Вконтакте Facebook Twitter Лента RSS

Коэффициент местного сопротивления отвода воздуховода. Расчет аэродинамических сопротивлений. Разработка схемы системы вентиляции


К.т.н. С.Б.Горунович, инженер ПТО, «Усть-Илимская ТЭЦ» филиал ОАО «Иркутскэнерго», г. Усть-Илимск Иркутской обл.


Постановка вопроса

Известно, что на многих предприятиях, обладавших в недавнем прошлом резервами тепловой и электрической энергии, уделялось недостаточное внимание ее потерям при транспортировке. Например, различные насосы закладывались в проект, как правило, с большим запасом по мощности, потери давления в трубопроводах компенсировались увеличением подачи. Главные паропроводы проектировались с перемычками и длинными магистралями, позволяющими при необходимости переправлять излишки пара на соседние турбоагрегаты. При реконструкции и ремонте транспортирующих сетей предпочтение уделялось универсальности схем, что приводило к дополнительным врезкам (штуцерам) и перемычкам, установке дополнительных тройников и, как следствие, к дополнительным местным потерям полного давления. При этом известно, что в протяженных трубопроводах при значительных скоростях среды местные потери полного давления (местные сопротивления) могут повлечь за собой существенные потери расходов у потребителей.

В настоящее время требования эффективности, энергосбережения, тотальной оптимизации производства заставляют по-новому взглянуть на многие вопросы и аспекты проектирования, реконструкции и эксплуатации трубопроводов и паропроводов, поэтому учет местных сопротивлений в тройниках, развилках и штуцерах в гидравлических расчетах трубопроводов становится актуальной задачей.

Целью данной работы является описание наиболее часто используемых на предприятиях энергетики тройников и штуцеров, обмен опытом в области путей снижения коэффициентов местного сопротивления, способов сравнительной оценки эффективности подобных мероприятий.

Для оценки местных сопротивлений в современных гидравлических расчетах оперируют безразмерным коэффициентом гидравлического сопротивления, весьма удобным тем, что в динамически подобных потоках, при которых соблюдаются геометрическое подобие участков и равенство чисел Рейнольдса, он имеет одно и то же значение, независимо от вида жидкости (газа), а также от скорости потока и поперечных размеров рассчитываемых участков .

Коэффициент гидравлического сопротивления представляет собой отношение потерянной на данном участке полной энергии (мощности) к кинетической энергии (мощности) в принятом сечении или отношение потерянного на том же участке полного давления к динамическому давлению в принятом сечении :



где  р общ - потерянное (на данном участке) полное давление; р - плотность жидкости (газа); w, - скорость в i-м сечении.

Значение коэффициента сопротивления зависит от того, к какой расчетной скорости и, следовательно, к какому сечению он приведен.


Вытяжной и приточный тройники

Известно, что весомую часть местных потерь в разветвленных трубопроводах составляют местные сопротивления в тройниках. Как объект, представляющий собой местное сопротивление, тройник характеризуется углом ответвления а и отношениями площадей сечения ответвлений (боковых и прямого) F b /F q , Fh/Fq и F B /Fn. В тройнике могут изменяться отношения расходов Q b /Q q , Q n /Q c и, соответственно, отношения скоростей w B /w Q , w n /w Q . Тройники могут быть установлены как на участках всасывания (вытяжной тройник), так и на участках нагнетания (приточные тройники) при разделении потока (рис. 1).



Коэффициенты сопротивления вытяжных тройников зависят от перечисленных выше параметров, а приточных тройников обычной формы - практически только от угла ответвления и отношений скоростей w n /w Q и w n /w Q соответственно .

Коэффициенты сопротивления вытяжных тройников обычной формы (без закруглений и расширения или сужения бокового ответвления, или прямого прохода) могут быть вычислены по следующим формулам .

Сопротивление в боковом ответвлении (в сечении Б):

где Q B =F B w B , Q q =F q w q - объемные расходы в сечении Б и С соответственно.

Для тройников типа F n =F c и при всех а значения A приведены в табл. 1.



При изменении отношения Q b /Q q от 0 до 1 коэффициент сопротивления изменяется в пределах от -0,9 до 1,1 (F q =F b , а=90 О). Отрицательные значения объясняются подсасывающим действием в магистрали при малых Q B .


Из структуры формулы (1) следует, что коэффициент сопротивления будет быстро возрастать с уменьшением площади сечения штуцера (с ростом F c /F b). Например, при Q b /Q c =1, F q/F b =2 , а=90 О коэффициент равняется 2,75.

Очевидно, что снижения сопротивления можно добиться при уменьшении угла бокового ответвления (штуцера). Например, при F c =F b , α=45 О, при изменении отношения Q b /Q c от 0 до 1 коэффициент изменяется в пределах от -0,9 до 0,322, т.е. его положительные значения снижаются почти в 3 раза.

Сопротивление в прямом проходе следует определять по формуле:

Для тройников типа Fn=F c значения К П приведены в табл. 2.

Легко убедиться, что диапазон изменения коэффициента сопротивления в прямом прохо

де при изменении отношения Q b /Q c от 0 до 1 находится в пределах от 0 до 0,6 (F c =F b , α=90 О).

Уменьшение угла бокового ответвления (штуцера) также приводит к значительному снижению сопротивления. Например, при F c =F b , α =45 О, при изменении отношения Q b /Q c от 0 до 1 коэффициент изменяется в пределах от 0 до -0,414, т.е. с ростом Q B в прямом проходе появляется «подсасывание», дополнительно снижающее сопротивление. Следует заметить, что зависимость (2) имеет ярко выраженный максимум, т.е. максимальное значение коэффициента сопротивления приходится на значение Q b /Q c =0,41 и равняется 0,244 (при F c =F b , α =45 О).

Коэффициенты сопротивления приточных тройников нормальной формы при турбулентном течении могут быть вычислены по формулам .

Сопротивление в боковом ответвлении:

где K Б - коэффициент сжатия потока.

Для тройников типа Fn=F c значения А 1 приведены в табл. 3, K B =0.



Если принять F c =F b , а=90 О, то при изменении отношения Q b /Q c от 0 до 1 получим значения коэффициента в диапазоне от 1 до 1,2.

Следует отметить, что в источнике приведены другие данные для коэффициента А 1 . По данным следует принять А 1 =1 при w B /w c <0,8 и А 1 =0,9 при w B /w c >0,8. Если использовать данные из , то при изменении отношения Q B /Q С от 0 до 1 получим значения коэффициента в диапазоне от 1 до 1,8 (F c =F b). В целом по будем получать немногим более высокие значения для коэффициентов сопротивления во всех диапазонах.

Решающее влияние на рост коэффициента сопротивления, как и в формуле (1), оказывает площадь сечения Б (штуцера) - с ростом F g /F b коэффициент сопротивления быстро возрастает.

Сопротивление в прямом проходе для приточных тройников типа Fn=Fc в пределах

Значения т П указаны в табл. 4.



При изменении отношения Q Б /Qс(3 от 0 до 1 (Fc=F Б, α=90 О) получим значения коэффициента в диапазоне от 0 до 0,3.

Сопротивление тройников обычной формы может быть также заметно снижено, если скруглить место стыка бокового ответвления со сборным рукавом. При этом для вытяжных тройников следует скруглить угол поворота потока (R 1 на рис. 16). Для приточных тройников скругление следует выполнить также и на разделяющей кромке (R 2 на рис. 16); оно делает поток более устойчивым и уменьшает возможность его отрыва от этой кромки .

Практически, скругление кромок сопряжения образующих бокового ответвления и основного трубопровода достаточно при R/D(3=0,2-0,3.

Предложенные выше формулы расчета коэффициентов сопротивления тройников и соответствующие им табличные данные относятся к тщательно изготовленным (точеным) тройникам. Производственные дефекты в тройниках, допущенные при их изготовлении («провалы» бокового ответвления и «перекрытие» его сечения неправильным вырезом стенки в прямом участке - основном трубопроводе), становятся источником резкого увеличения гидравлического сопротивления . На практике это случается при некачественной врезке в основной трубопровод штуцера, что имеет место достаточно часто, т.к. «заводские» тройники сравнительно дороги.

Эффективно снижает сопротивление как вытяжных, так и приточных тройников постепенное расширение (диффузор) бокового ответвления. Сочетание скругления, среза кромки и расширения бокового ответвления еще больше снижает сопротивление тройника. Коэффициенты сопротивлений тройников улучшенной формы можно определить по формулам и диаграммам, приведенным в источнике . Наименьшее сопротивление имеют также тройники с боковыми ответвлениями в виде плавных отводов, и там, где это практически возможно, следует применять тройники с малыми углами ответвления (до 60 О) .

При турбулентном течении (Re>4.10 3) коэффициенты сопротивления тройников мало зависят от чисел Рейнольдса. При переходе от турбулентного к ламинарному происходит скачкообразное возрастание коэффициента сопротивления бокового ответвления как в вытяжных, так и в приточных тройниках (примерно в 2-3 раза) .

В расчетах важно учитывать, в каком сечении он приведен к средней скорости. В источнике об этом существует ссылка перед каждой формулой. В источниках приведена общая формула, где указывается скорость приведения с соответствующим индексом.


Симметричный тройник при слиянии и разделении

Коэффициент сопротивления каждого ответвления симметричного тройника при слиянии (рис. 2а), можно вычислить по формуле :



При изменении отношения Q b /Q c от 0 до 0,5, коэффициент изменяется в пределах от 2 до 1,25, и далее с ростом Q b /Q c от 0,5 до 1 коэффициент приобретает значения от 1,25 до 2 (для случая F c =F b). Очевидно, что зависимость (5) имеет вид перевернутой параболы с минимумом в точке Q b /Q c =0,5.



Коэффициент сопротивления симметричного тройника (рис. 2а), расположенного на участке нагнетания (разделения) также можно вычислить по формуле :



где K 1 =0,3 - для сварных тройников.

При изменении отношения w B /w c от 0 до 1 коэффициент изменяется в пределах от 1 до 1,3 (F c =F b).

Анализируя структуру формул (5, 6) (также как (1) и (3)), можно убедиться, что снижение сечения (диаметра) боковых ответвлений (сечений Б) отрицательно сказывается на сопротивлении тройника.

Сопротивление потоку может быть снижено в 2-3 раза при использовании тройников-развилок (рис. 26, 2в).

Коэффициент сопротивления тройника-развилки при разделении потока (рис. 2б) можно вычислить по формулам :



При изменении отношения Q 2 /Q 1 от 0 до 1 коэффициент изменяется в пределах от 0,32 до 0,6.

Коэффициент сопротивления тройника-развилки при слиянии (рис. 2б) можно вычислить по формулам :



При изменении отношения Q 2 /Q 1 от 0 до 1 коэффициент изменяется в пределах от 0,33 до -0,4.

Симметричный тройник может быть выполнен с плавными отводами (рис. 2в), тогда его сопротивление может быть еще снижено.


Изготовление. Стандарты

Отраслевые стандарты энергетики предписывают для трубопроводов тепловых электростанций низкого давления (при рабочем давлении Р раб.<22 кгс/см 2 и температуре среды t<425 О С) использовать тройники сварные по ОСТ34-42-762

ОСТ34-42-765-85. Для более высоких параметров среды (Р ра б.<40 кгс/см 2) изготавливают тройники из углеродистых и кремнемарганцовистых сталей: штампованные по ОСТ108.720.01, ОСТ108.720.02-82; сварные по ОСТ108.104.01 - ОСТ108.104.03-82; с обжатием (с вытянутой горловиной) по ОСТ108.104.04, ОСТ108.104.05-82. Из хромомолибденованадиевых сталей изготавливают тройники: штампованные по ОСТ108.720.05, ОСТ108.720.06-82; сварные по ОСТ108.104.10 - ОСТ108.104.12-82; с обжатием (с вытянутой горловиной) по ОСТ108.104.13 - ОСТ108.104.15-82 для паропроводов высокого давления (с параметрами Р раб. до 255 кгс/см 2 и температурой t до 560 О С). Существуют соответствующие нормативы и для штуцеров.

Конструкция тройников, изготовленных по существующим (вышеперечисленным) стандартам, далеко не всегда оптимальна с точки зрения гидравлических потерь. Снижению коэффициента местного сопротивления способствует лишь форма штампованных тройников с вытянутой горловиной, где в боковом ответвлении предусмотрен радиус скругления по типу, показанному на рис. 1б и рис. 3в, а также с обжатием концов, когда диаметр основного трубопровода несколько меньше диаметра тройника (по типу, показанному на рис. 3б). Тройники-развилки, очевидно, выполняются по отдельному заказу по «заводским» стандартам. В РД 10-249-98 существует параграф, посвященный расчету на прочность тройников-развилок и штуцеров.

При проектировании и реконструкции сетей важно учитывать направление движения сред и возможные диапазоны изменения расходов в тройниках. В случае, если направление транспортируемой среды однозначно определено, целесообразно использовать наклонные штуцеры (боковые ответвления) и тройники-развилки. Тем не менее, остается проблема значимых гидравлических потерь в случае универсального тройника, который сочетает свойства приточного и вытяжного, в котором возможно как слияние, так и разделение потока в режимах работы, связанных со значительным изменением расходов. Вышеупомянутые качества характерны, например, для узлов переключения трубопроводов питательной воды или главных паропроводов на ТЭС с «перемычками».

При этом следует учитывать, что для трубопроводов пара и горячей воды конструкция и геометрические размеры сварных тройников из труб, а также штуцеров (труб, патрубков), ввариваемых на прямых участках трубопроводов, должны удовлетворять требованиям отраслевых стандартов, нормалей и технических условий. Другими словами для ответственных трубопроводов необходимо заказывать тройники, выполненные в соответствии с техническими условиями у сертифицированных производителей. На практике, в виду относительной дороговизны «заводских» тройников, врезку штуцера зачастую выполняют местные подрядные организации, используя отраслевые или заводские нормы.

В целом окончательное решение о способе врезки целесообразно принимать после сравнительного технико-экономического анализа. Если принято решение осуществлять врезку «своими силами», персоналу ИТР необходимо подготовить шаблон штуцера, произвести расчет на прочность (если это необходимо), контролировать качество врезки (не допускать «провалов» штуцера и «перекрытие» его сечения неправильным вырезом стенки в прямом участке). Внутренний стык между металлом штуцера и основного трубопровода целесообразно выполнить с закруглением (рис. 3в).

Существует ряд конструктивных решений для снижения гидравлических сопротивлений в стандартных тройниках и узлах переключения магистралей. Одно из самых простых - увеличение размеров самих тройников для снижения в них относительных скоростей среды (рис. 3а, 3б). При этом тройники необходимо комплектовать переходами, углы расширения (сужения) которых также целесообразно выбирать из ряда гидравлически оптимальных. В качестве универсального тройника со сниженными гидравлическими потерями можно также использовать тройник-развилку с перемычкой (рис. 3г). Использование тройников-развилок для узлов переключения магистралей также незначительно усложнит конструкцию узла, но положительно скажется на гидравлических потерях (рис. 3д, 3е).

Важно отметить, что при сравнительно близком расположении местных (L=(10-20)d) сопротивлений различного типа, имеет место явление интерференции местных сопротивлений. По данным некоторых исследователей , при максимальном сближении местных сопротивлений можно добиться снижения их суммы, в то время как на некотором расстоянии (L=(5-7)d), суммарное сопротивление имеет максимум (выше на 3-7%, чем простая сумма). Эффект снижения мог бы вызвать интерес у крупных производителей, готовых изготавливать и поставлять узлы переключения со сниженными местными сопротивлениями, но для достижения хорошего результата необходимо проведение прикладных лабораторных исследований.


Технико-экономическое обоснование

При принятии того или иного конструктивного решения важно уделить внимание экономической стороне проблемы. Как упоминалось выше, «заводские» тройники обычной конструкции, и тем более выполненные по специальному заказу (гидравлически оптимальные), обойдутся значительно дороже, чем врезка штуцера. При этом важно ориентировочно оценить выгоды в случае снижения гидравлических потерь в новом тройнике и срок его окупаемости.

Известно, что потери давления в станционных трубопроводах с обычными скоростями движения сред (для Re>2.10 5) можно оценить следующей формулой :

где р - потери давления, кгс/см 2 ; w - скорость среды, м/с; L - развернутая длина трубопровода, м; g - ускорение свободного падения, м/с 2 ; d - расчетный диаметр трубопровода, м; к - коэффициент сопротивления трения; ∑ἐ м – сумма коэффициентов местных сопротивлений; v - удельный объем среды, м 3 /кг

Зависимость (7) принято называть гидравлической характеристикой трубопровода.

Если учесть зависимость: w=10Gv/9nd 2 , где G- расход, т/ч.

Тогда (7) можно представить в виде:


Если существует возможность снизить местное сопротивление (тройника, штуцера, узла переключения), то, очевидно, формулу (9) можно представить в виде:

Здесь ∑ἐ м - разность коэффициентов местного сопротивления старого и нового узлов.

Допустим, что гидравлическая система «насос - трубопровод» работает в номинальном режиме (или в режиме, близком к номинальному). Тогда:

где Р н - номинальное давление (по расходной характеристике насоса/котла), кгс/см 2 ; G h - номинальный расход (по расходной характеристике насоса/котла), т/ч.

Если предположить, что после замены старых сопротивлений система «насос - трубопровод» сохранит работоспособность (ЫРн), то из (10), используя (12), можно определить новый расход (после снижения сопротивления):

Работу системы «насос-трубопровод», изменение ее характеристик можно наглядно представить на рис. 4.



Очевидно, что G 1 >G M . Если речь идет о главном паропроводе, транспортирующим пар из котла в турбину, то по разности расходов ЛG=G 1 -G н можно определить выигрыш в количестве теплоты (из отбора турбины) и/или в количестве вырабатываемой электрической энергии по режимным характеристикам данной турбины.

Сравнивая стоимость нового узла и количества теплоты (электроэнергии), можно ориентировочно оценить рентабельность его монтажа.


Пример расчета

Например, необходимо оценить рентабельность замены равнопроходного тройника главного паропровода на слиянии потоков (рис. 2а) тройником-развилкой с перемычкой по типу, указанному на рис. 3г. Потребитель пара - теплофикационная турбина ПО ТМЗ типа Т-100/120-130. Пар поступает по одной нитке паропровода (через тройник, сечения Б, С).

Имеем следующие исходные данные:

■ расчетный диаметр паропровода d=0,287 м;

■ номинальный расход пара G h =Q(3=Q^420 т/ч;

■ номинальное давление котла Р н =140 кгс/см 2 ;

■ удельный объем пара (при Р ра б=140 кгс/см 2 , t=560 О С) n=0,026 м 3 /кг.

Рассчитаем коэффициент сопротивления стандартного тройника на слиянии потоков (рис. 2а) по формуле (5) - ^ СБ1 =2.

Для расчета коэффициента сопротивления тройника-развилки с перемычкой предположим:


■ деление потоков в ветвях происходит в пропорции Q b /Q c «0,5;

■ суммарный коэффициент сопротивления равен сумме сопротивлений приточного тройника (с отводом 45 О, см. рис. 1а) и тройника-развилки при слиянии (рис. 2б), т.е. интерференцией пренебрегаем.


Используем формулы (11, 13) и получаем ожидаемое увеличение расхода на  G=G 1 -G н =0,789 т/ч.

По диаграмме режимов турбины Т-100/120-130 расходу 420 т/ч может соответствовать электрическая нагрузка - 100 МВт и тепловая нагрузка - 400 ГДж/ч . Зависимость между расходом и электрической нагрузкой близка к прямопропорциональной.

Выигрыш по электрической нагрузке может составить: P э =100AG/Q н =0,188 МВт.

Выигрыш по тепловой нагрузке может составить: T э =400AG/4,19Q н =0,179 Гкал/ч.

Цены на изделия из хромомолибденованадиевых сталей (на тройники-развилки 377x50) могут колебаться в широких пределах от 200 до 600 тыс. руб., следовательно, о сроке окупаемости можно судить лишь после тщательного исследования рынка на момент принятия решения.


1. В данной статье описаны различные типы тройников и штуцеров, даны краткие характеристики тройников, используемых в трубопроводах электростанций. Приведены формулы для определения коэффициентов гидравлических сопротивлений, показаны пути и способы их снижения.

2. Предложены перспективные конструкции тройников-развилок, узла переключения магистральных трубопроводов со сниженными коэффициентами местных сопротивлений.

3. Приведены формулы, пример и показана целесообразность технико-экономического анализа при выборе либо замене тройников, при реконструкции узлов переключения.


Литература

1. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992.

2. Никитина И.К. Справочник по трубопроводам тепловых электростанций. М.: Энергоатомиздат, 1983.

3. Справочник по расчетам гидравлических и вентиляционных систем / Под ред. А.С. Юрьева. С.-Пб.: АНО НПО «Мир и семья», 2001.

4. Рабинович Е.З. Гидравлика. М.: Недра, 1978.

5. Бененсон Е.И., Иоффе Л.С. Теплофикационные паровые турбины / Под ред. Д.П. Бузина. М: Энергоиздат, 1986.

После выбора диаметра или размеров сечения уточняется скорость воздуха: , м/с, где f ф – фактическая площадь сечения, м 2 . Для круглых воздуховодов , для квадратных , для прямоугольных м 2 . Кроме того, для прямоугольных воздуховодов вычисляется эквивалентный диаметр , мм. У квадратных эквивалентный диаметр равен стороне квадрата.

Можно также воспользоваться приближенной формулой . Ее погрешность не превышает 3 – 5%, что достаточно для инженерных расчетов. Полные потери давления на трение для всего участка Rl, Па, получаются умножением удельных потерь R на длину участка l. Если применяются воздуховоды или каналы из других материалов, необходимо ввести поправку на шероховатость β ш. Она зависит от абсолютной эквивалентной шероховатости материала воздуховода К э и величины v ф.

Абсолютная эквивалентная шероховатость материала воздуховодов :

Значения поправки β ш :

V ф, м/с β ш при значениях К э, мм
1.5
1.32 1.43 1.77 2.2
1.37 1.49 1.86 2.32
1.41 1.54 1.93 2.41
1.44 1.58 1.98 2.48
1.47 1.61 2.03 2.54

Для стальных и винипластовых воздуховодов β ш = 1. Более подробные значения β ш можно найти в таблице 22.12 . С учетом данной поправки уточненные потери давления на трение Rlβ ш, Па, получаются умножением Rl на величину β ш.

Затем определяется динамическое давление на участке , Па. Здесь ρ в – плотность транспортируемого воздуха, кг/м 3 . Обычно принимают ρ в = 1.2 кг/м 3 .

В колонку «местные сопротивления» записываются названия сопротивлений (отвод, тройник, крестовина, колено, решетка, плафон, зонт и т.д.), имеющихся на данном участке. Кроме того, отмечается их количество и характеристики, по которым для этих элементов определяются значения КМС. Например, для круглого отвода это угол поворота и отношение радиуса поворота к диаметру воздуховода r/d, для прямоугольного отвода – угол поворота и размеры сторон воздуховода a и b. Для боковых отверстий в воздуховоде или канале (например, в месте установки воздухозаборной решетки) – отношение площади отверстия к сечению воздуховода f отв /f о. Для тройников и крестовин на проходе учитывается отношение площади сечения прохода и ствола f п /f с и расхода в ответвлении и в стволе L о /L с, для тройников и крестовин на ответвлении – отношение площади сечения ответвления и ствола f п /f с и опять-таки величина L о /L с. Следует иметь в виду, что каждый тройник или крестовина соединяют два соседних участка, но относятся они к тому из этих участков, у которого расход воздуха L меньше. Различие между тройниками и крестовинами на проходе и на ответвлении связано с тем, как проходит расчетное направление. Это показано на следующем рисунке.

Здесь расчетное направление изображено жирной линией, а направления потоков воздуха – тонкими стрелками. Кроме того, подписано, где именно в каждом варианте находится ствол, проход и ответвление тройника для правильного выбора отношений f п /f с, f о /f с и L о /L с. Отметим, что в приточных системах расчет ведется обычно против движения воздуха, а в вытяжных – вдоль этого движения. Участки, к которым относятся рассматриваемые тройники, обозначены галочками. То же самое относится и к крестовинам. Как правило, хотя и не всегда, тройники и крестовины на проходе появляются при расчете основного направления, а на ответвлении возникают при аэродинамической увязке второстепенных участков (см. ниже). При этом один и тот же тройник на основном направлении может учитываться как тройник на проход, а на второстепенном – как на ответвление с другим коэффициентом.

Примерные значения ξ для часто встречающихся сопротивлений приведены ниже. Решетки и плафоны учитываются только на концевых участках. Коэффициенты для крестовин принимаются в таком же размере, как и для соответствующих тройников.



Значения ξ некоторых местных сопротивлений.

Наименование сопротивления КМС (ξ) Наименование сопротивления КМС (ξ)
Отвод круглый 90 о, r/d = 1 0.21 Решетка нерегулируемая РС-Г (вытяжная или воздухозаборная) 2.9
Отвод прямоугольный 90 о 0.3 … 0.6
Тройник на проходе (нагнетание) 0.25 … 0.4 Внезапное расширение
Тройник на ответвлении (нагн.) 0.65 … 1.9 Внезапное сужение 0.5
Тройник на проходе (всасывание) 0.5 … 1 Первое боковое отверстие (вход в воздухозаборную шахту) 2.5 … 4.5
Тройник на ответвлении (всас.) –0.5 * … 0.25
Плафон (анемостат) СТ-КР,СТ-КВ 5.6 Колено прямоугольное 90 о 1.2
Решетка регулируемая РС-ВГ (приточная) 3.8 Зонт над вытяжной шахтой 1.3

*) отрицательный КМС может возникать при малых L о /L с за счет эжекции (подсасывания) воздуха из ответвления основным потоком.

Более подробные данные для КМС указаны в таблицах 22.16 – 22.43 . После определения величины Σξ вычисляются потери давления на местных сопротивлениях , Па, и суммарные потери давления на участке Rlβ ш + Z, Па. Когда расчет всех участков основного направления закончен, значения Rlβ ш + Z для них суммируются и определяется общее сопротивление вентиляционной сети ΔР сети = Σ(Rlβ ш + Z). Величина ΔР сети служит одним из исходных данных для подбора вентилятора . После подбора вентилятора в приточной системе делается акустический расчет вентиляционной сети (см. главу 12 ) и при необходимости подбирается глушитель .

Результаты расчетов заносятся в таблицу по следующей форме.

После расчета основного направления производится увязка одного – двух ответвлений. Если система обслуживает несколько этажей, для увязки можно выбрать поэтажные ответвления на промежуточных этажах. Если система обслуживает один этаж, увязываются ответвления от магистрали, не входящие в основное направление (см. пример в п.2.3). Расчет увязываемых участков производится в той же последовательности, что и для основного направления, и записывается в таблицу по той же форме. Увязка считается выполненной, если сумма потерь давления Σ(Rlβ ш + Z) вдоль увязываемых участков отклоняется от суммы Σ(Rlβ ш + Z) вдоль параллельно присоединенных участков основного направления на величину не более чем ±10%. Параллельно присоединенными считаются участки вдоль основного и увязываемого направлений от точки их разветвления до концевых воздухораспределителей. Если схема выглядит так, как показано на следующем рисунке (основное направление выделено жирной линией), то увязка направления 2 требует, чтобы величина Rlβ ш + Z для участка 2 равнялась Rlβ ш + Z для участка 1, полученной из расчета основного направления, с точностью ±10%.

Создание комфортных условий пребывания в помещениях невозможно без аэродинамического расчета воздуховодов. На основе полученных данных определяется диаметр сечения труб, мощность вентиляторов, количество и особенности ответвлений. Дополнительно может рассчитываться мощность калориферов, параметры входных и выходных отверстий. В зависимости от конкретного назначения комнат учитывается максимально допустимая шумность, кратность обмена воздуха, направление и скорость потоков в помещении.

Современные требования к прописаны в Своде правил СП 60.13330.2012. Нормированные параметры показателей микроклимата в помещениях различного назначения даны в ГОСТ 30494, СанПиН 2.1.3.2630, СанПиН 2.4.1.1249 и СанПиН 2.1.2.2645. Во время расчета показателей вентиляционных систем все положения должны в обязательном порядке учитываться.

Аэродинамический расчет воздуховодов – алгоритм действий

Работы включают в себя несколько последовательных этапов, каждый из которых решает локальные задачи. Полученные данные форматируются в виде таблиц, на их основании составляются принципиальные схемы и графики. Работы разделяются на следующие этапы:

  1. Разработка аксонометрической схемы распределения воздуха по системе. На основе схемы определяется конкретная методика расчетов с учетом особенностей и задач вентиляционной системы.
  2. Выполняется аэродинамический расчет воздуховодов как по главным магистралям, так и по всем ответвлениям.
  3. На основании полученных данных выбирается геометрическая форма и площадь сечения воздуховодов, определяются технические параметры вентиляторов и калориферов. Дополнительно принимается во внимание возможность установки датчиков пожаротушения, предупреждения распространения дыма, возможность автоматической регулировки мощности вентиляции с учетом составленной пользователями программы.

Разработка схемы системы вентиляции

В зависимости от линейных параметров схемы выбирается масштаб, на схеме указывается пространственное положение воздуховодов, точки присоединения дополнительных технических устройств, существующие ответвления, места подачи и забора воздуха.

На схеме указывается главная магистраль, ее расположение и параметры, места подключения и технические характеристики ответвлений. Особенности расположения воздуховодов учитывают архитектурные характеристики помещений и здания в целом. Во время составления приточной схемы порядок расчета начинается с самой удаленной от вентилятора точки или с помещения, для которого требуется обеспечить максимальную кратность обмена воздуха. Во время составления вытяжной вентиляции главным критерием принимаются максимальные значения по расходу воздушного потока. Общая линия во время расчетов разбивается на отдельные участки, при этом каждый участок должен иметь одинаковые сечения воздуховодов, стабильное потребление воздуха, одинаковые материалы изготовления и геометрию труб.

Отрезки нумеруются в последовательности от участка с наименьшим расходом и по возрастающей к наибольшему. Далее определяется фактическая длина каждого отдельного участка, суммируются отдельные участки и определяется общая длина системы вентиляции.

Во время планирования схемы вентиляции их допускается принимать общими для таких помещений:

  • жилых или общественных в любых сочетаниях;
  • производственных, если они по противопожарной категории относятся к группе А или Б и размещаются не более чем на трех этажах;
  • одной из категорий производственных зданий категории В1 – В4;
  • категории производственных зданий В1 м В2 разрешается подключать к одной системе вентиляции в любых сочетаниях.

Если в системах вентиляции полностью отсутствует возможность естественного проветривания, то схема должна предусматривать обязательное подключение аварийного оборудования. Мощности и место установки дополнительных вентиляторов рассчитываются по общим правилам. Для помещений, имеющих постоянно открытые или открывающиеся в случае надобности проемы, схема может составляться без возможности резервного аварийного подключения.

Системы отсосов загрязненного воздуха непосредственно из технологических или рабочих зон должны иметь один резервный вентилятор, включение устройства в работу может быть автоматическим или ручным. Требования касаются рабочих зон 1-го и 2-го классов опасности. Разрешается не предусматривать на схеме монтажа резервного вентилятора только в случаях:

  1. Синхронной остановки вредных производственных процессов в случае нарушения функциональности системы вентиляции.
  2. В производственных помещениях предусмотрена отдельная аварийная вентиляция со своими воздуховодами. Параметры такой вентиляции должны удалять не менее 10% объема воздуха, обеспечивающего стационарными системами.

Схема вентиляции должна предусматривать отдельную возможность душирования на рабочее место с повышенными показателями загрязненности воздуха. Все участки и места подключения указываются на схеме и включаются в общий алгоритм расчетов.

Запрещается размещение приемных воздушных устройств ближе восьми метров по линии горизонтали от мусорных свалок, мест автомобильной парковки, дорог с интенсивным движением, вытяжных труб и дымоходов. Приемные воздушные устройства подлежат защите специальными приспособлениями с наветренной стороны. Показатели сопротивления защитных устройств принимаются во внимание во время аэродинамических расчетов общей системы вентиляции.
Расчет потерь давления воздушного потока Аэродинамический расчет воздуховодов по потерям воздуха делается с целью правильного выбора сечений для обеспечения технических требований системы и выбора мощности вентиляторов. Потери определяются по формуле:

R yd — значение удельных потерь давления на всех участках воздуховода;

P gr – гравитационное давление воздуха в вертикальных каналах;

Σ l – сумма отдельных участков системы вентиляции.

Потери давления получают в Па, длина участков определяется в метрах. Если движение воздушных потоков в системах вентиляции происходит за счет естественной разницы давления, то расчетное снижение давления Σ = (Rln + Z) по каждому отдельному участку. Для расчета гравитационного напора нужно использовать формулу:

P gr – гравитационный напор, Па;

h – высота воздушного столба, м;

ρ н – плотность воздуха снаружи помещения, кг/м 3 ;

ρ в – плотность воздуха внутри помещения, кг/м 3 .

Дальнейшие вычисления для систем естественной вентиляции выполняются по формулам:

Определение поперечного сечения воздуховодов

Определение скорости движения воздушных масс в газоходах

Расчет на потери по местным сопротивлениям системы вентилирования

Определение потери на преодоление трения


Определение скорости воздушного потока в каналах
Расчет начинается с наиболее протяженного и удаленного участка системы вентиляции. В результате аэродинамических расчетов воздуховодов должен обеспечиваться требуемый режим вентиляции в помещении.

Площадь поперечного сечения определяется по формуле:

F P = L P /V T .

F P – площадь сечения воздушного канала;

L P – фактический расход воздуха на рассчитываемом участке вентиляционной системы;

V T – скорость движения воздушных потоков для обеспечения требуемой кратности обмена воздуха в нужном объеме.

С учетом полученных результатов определяется потери давления при принудительном перемещении воздушных масс по воздуховодам.

Для каждого материала изготовления воздуховодов применяются поправочные коэффициенты, зависящие от показателей шероховатости поверхностей и скорости перемещения воздушных потоков. Для облегчения аэродинамических расчетов воздуховодов можно пользоваться таблицами.

Табл. №1. Расчет металлических воздуховодов круглого профиля.




Таблица №2. Значения поправочных коэффициентов с учетом материала изготовления воздуховодов и скорости воздушного потока.

Используемые для расчетов коэффициенты шероховатости по каждому материалу зависят не только от его физических характеристик, но и от скорости движения воздушных потоков. Чем быстрее перемещается воздух, тем большее сопротивление он испытывает. Эту особенность обязательно нужно принимать во внимание во время подбора конкретного коэффициента.

Аэродинамический расчет по расходу воздуха в квадратных и круглых воздуховодах показывает различные показатели скорости передвижения потока при одинаковой площади сечения условного прохода. Объясняется это отличиями в природе завихрений, их значения и способности оказывать сопротивление движению.

Основное условие расчетов – скорость движения воздуха постоянно возрастает по мере приближения участка к вентилятору. С учетом этого предъявляются требования к диаметрам каналов. При этом обязательно учитываются параметры обмена воздуха в помещениях. Места расположения притока и выхода потоков подбираются с таким условием, чтобы пребывающие в помещении люди не ощущали сквозняков. Если прямым сечением не удается достичь регламентируемого результата, то в воздуховоды вставляются диафрагмы со сквозными отверстиями. За счет изменения диаметра отверстий достигается оптимальная регулировка воздушных потоков. Сопротивление диафрагмы рассчитывается по формуле:

Общий расчет вентиляционных систем должен учитывать:

  1. Динамическое давление воздушного потока во время передвижения. Данные согласовываются с техническим заданием и служат главным критерием во время выбора конкретного вентилятора, места его расположения и принципа действия. При невозможности обеспечить планируемые режимы функционирования системы вентиляции одним агрегатом, предусматривается монтаж нескольких. Конкретное место их установки зависит от особенностей принципиальной схемы воздуховодов и допустимых параметров.
  2. Объем (расход) перемещаемых воздушных масс в разрезе каждого ответвления и помещения в единицу времени. Исходные данные – требования санитарных органов по чистоте помещения и особенности технологического процесса промышленных предприятий.
  3. Неизбежные потери давления, возникающие в результате вихревых явлений во время движения воздушных потоков на различных скоростях. Кроме этого параметра в расчет принимается во внимание фактическое сечение воздуховода и его геометрическая форма.
  4. Оптимальная скорость передвижения воздуха в главном канале и отдельно по каждому ответвлению. Показатель влияет на выбор мощности вентиляторов и мест их установки.

Для облегчения производства расчетов допускается использовать упрощенную схему, она применяется для всех помещений с некритическими требованиями. Для гарантирования нужных параметров подбор вентиляторов по мощности и количеству делается с запасом до 15%. Упрощенный аэродинамический расчет систем вентиляции производится по следующему алгоритму:

  1. Определение площади сечения канала в зависимости от оптимальной скорости движения потока воздуха.
  2. Выбор приближенного к расчетному стандартного сечения канала. Конкретные показатели всегда следует подбирать в сторону увеличения. Воздушные каналы могут иметь увеличенные технические показатели, уменьшать их возможности запрещается. При невозможности подобрать стандартные каналы в технических условиях предусматривается их изготовление по индивидуальным эскизам.
  3. Проверка показателей скорости движения воздуха с учетом реальных значений условного сечения основного канала и всех ответвлений.

Задача аэродинамического расчета воздуховодов – обеспечить планируемые показатели вентилирования помещений с минимальными потерями финансовых средств. При этом одновременно следует добиваться снижения трудоемкости и металлоемкости строительно-монтажных работ, обеспечения надежности функционирования установленного оборудования в различных режимах.

Специальное оборудование должно монтироваться в доступных местах, к нему обеспечивается беспрепятственный доступ для производства регламентных технических осмотров и иных работ для поддержания системы в рабочем состоянии.

Согласно положениям ГОСТ Р ЕН 13779-2007 для расчета эффективности вентиляции ε v нужно применять формулу:

с ЕНА – показатели концентрации вредных соединений и взвешенных веществ в удаляемом воздухе;

с IDA – концентрация вредных химических соединений и взвешенных веществ в помещении или рабочей зоне;

c sup – показатели загрязнений, поступающих с приточным воздухом.

Эффективность систем вентиляции зависит не только от мощности подключенных вытяжных или нагнетающих устройств, но и от места расположения источников загрязнения воздуха. Во время аэродинамического расчета должны приниматься во внимания минимальные показатели по эффективности функционирования системы.

Удельная мощность (P Sfp > Вт∙с / м 3) вентиляторов рассчитывается по формуле:

де Р – мощность электрического двигателя, установленного на вентиляторе, Вт;

q v – расход воздуха, подаваемого вентиляторов при оптимальном функционировании, м 3 /с;

р – показатель перепада давления на входе и выходе воздуха из вентилятора;

η tot – общий коэффициент полезного действия для электрического двигателя, воздушного вентилятора и воздуховодов.

Во время расчетов имеются в виду следующие типы воздушных потоков согласно нумерации на схеме:

Схема 1. Типы потоков воздуха в системе вентиляции.

  1. Наружный, поступает в систему кондиционирования помещений из внешней среды.
  2. Приточный. Потоки воздуха, подающиеся в систему воздуховодов после предварительной подготовки (подогрева или очистки).
  3. Воздух, находящийся в помещении.
  4. Перетекающие воздушные потоки. Воздух, переходящий из одного в другое помещение.
  5. Вытяжной. Воздух, отводящийся из помещения наружу или в систему.
  6. Рециркуляционный. Часть потока, возвращаемого в систему для поддержания внутренней температуры в заданных значениях.
  7. Удаляемый. Воздух, выводящийся из помещений бесповоротно.
  8. Вторичный воздух. Возвращается обратно в помещение после очистки, нагрева, охлаждения и т. д.
  9. Потери воздуха. Возможные утечки из-за негерметичности соединений воздуховодов.
  10. Инфильтрация. Процесс поступления в воздух в помещения естественным путем.
  11. Эксфильтрация. Естественная утечка воздуха из помещения.
  12. Смесь воздуха. Одновременное пресечение нескольких потоков.

По каждому типу воздуха имеются свои государственные стандарты. Все расчеты вентиляционных систем должны их учитывать.

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ-
водственных и общественных зданий “. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета - от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где - сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение
а × b, м
υ ф, м/с D l ,м Re λ Kmc потери на участке Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 - - - 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали , толщина и размер которой соответствуют прил. Н из. Материал воздухозаборной шахты - кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 - - Табл. 25.1 0,09
Отвод 90 - - - Табл. 25.11 0,19
Тройник-проход - - 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход - - 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление - 0,63 0,61 - Прил. 25.9 0,48
4 2 отвода 250 × 400 90 - - - Прил. 25.11
Отвод 400 × 250 90 - - - Прил. 25.11 0,22
Тройник-проход - - 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход - - 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 - - Прил. 25.13 0,14
Отвод 600 × 500 90 - - - Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 - - - Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений

Краснов Ю.С.,

1. Потери на трение:

Pтр = (x*l/d) * (v*v*y)/2g,

z = Q* (v*v*y)/2g,

Метод допустимых скоростей

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов . Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты).

Таблица эквивалентных диаметров воздуховодов

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.

Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.

Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.

Вычисляем потери давления на трение P тр.

По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.

Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду


Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.

По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.

Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.

Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции