего напряжения, вплоть до 60 вольт и потреблять токи более 20 Ампер, так, что если речь идет о потребляемой мощности, то она может перевалить за 1000 ватт, но вот на счет полезной мощности с учетом КПД схемы, китайцы молчат. В реальности полезная мощность около 200-250 ватт при питании от источника в 36В.


Печатная плата двухсторонняя, сделана отлично, но китайцы слегка поленились почистить остатки флюса, силовые дорожки производитель дополнительно залудил, в общем, нареканий нет, размеры платы вы сейчас видите на своих экранах. (Позже, при подаче 36 Вольт спустя некоторое время одна из силовых дорожек попросту сгорела, пришлось усилить многожильным медным проводом и все дополнительно залудить)



Схема имеет принудительное охлаждение в виде кулера, расположен он непосредственно над транзисторами и питается от отдельного понижающего стабилизатора на базе микросхемы XL2596. Плата стабилизатора приклеена к кулеру соплями (горячими).



Силовых транзисторов 2, это мощные полевики IRFP260 (200В 50А), а схема из себя представляет двухтактный автогенератор.



Для ограничения тока затворов ключей использованы мощные резисторы на 470 Ом, на вид они двухваттные, но размеры чуть больше стандартных двухваттных резисторов, так, что возможно резисторы на 3 или 4 ватта.


Резисторы одновременно являются ограничителями для стабилитронов, которые не допускают на затворе ключей образования повышенного напряжения, стабилизируя на уровне 12 Вольт, видно посадочное место для линейного стабилизатора на 12 или 15 вольт, поскольку стабилитроны в некоторых версиях заменены на линейный стабилизатор.


Индуктор с батареей конденсаторов образуют параллельный колебательный контур, параметры этих составляющих задают рабочую частоту схемы в целом, поскольку это резонансный преобразователь.


Батарея состоит из 6 и специализированных конденсаторов, емкость каждого 0,33 мкФ, общая емкость около 2-х мкФ.



Такие конденсаторы предназначены для работы в высокочастотных схемах и применяются в частности в индукционных нагревателях, так, что это идеальный вариант для подобной схемы.

На плате имеются латунные стойки для крепления кулера и индуктора, довольно удобное решение.



Дросселей два, по ним поступает силовое питание, оба дросселя идентичны, намотаны на кольцах из порошкового железа. Количество витков 30, диаметр провода 1 мм, индуктивность 74мкГн.



Индуктор или контур, из себя представляет медную трубу с диаметром 5мм, внутренний диаметр индуктора 42-мм, количество витков почти 8, витки можно растянуть или сжать, главное не замкнуть.



Питание подается на клеммник, который расположен в укромном местечке под кулером.

Такой же клеммник имеется и спереди, к нему можно подключать контур. Удобен такой клеммник в случае использование контуров из медного провода.


На клеммах питания полярность подписана, проблем с подключением не возникнет.


Я думаю с платой все понятно, переходим к тестам. Хочу сразу сказать, полностью нагружу индуктор в одном из следующих статьей, поскольку для максимального разгона нужно водяное охлаждение, а у меня, к сожалению, нет соответствующего водяного насоса.

Итак, первым делом давайте проверим ток холостого хода от источника в 12 Вольт.


Как видим, схема потребляет около 2-х Ампер, скажу, что для именно этой схемы - такое потребление является нормой.

От источника в 24 Вольт потребление выросло до 4 А, что и стоило ожидать.


И наконец, от источника в 36 Вольт схема потребляет почти 5.5А в холостую.


Рабочая частота составляет около 90 кГц,


Это форма импульсов на затворе одного из ключей.


На индукторе наблюдаем чистую синусоиду, обратите внимание на размах амплитуды, многократно превышает напряжение питания.

Для тестов были куплены 3 полностью новых аккумулятора на 12 Вольт от бесперебойника, подключил последовательно для получения 36 Вольт.
За пару секунд можно нагреть тонкую жесть на подобии лезвий от канцелярских ножиков и т.п.



Сейчас вы видите потребление схемы в случае нагрева жестяной гильзы от аккумулятора 18650, напряжение аккумуляторов просело до 26 Вольт.


Без вентилятора нагревается все - ключи, дросселя, конденсаторы и затворные резисторы, контур нагревается особо критично даже без нагрузки, поэтому он в виде трубы и если собираетесь использовать нагреватель для каких-то целей обязательно впустите водяное охлаждение, иначе контур раскалиться буквально до красна. Также очень рекомендую усилить силовые шины на плате, китайцы их залудили, но греются ужасно.

У читателей может возникнуть вполне нормальный вопрос - будет ли такой индукционник нагревать иные металлы помимо железа, скажу, что греет, но так слабо, что почти незаметно. Пробовал алюминий, латунь, медь, олово, нагрев еле чувствуется, но не смотря на это таким индуктором расплавить некоторые металлы получится, если тигель установить в железную трубу, а лучше трубу в тигель, железо нагреется и тепло передастся металлу, который подлежит плавлению.

В любом случае нужно помнить, что схема любительская и для серьезных целей не годиться из-за отсутствия схемы ШИМ управления, контроля тока, температуры, защит и прочих узлов которые содержат в дорогие, профессиональные нагреватели, но профессиональны модели могут стоить в несколько сотен тысяч рублей, а наша платка стоит всего каких-то 36 вечнозеленых долларов.



В случае эксплуатации советую поставить предохранитель по питанию Ампер на 40, чтобы не спалить ключи в случае чего, а это легко сделать, если случайно замкнуть витки контура при больших питающих напряжениях, либо перепутать полярность питания.
На сегодня все, подписывайтесь на нашу группу, чтобы не пропускать обновления.

Товар можно купить

Видео-обзор

Из товаров предоставленных на обзор, выбор пал на этот индукционный нагреватель. Зачем он мне..?

Вихревой индукционный нагреватель. Пару слов теории.
«В работе индукционного нагревателя используется энергия электромагнитного поля, которую нагреваемый объект поглощает и преобразует в тепловую. Для генерирования магнитного поля используется индуктор, т. е. многовитковая цилиндрическая катушка. Проходя через этот индуктор, переменный электрический ток создает вокруг катушки переменное магнитное поле.
Если внутрь индуктора поместить нагреваемый объект, его будет пронизывать поток вектора магнитной индукции, который постоянно меняется во времени. При этом возникает электрическое поле, линии которого располагаются перпендикулярно направлению магнитного потока и движутся по замкнутому кругу. Благодаря этим вихревым потокам электрическая энергия трансформируется в тепловую и объект нагревается.
Таким образом, электрическая энергия индуктора передается объекту без использования контактов, как это происходит в печах сопротивления. В результате тепловая энергия расходуется более эффективно, а скорость нагрева заметно повышается.»
«Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является как бы вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.
На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки (скин-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое плотность тока увеличивается в несколько раз относительно плотности тока в заготовке, при этом в скин-слое выделяется 86,4 % тепла от общего тепло­выделе­ния. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относи­тель­ной магнитной проницаемости материала заготовки.
Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.
Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.»
В нашем случае индуктором является не медная трубка, а кусок медного провода скрученный в спираль.
Для себя, я лично наметил только одно полезное применение такому мисиписечному нагревателю. Разогрев, а потом по возможности закалка переточенных кончиков всяких разных отверточек, шильцев и ковырялок…
Заявленные ТТХ:
- Питание модуля: 5-12V
- Размеры: 5,5 х 4 х 2 см (L * W * H)
- Размер катушки: длина: 7.5cм, диаметр: 2,8 см
- Диаметр провода индуктора:
Комплект:
- модуль: 1 шт.
- катушка: 1шт.
Больше нам о нем пока ничего не известно. Ну что ж, проверим на что он способен и соответствует ли моим ожиданиям…
Приехал модуль в таком виде.




Размеры, чуть больше спичечного коробка, не считая дросселей.
Ширина платки - 37 мм.
Длина платки 55 мм.
Высота от низа кондеров до верха дросселей - 45 мм.


Размеры и диаметр катушки.
Длина катушки - 35 мм.
Диаметр - 22 мм.
Диаметр провода - 2 мм.
Длина катушки с выводами -70 мм.
Вес конструкции в сборе 114 грамм.


На платке есть надписи с рекомендуемым напряжением питания, его полярностью на разъеме.


С обратной стороны платки имеется разъем для подключения катушки.


Снизу кондеры.


Распаиваем модуль.
Сама платка сделана очень неплохо. Снизу шелкография, изображение скорпионов. Наверное какой-то фирменный знак производителя печатных плат. Надписи на транзисторах сточены напильником. :0)


Рисуем схему.
Схема оказалась самой распространенной в интернете. Хотя на данной плате стерта маркировка транзисторов и не удалось расшифровать маркировку стабилитронов, погуглив подобную схему легко найти в интернете. Хотя вполне возможно, что детали стоят несколько другие, но не суть важно. Легко найти аналог на замену при неисправности.


Используемые конденсаторы.


Теперь все собираем, прикручиваем катушку и подаем питание. Загорается синий светодиодик.


Токи на холостом ходу.


Токи под нагрузкой. В качестве «нагрузки» использовал трехгранный надфиль.


Частота генератора на холостом ходу 214 кГц, под нагрузкой падает до 210 кГц.


Маленькое видео нагрева кончика трехгранного надфиля.


Индукционный нагреватель работает, но очень много кушает на холостом ходу.
Транзисторы распаянные на плате довольно прилично греются, плата плоховато рассеивает тепло. Если платку доработать, поставить транзисторы по мощнее да вынести их на радиаторы, может получиться вполне себе нагреватель. Чем я и займусь в ближайшем будущем.
Посоветовал бы я купить? Наверное да, но не как рабочее законченное изделие, а скорее как ознакомительную версию с возможностью небольшого допила. Ну и если деньги лишние. :0)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +37 Добавить в избранное Обзор понравился +55 +103

Приветствую пользователей сайта Радиосхемы . Недавно у меня появилась идея сделать . На просторах интернета были найдены несколько схем для построения устройства. Из них выбрал самую, на мой взгляд, простую по сборке и настройке, и главное - реально рабочую.

Схема устройства

Список деталей

1. Полевой транзистор IRFZ44V 2 шт.
2. Диоды ультра быстрые UF4007 или UF4001 2 шт.
3. Резистор на 470 Ом на 1 или 0.5 Вт 2 шт.
4. Конденсаторы плёночные
1) 1 мкФ на 250в 3 шт.
2) 220 нФ на 250в 4 штуки.
3) 470 нФ на 250в
4) 330 нФ на 250в
5. Провод медный диаметром 1.2 мм.
6. Провод медный диаметром 2 мм.
7. Кольца от дросселей компьютерном блоке питания 2 шт.

Сборка устройства

Задающая часть нагревателя выполнена на полевых транзисторах IRFZ44V. Распиновка транзистора IRFZ44V.

Транзисторы нужно поставить на большой радиатор. Если устанавливать транзисторы на один радиатор то транзисторы нужно установить на резиновые прокладки и пластмассовые шайбочки чтобы не было замыкания между транзисторов.

Дросселя намотаны на кольцах от компьютерных БП. Сделанные из порошкового железа. Проводом 1,2 мм 7-15 витков.

Батарея конденсаторов должна быть на 4.7 мкФ. Желательно использовать не один конденсатор, а несколько конденсаторов. Конденсаторы должны быть подключены параллельно.

Катушка нагревателя сделана на проводе диаметром 2 мм 7-8 витков.

После сборки устройство работает сразу. Питается устройство от аккумулятора 12 вольт 7.2 А/ч. Напряжение питания устройства 4.8-28 вольт. При продолжительной работе перегреваются: батарея конденсаторов, полевые транзисторы и дросселя. Потребление тока при холостом ходу 6-8 Ампер.

При внесении в контур металлического предмета потребление тока сразу увеличивается до 10-12 А.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции