Вконтакте Facebook Twitter Лента RSS

Минимизация функций с использованием карты карно

Другой способ получения простых импликант формул с малым числом переменных (и, значит, нахождения минимальной ДНФ) основан на использовании так называемых карт Карно.

Карта Карно - это специального вида таблица, которая позволяет упростить процесс поиска минимальных форм и успешно применяется, когда число переменных не превосходит шести. Карты Карно для функций, зависящих от n переменных, представляет собой прямоугольник, разделенный на 2 n клеток. Каждой клетке диаграммы ставится в соответствие двоичный n-мерный набор. Значения заданной функции f из вносятся в нужные квадраты, однако если клетке соответствует 0, то обычно она остается пустой.

В первой таблице показан пример разметки карты Карно для функции, зависящей от трех переменных. Нижние четыре клетки карты соответствуют двоичным наборам, в которых переменная x принимает значение 1, четыре верхние клетки соответствуют наборам, в которых переменная x принимает значение 0. Четырем клеткам составляющим правую половину карты, соответствуют наборы, в которых переменная y; принимает значение 1 и т.д. Во второй таблице приведена разметка карты Карно для n=4 переменных.

y
z
-
x
0
0
0
1
1
1
1
0
0 000 001 011 010
1 100 101 111 110

z
w
--
xy
0
0
0
1
1
1
1
0
00 0000 0001 0011 0010
01 0100 0101 0011 0010
11 1100 1101 1111 1110
10 1000 1001 1011 1010

Для построения минимальной ДНФ производится процедура склеивания "1". Склеивающимся значениям "1" соответствуют соседние клетки, т.е. клетки отличающиеся лишь значением одной переменной (на графическом изображении разделенных вертикальной или горизонтальной линией с учетом соседства противоположных крайних клеток).

Процесс склеивания "1" сводится к объединению в группы единичных клеток карты Карно, при этом необходимо выполнять следующие правила:

1. Количество клеток, входящих в одну группу, должно выражаться числом кратным 2, т.е. 2 m где m=0,1,2,...

2. Каждая клетка, входящая в группу из 2 m клеток, должна иметь m соседних в группе.

3. Каждая клетка должна входить хотя бы в одну группу.

4. В каждую группу должно входить максимальное число клеток, т.е. ни одна группа не должна содержаться в другой группе.

5. Число групп должно быть минимальным.

Считывание функции f по группе склеивания производится следующим образом: переменные, которые сохраняют одинаковые значения в клетках группы склеивания, входят в конъюнкцию, причем значениям 1 соответствуют сами переменные, а значениям 0 их отрицания.

Приведем шаблоны, которые помогают строить покрытия 1 (переменные считаем теми же, но их писать не будем). Для упрощения записи мы не будем отмечать переменные, хотя сохраним их обозначения как и в вышеприведенных таблицах.












F=y&z&w
1
1

1

Сначала смотрим, есть ли покрытия_1 из 16 клеток покрывающих хотя бы одну непокрытую 1. Таких покрытий нет. Переходим к покрытиям из 8 клеток. Смотрим, есть ли покрытия 1 из 8 клеток покрывающих хотя бы одну непокрытую 1. Таких покрытий нет. Переходим к покрытиям из 4 клеток. Смотрим, есть ли покрытия 1 из 4 клеток покрывающих хотя бы одну непокрытую 1. Таких покрытий два. Переходим к покрытиям из 2 клеток. Такое покрытие одно. Таким образом, все 1 стали покрытыми. Далее, смотрим можно ли убрать некоторые покрытия, так чтобы все единицы остались покрытыми. В конце выписываем МДНФ: f=¬X¬ZvYWv¬YZ¬W.

Замечание. Для построения минимальной КНФ функции f, достаточно построить минимальную ДНФ для функции ¬f , а затем использовать f=¬¬f и законы де Моргана.

Минимизация логических функций является одной из типовых задач в процессе обучения схемотехнике. Посему считаю, что такая статья имеет место быть, надеюсь Вам понравится.

Зачем это нужно?

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок.

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др. Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

В процессе минимизации той или иной логической функции, обычно учитывается, в каком базисе эффективнее будет реализовать ее минимальную форму при помощи электронных схем.

Минимизация логических функций при помощи карт Карно

Карта Карно - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ могут иметь в своём составе 2N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N–мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2K термов, принадлежащие одной K–мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями четырёх, пяти и более переменных. Примеры таблиц для N=4 и N=5 приведены на рисунке. Для этих таблиц следует помнить, что соседними являются клетки, находящиеся в соответственных клетках крайних столбцов и соответственных клетках верхней и нижней строки. Для таблиц 5 и более переменных нужно учитывать также, что квадраты 4х4 виртуально находятся друг над другом в третьем измерении, поэтому соответственные клетки двух соседних квадратов 4х4 являются сосоедними, и соответствующие им термы можно склеивать.

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути Карта Карно - это таблица истинности составленная в 2-х мерном виде. Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.о. вся Карта Карно сворачивается в фигуру тор (бублик). На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Далее берём первую область и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например(для Карт на 2-ве переменные):


Для КНФ всё то же самое, только рассматриваем клетки с нулями, не меняющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ:

Правила минимизации с использованием карт Карно

1. В карте Карно группы единиц (для получения ДНФ) и группы нулей (для получения КНФ) необходимо обвести четырехугольными контурами. Внутри контура должны находиться только одноименные значения функции. Этот процесс соответствует операции склеивания или нахождения импликант данной функции.

2. Количество клеток внутри контура должно быть кратно степени двойки (1, 2, 4, 8, 16...).

3. При проведении контуров крайние строки карты (верхние и нижние, левые и правые), а также угловые клетки, считаются соседними (для карт до 4-х переменных).

4. Каждый контур должен включать максимально возможное количество клеток. В этом случае он будет соответствовать простой импликанте (имплиценте). Число контуров должно быть минимальным.

5. Все единицы (нули) в карте (даже одиночные) должны быть охвачены контурами. Любая единица (нуль) может входить в контуры произвольное количество раз.

6. Число контуров должно быть минимальным. Множество контуров, покрывающих все 1 (0) функции образуют тупиковую ДНФ (КНФ). Целью минимизации является нахождение минимальной из множества тупиковых форм.

7. В элементарной конъюнкции (дизъюнкции), которая соответствует одному контуру, остаются только те переменные, значение которых не изменяется внутри обведенного контура. Переменные булевой функции входят в элементарную коньюнкцию (для значений функции 1) без инверсии, если их значение на соответствующих координатах равно 1 и с инверсией - если 0. Для значений булевой функции, равных 0, записываются элементарные дизьюнкции, куда переменные входят без инверсии, если их значение на соответствующих координатах равно 0 и с инверсией - если 1.

Рассмотрим пример на рис. 2.52.

Рисунок 2.52 – Карта Карно двух переменных

СДНФ: . Применяя для минимизации метод аналитических преобразований (закон склеивания и Блейка-Порецкого), получаем:

Можно пойти другим путем, применяя операцию неполного склеивания, получим дизъюнкцию импликант:

И - простые импликанты, поскольку к ним невозможно применить операцию склеивания, они образуют сокращенную ДНФ. Других вариантов нет, поэтому данная ДНФ является тупиковой, кратчайшей и минимальной.

По карте Карно получаем:

МКНФ: .

В кубической форме процесс минимизации будет выглядеть следующим образом:

где 01, 10, 11 – минтермы, Х1 и 1Х – импликанты, они же простые импликанты. Остается одна простая иплицента (она же макстерм) 00. С 1 = {1Х, Х1}, С 0 = {00}.

Рассмотрим пример на рис. 2.53.

Рисунок 2.53 – Карта Карно трех переменных

МДНФ: .

Рассмотрим пример на рис. 2.54.

Рисунок 2.54 – Карта Карно четырех переменных

Для частично (не полностью) определенных функций рассмотрим пример на рис. 2.55. Неизвестные значения, обозначаемые Х участвуют в склеивании

Рисунок 2.55 – Карта Карно четырех переменных частично определенной функции

МДНФ: .

МКНФ: .

КП={C 0 , C 1 },

.

Если рассматривать запись результатов минимизации в кубическом виде, то при минимизации булевой функции по единичным значениям каждой конъюнкции ранга R соответствует куб ранга R, где каждой переменной без инверсии соответствует 1 в кубе, переменной с инверсией - 0, а на месте отсутствующей переменной ставиться X. Полученное множество кубов образует единичное покрытие C 1 (соответствующее ДНФ).

При минимизации булевой функции по нулевым значениям и представлении результатов минимизации в кубическом виде, нулевое покрытие C 0 формируется на основе КНФ. Таким образом, каждой дизъюнкции ранга R (из КНФ) соответствует куб ранга R, где каждой переменной без инверсии соответствует 0 в кубе, переменной с инверсией - 1, а на месте отсутствующей переменной ставиться X. Полученное множество кубов образует нулевое покрытие C 0 (соответствующее КНФ).

Особенностью изображения карт Карно для числа переменных более 4-х является то, что «математически» соседние столбцы карты Карно пространственно оказываются разнесенными. Таким образом, карта Карно для 5 переменных представляет собой две карты 4-х переменных, зеркально отображенные относительно центральной вертикальной линии (выделенной жирным тоном на рис. 2.56).

Рисунок 2.56 – Карта Карно пяти переменных

При этом столбцы одного цвета в правой и левой частях карты фактически оказываются соседними по переменной x 3 (соседние столбцы также указываются стрелками в нижней части карты). При выполнении склеиваний следует учитывать «соседство» указанных столбцов, особенно розовых и зеленых, которые пространственно разделены.


2.2.3 Минимизация систем булевых функций

Существует два подхода в минимизации систем булевых функций:

Минимизация каждой функции в отдельности;

Совместная минимизация функций системы.

Рассмотрим первое направление. Если произвести минимизацию булевых функций, входящих в систему, независимо друг от друга, то общая схема будет состоять из изолированных подсхем. Ее можно иногда упростить за счет объединения участков подсхем, реализующих одинаковые члены, входящие в несколько булевых функций системы.

Пусть в результате минимизации функций получены следующие МДНФ:

На рис. 2.57 показана реализация системы функций без учета общих частей (термов). Аппаратурные затраты по критерию Квайна без учета инверсий для данной реализации составляют C b = 18.

На рис. 2.58 показана реализация системы функций с объединением общих частей . Аппаратурные затраты по критерию Квайна без учета инверсий для данной реализации составляют C b = 14.Очевидно, что данная реализация является более простой (экономичной).

Рисунок 2.57 – Реализация системы функций без учета общих частей

Рисунок 2.58 – Реализация система функций с объединением общих частей

Данный метод не всегда эффективен. Ниже это будет проиллюстрировано примером.

Рассмотрим второе направление. Существуют различные методы, в данном случае предлагается метод минимизации системы булевых функций. Алгоритм минимизации следующий. (Для КНФ алгоритм аналогичен).

1. Выписать все минтермы функций (можно в кубической форме), входящие в систему. Каждому минтерму присвоить признак, содержащий номера функций системы, в которые входит рассматриваемый минтерм, например, минтерм 0 (f 1 , f 3) 0000, минтерм 15 (f 1) 1111.



2. Выполнить склеивание. Если признаки склеиваемых элементарных произведений (минтермов и далее импликант) не содержат общих номеров, склеивание не выполняется, поскольку эти элементарные произведения не относятся к одной функции. Результату склеивания (импликантам) присваивать признак, состоящий из номеров функций, общих для двух склеиваемых минтермов или импликант. Не участвовавшие в склеивании импликанты и минтермы являются простыми импликантами и все они составляют сокращенную ДНФ системы, записываемой в виде функции .

3. Построить таблицу покрытий функции - для каждого минтерма выделяется столько столбцов, сколько различных номеров функций содержит его признак. Далее все аналогично, строится минимальная форма функции .

4. Произвести получение выражений МДНФ для каждой функции системы по функции .

Замечание. Если функция не полностью определена, наборы, на которых она не определена, должны участвовать в склеивании, но в таблицу покрытий не вносятся.

Рассмотрим пример. Пусть дана система булевых функций (табл. 2.8). Найдем МДНФ системы булевых функций.

Таблица 2.8 – Таблица истинности системы булевых функций

0 0 0 1 1
0 0 1 0 0
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 0

Выполняем склеивания.

В склеивании не участвовали все 1-кубы и два 0-куба 000 (f 1) и 101 (f 2). Это простые импликанты. Они составляют сокращенную ДНФ функции . Все они войдут в таблицу покрытий.

Строим таблицу покрытий (табл. 2.9)

Таблица 2.9 – Таблица покрытий

Простые импликанты Минтермы функции
f 1 f 2 f 2 f 2 f 1 f 2 f 1 f 1
A 0x0 (f 2) v v
B 01x (f 2) v v
C 1x1 (f 1) v v
D 11x (f 1) v v
E 000 (f 1 , f 2) v v
F 101 (f 1 , f 2) v v

Ядро функции составляют простые импликанты B, D, E, F. Остальные импликанты являются лишними и не будут входить в тупиковую и минимальную ДНФ. Т.е. МДНФ функции будет состоять только из ядра.

По МДНФ функции строим МДНФ и МДНФ .

Аппаратурные затраты по критерию Квайна без учета инверсий и с учетом объединения общих частей выражения () составляют C b =16.

Попробуем для минимизации рассмотренной системы воспользоваться первым подходом, предполагающим минимизацию каждой функции отдельно.

Карта Карно для функции представлена на рис. 2.59

Рисунок 2.59 – Карта Карно для функции

Карта Карно для функции представлена на рис. 2.60

Рисунок 2.60 – Карта Карно для функции

Общих частей у МДНФ функций нет, в результате аппаратурные затраты по критерию Квайна без учета инверсий составляют C b =20. По оценке аппаратурных затрат видно, что раздельная минимизация функций системы уступает совместной, хотя последняя является более трудоемкой.


2.3 Комбинационные компоненты средней степени интеграции

Сумматоры

Каким образом выполняется суммирование двух положительных чисел в двоичном коде? Например, 3+5=8:

Существует большое многообразие сумматоров в приведено 9 типов сумматоров, рассмотрим самые простые из них.

Таблица 2.12 – Таблица истинности для полного сумматора

a b C in S C out

.

Выполнив минимизацию C out по карте Карно, получим;

С in – перенос из предыдущего младшего разряда,

C out – перенос с следующий старший разряд.

На рис. 2.67 представлена схема одноразрядного полного сумматора.

Рисунок 2.67 – Схема одноразрядного полного сумматора

Для последовательного выполнения операции сложения (разряд за разрядом) используется один полный сумматор, общий для всех разрядов. Для выполнения операции операнды и перенос подаются на него последовательно, начиная с младших разрядов рис. (2.68).

Рисунок 2.68 – Схема последовательного сумматора

Последовательный сумматор имеет небольшие аппаратурные затраты, но требует большого времени выполнения операции. Более быстродействующим будет параллельный сумматор с последовательным переносом. Для примера рассмотрим четырехразрядный параллельный сумматор с последовательным переносом (рис. 2.69).

Рисунок 2.69 – Схема параллельного сумматора с последовательным переносом

Для каждого разряда в этой схеме используется отдельный одноразрядный полный сумматор. В младший разряд (a 0 , b 0 ) переноса нет, поэтому С in =0. На каждый последующий разряд подеется перенос из предыдущего. Хоть сумматор и называется параллельным, на самом деле все разряды обрабатываются не точно одновременно, а только после формирования переноса для данного разряда. Отсюда следует, что быстродействие устройства определяется суммой задержек передачи сигнала переноса с младшего разряда на выход сумматора старшего разряда.

Мультиплексоры

Мультиплексором (от английского слова multiplex - многократный) называется комбинационный узел, способный коммутировать (передавать) информацию с нескольких входов на один выход. С помощью мультиплексора осуществляется временное разделение информации, поступающей по разным каналам. На рисунке 2.70 приведен пример мультиплексора 2 в 1. Мультиплексоры имеют две группы входов и один, реже два - взаимодополняющих выхода F и . Входы являются информационными, вход А - управляющими (адресными). Набор сигналов на адресных входах определяет конкретный информационный вход, который будет соединен с выходным каналом. Условно мультиплексор обозначается MX или MUX.

Рисунок 2.70 – Условное обозначение мультиплексора MX 2 в 1

В таблице 2.13 приведены значения адресов для соответствующих входов.

Таблица 2.13 – Информационные входы и их адреса

Информационные входы А
D 0
D 1

На рис. 2.71 приведен механический аналог мультиплексора 2 в 1. Когда А =0, коммутируется D 0 и F , когда А =1, коммутируется D 1 и F.

Рисунок 2.71 – Механический аналог мультиплексора MX 2 в 1

В таблице 2.14 представлена таблица истинности MX 2 в 1.

Таблица 2.14 – Таблица истинности MX 2 в 1

А D 0 D 1 F

Выполнив минимизацию по карте Карно функции F , получим выражение:

На рисунке 2.72 приведена структура мультиплексора 2 в 1.

Рисунок 2.72 – Структура мультиплексора MX 2 в 1

На рисунке 2.73 приведен пример мультиплексора 4 в 1.

Рисунок 2.73 – Условное обозначение стробируемого MUX 4 в 1

Входы являются информационными, входы - управляющими (адресными). Набор сигналов на адресных входах определяет конкретный информационный вход, который будет соединен с выходным каналом. В таблице 2.15 приведены значения адресов для соответствующих входов.

Таблица 2.15 – Информационные входы и их адреса в MUX 4 в 1

Информационные входы Адреса информационных входов А 1 А 2
D 0 0 0
D 1 0 1
D 2 1 0
D 3 1 1

Разрешающий (стробирующий) вход V управляет одновременно всеми информационными входами независимо от состояния адресных входов. Запрещающий сигнал на этом входе блокирует действие всего устройства. Наличие разрешающего входа V расширяет функциональные возможности мультиплексоров, позволяя синхронизировать его работу с работой других узлов.

На рисунке 2.74 приведен механический аналог мультиплексора MUX 4 в 1. Если V =0, то F =0, т.е. будет выполняться коммутация с нулем. Если V =1, то F будет коммутироваться с каналом в соответствии с поданным адресом на входы А 1 А 2 , т.е. мультиплексор будет выполнять свою основную функцию. .

Рисунок 2.74 – Механический аналог мультиплексора MUX 4 в 1

Разрешающий вход используется также при наращивании числа входных информационных каналов. Мультиплексор на рисунке 2.73 реализует функцию, представленную в табл. 2.16.

Таблица 2.16 – Таблица истинности MUX 4 в 1

V А 1 А 2 D 0 D 1 D 2 D 3 F
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x
x x x x x x

Функция выхода мультиплексора MUX 4 в 1 будет иметь вид:

Демультиплексоры

Демультиплексоры (DMX) выполняют преобразования информации, обратное преобразованию информации в мультиплексоре. Демультиплексор выполняет коммутацию одного входного информационного канала с одним из нескольких выходных каналов. Число выходных каналов демультиплексора равно , где n - число адресных входов. В качестве демультиплексоров можно использовать дешифраторы. Демультиплексор из 1 в 2 представлен на рис. 2.76.

Рисунок 2.76 – Условное обозначение мультиплексора DMX 1 в 2

В таблице 2.17 приведены значения адресов для соответствующих выходов.

Таблица 2.17 – Выходы и их адреса в DMX 1 в 2

Запись 0/z означает, что на выходе может быть либо 0, либо z, 0 и z соответствуют различным таблицам истинности. Символ z означает состояния высокого импеданса или высокого сопротивления на выходе (обрыв связи).

Вне зависимости от того, что на выходе (0 либо z), функция реализуется уравнениями:

На рисунке 2.78 приведена структура демультиплексора 1 в 2.

Рисунок 2.78 – Структура демультиплексора DMX 1 в 2

Дешифраторы

Комбинационная логическая схема, преобразующая поступающий на её входы двоичный позиционный код в активный сигнал только на одном из выходов (унитарный код), называется дешифратором (от английского decoder). Если количество двоичных разрядов дешифрируемого кода обозначить через n, то число выходов дешифратора равно 2 n . На рисунке 2.79 изображен дешифратор из 2 в 4. Слева – входы 1, 2 – степени двойки, условно будем их обозначать D 1 , D 2 далее для удобства. V – стробирующий вход. Справа – выходы 0, 1, 2, 3 – десятичный эквивалент подаваемого на входы кода, для удобства будем далее их обозначать Q 0 , Q 1 , Q 2 , Q 3 .

Рисунок 2.79 – Условное обозначение дешифратора 2 в 4

Функции дешифратора представлены в таблице 2.19.

Таблица 2.19 – Таблица истинности DC 2 в 4

D 2 , D 1 Q 0 , Q 1 , Q 2 , Q 3 .
2 1 0 1 2 3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

С учетом стробирующего сигнала уравнения имеют следующий вид:

,

В ЭВМ с помощью дешифраторов осуществляется выборка необходимых ячеек ЗУ (запоминающих устройств), расшифровка кодов операций с выдачей соответствующих управляющих сигналов, реализация булевых функций.

Если элементы И в схеме дешифратора (рис. 2.80) заменить на элементы Шеффера (И-НЕ), то получим дешифратор с инверсными выходами, что показывается на выходах кружками. Так как дешифраторы реализуют булевы функции, являющиеся конституэнтами единицы, то любую булеву функцию можно реализовать на базе дешифратора c прямыми выходами и логических схем ИЛИ, а также на базе дешифратора c инверсными выходами и логических схем И-НЕ (рис 2.81).

Рисунок 2.81- Реализация булевой функции y на основе дешифратора с прямыми выходами (a) и инверсными выходами (б)

Дешифраторы можно использовать в качестве демультиплексоров, если V использовать как информационный вход, а D 1 , D 2 - как адресные.

Шифраторы

В условных обозначениях шифраторов используются буквы CD (от слова coder) (рис. 2.82).

Рисунок 2.82 – Условное обозначение шифратора 4 в 2

Таблицей, описывающей функционирование шифратора, является табл. 2,19, с той лишь разницей, что являются входными булевыми переменными, а - выходными булевыми функциями шифратора. Функция шифратора представлена в таблице 2.20.

Таблица 2.20 – Таблица истинности CD

Записав МДНФ для каждой функции выхода, получим следующие уравнения:

Структура шифратора представлена на рис. 2.83.

Рисунок 2.83 – Структура шифратора 4 в 2

Уровень представления схемы, в которой используются мультиплексоры, демультиплексоры, шифраторы, дешифраторы, сумматоры и т.п., называется функционально-блочным .

Уровень представления схемы, состоящей из логических элементов (вентилей), называется логическим .

3 Последовательностная логика

Особенность последовательностной схемы (в отличии от комбинационной) состоит в том, что значения на выходах схемы в текущий момент времени зависят не только от того, какие значения были поданы на входы, но и в каком состоянии находилась схема в предыдущий момент времени.

Представителями последовательностных схем являются триггеры. Триггер это элементарный автомат, содержащий элемент памяти (запоминающий элемент) и схему управления элементом памяти. На схему управления подают входные сигналы (информационные) и сигналы обратной связи с выхода элемента памяти (рис. 3.1). В некоторых простейших триггерах схема управления может отсутствовать.

Состояние выхода триггера определяется элементом памяти, сигналом на его прямом выходе Q . Обычно триггер имеет и инверсный выход , иногда он обозначается Q *.

Рисунок 3.1– Структурная схема триггера

ЗЭ – запоминающий элемент;

КС – комбинационная схема управления;

x 1, ..., x n – информационные входы триггера;

С 1 , С m – синхронизующие входы;

Q , – соответственно прямой и инверсный выходы триггера;

f 1 , f 2 – функции возбуждения ЗЭ.

На рис. 3.2 приведены примеры запоминающих элементов. Они состоят из вентилей И-НЕ или ИЛИ-НЕ с обратными связями.

Рисунок 3.2 – Примеры запоминающих элементов

Классификация триггеров проводится по закону логического функционирования (триггеры типа RS, R*S*, JK, J*K* и другие), по способу записи информации в триггер (асинхронные и синхронные), по способу восприятия триггером тактовых сигналов (управляемые уровнями и управляемые фронтами), по структуре (одноступенчатые и двухступенчатые).

3.1 Асинхронные триггеры

Асинхронные триггеры – триггеры, у которых переход в новое состояние вызывается изменениями информационных входных сигналов. Т.е. без тактирующих или синхронизирующих сигналов.

3.1.1 RS-триггер

Триггером типа RS называется триггер с двумя устойчивыми состояниями равновесия и двумя информационными входами (рис. 3.3). Вход S (Set) служит для установки триггера в «1», вход R (Rеsеt) для установки в «0». Одновременная подача двух активных сигналов на входы R и S запрещена, т.е. R S . Подача двух нулей на входы триггера сохраняет его внутреннее состояние. Активным значением сигнала на входе является уровень 1. Вход в этом случае считается прямым. Если активным значением сигнала на входе является нуль, то такой вход считается инверсным. Обычно инверсный вход обозначается символом звездочки (*). Триггеры с инверсными входами будут рассмотрены далее.

Рисунок 3.3 – Структура и условное обозначение асинхронного RS-триггера

Для полного описания триггера достаточно задать закон его функционирования. Поскольку триггер является элементарным автоматом, то закон его функционирования задается полной таблицей переходов (ПТП) (таблица 3.1), с помощью которой можно построить сокращенную таблицу переходов (таблица 3.2). В таблице t и t Q Q в момент времени t .

Таблица 3.1 – Полная таблица переходов RS -триггера

t t +1
R S Q Q
X
X

Если разбить таблицу 3.1 по две строки сверху, видно, что значения R и S в парах строк одинаковые. Опустив значения столбца , получим сокращенную таблицу переходов (СТП).

Таблица 3.2 – Сокращенная таблица переходов RS -триггера

R S Q (t +1)
Q (t )
X

В таблице 3.3 представлена дополнительная таблица переходов (ДТП). Ее легко получить из ПТП. В первом столбце ДТП записываются входы триггера, в остальных столбцах – все возможные переходы состояний триггера : «0-0», «0-1», «1-0», «1-1». В ПТП прослеживаются все эти переходы и помечаются (в нашем случае красной цифрой). Цифра обозначает номер перехода в ДТП. Затем в соответствии с расставленными метками из ПТП в столбцы ДТП записываются значения, подаваемые на входы R и S на данном переходе.

Таблица 3.3 – Дополнительная таблица переходов RS -триггера

Матрица переходов (МП) это фактически повернутая ДТП (таблица 3.4). Строки ДТП являются столбцами матрицы. Матрица переходов показывает, какие значения сигналов нужно подавать на входы триггера для осуществления указанного перехода состояний Q (t )-Q (t +1). Пары идентичных значений в ячейке ДТП заменяются одним значением в МП. Пары различных значений в ячейке ДТП заменяются одной буквой, например b 1, Так как на переходе «0-0» сигнал на входе R может быть равен или 0, или 1, то его обозначают через неопределенный коэффициент b 1 , . Аналогично для сигнала на входе S для перехода «1-1» ставится b 2 , В различных ячейках МП, где необходимо ставить буквы, должны быть либо различные буквы, либо одна и та же буква, но с различными индексами. Это удобно при синтезе триггеров, чтобы не возникало путаницы. Синтез будет рассмотрен позже.

Таблица 3.4 – Матрица переходов RS-триггера

Q (t )-Q (t +1) R S
0-0 b 1
0-1
1-0
1-1 b 2

Еще одним способом описания триггеров является граф переходов (рис. 3.4). Вершинам соответствуют состояния триггеров, а дугам – переходы между состояниями. Состояние определяется значением выхода Q. Когда Q =0, считается, что триггер находится в состоянии а 0 , когда Q =1, считается, что триггер находится в состоянии а 1 . На дугах записываются условия того или иного переходов.

Рисунок 3.4 – Граф переходов RS -триггера

Для дуги, что выходит из а 0 и входит в а 0 (то есть петли) – для перехода «0-0»: ;

для дуги из а 0 в а 1 – для перехода «0-1»: ;

для дуги из а 1 в а 0 – для перехода «1-0»: ;

для дуги из а 1 в а 1 – для перехода «1-1»: .

Функция переходов триггера в момент t+1 может быть задана с помощью карт Карно (рис. 3.5), которые строятся по полной таблице переходов триггера.

Рисунок 3.5 – Карта Карно для функции переходов RS-триггера

Используя карту Карно, можно найти минимальную КНФ булевой функции для описания функционирования RS -триггера (характеристическую функцию переходов) .

Данное выражение соответствует схеме RS -триггера, изображенного на рис. 3.3.

3.1.2 R *S *-триггер (RS -триггер с инверсными входами)

Триггером типа R *S *-называется триггер с двумя устойчивыми состояниями равновесия и двумя информационными входами (рис. 3.6). Вход S * (Set) служит для установки триггера в «1», вход R * (Rеsеt) для установки в «0». Активным значением сигнала на входе является уровень 0. Вход в этом случае считается инверсным. Инверсный вход обозначается символом звездочки (*). Одновременная подача двух активных сигналов на входы R * и S * запрещена, т.е. R * S * . Подача двух единиц на входы триггера сохраняет его внутреннее состояние.

Рисунок 3.6 – Структура и условное обозначение асинхронного R *S *-триггера

Полная таблица переходов (ПТП) (таблица 3.5), с помощью которой можно построить сокращенную таблицу переходов (таблица 3.6). В таблице t и t +1 – соседние моменты времени, в пределах которых рассматриваются переходы состояний триггера (переходы из состояния Q в момент времени t в состояние Q в момент времени t +1). Обозначается такой переход условно .

Таблица 3.5 – Полная таблица переходов R*S* -триггера

Обратите внимание, что столбец Q (t +1) в сокращенной таблице переходов R*S* -триггера, перевернут относительно того же столбца RS -триггера. Это справедливо для всех одноименных триггеров с прямыми и инверсными входами. Зная СТП триггера с прямыми входами, можно легко получить СТП одноименного триггера с инверсными входами.

В таблице 3.7 представлена дополнительная таблица переходов (ДТП).

Таблица 3.7 – Дополнительная таблица переходов R*S* -триггера

Матрица переходов (МП) представлена в таблице 3.8).

Таблица 3.8 – Матрица переходов R*S*-триггера

Q (t )-Q (t +1) R* S*
0-0 b 1
0-1
1-0
1-1 b 2

Граф переходов представлен на рис. 3.7.

Рисунок 3.7 – Граф переходов R*S* -триггера

Аналитические выражения для условий переходов получают по ДТП.

Для дуги, что выходит из а 0 и входит в а 0 (то есть петли) – для перехода «0-0»: ;

для дуги из а 0 в а 1 – для перехода «0-1»: ;

для дуги из а J (Jarк) служит для установки триггера в «1», вход K (Кill) для установки в «0». Активным значением сигнала на входе является уровень 1. Одновременная подача двух активных сигналов на входы K и J не запрещена, при этом на выходе появляется инверсное значение состояния триггера . Подача двух нулей на входы триггера сохраняет его внутреннее состояние.

Рисунок 3.9 – Условное обозначение асинхронного JK -триггера

Полная таблица переходов (ПТП) (таблица 3.9), с помощью которой можно построить сокращенную таблицу переходов (таблица 3.10).

Таблица 3.9 – Полная таблица переходов JK -триггера

В таблице 3.11 представлена дополнительная таблица переходов.

Таблица 3.11 – Дополнительная таблица переходов JK -триггера

Матрица переходов представлена в таблице 3.12.

Таблица 3.12 – Матрица переходов J K-триггера

3.1.4 J*K* -триггер

Триггером типа J*K* называется триггер с двумя устойчивыми состояниями равновесия и двумя информационными входами (рис. 3.12). Вход J* в «1», вход *K для установки в «0». Активным значением сигнала на входе является уровень 0. Одновременная подача двух активных сигналов на входы K* и J* не запрещена, при этом на выходе появляется инверсное значение состояния триггера . Подача двух единиц на входы триггера сохраняет его внутреннее состояние.

Рисунок 3.12 – Условное обозначение асинхронного J*K* -триггера

Полная таблица переходов (таблица 3.13), с помощью которой можно построить сокращенную таблицу переходов (таблица 3.14).

Таблица 3.13 – Полная таблица переходов J*K* -триггера

Матрица переходов представлена в таблице 3.15.

Таблица 3.15 – Матрица переходов J*K*-триггера

Q (t )-Q (t +1) K* J*
0-0 b 1
0-1 b 2
1-0 b 3
1-1 b 4

3.1.5 D -триггер

Триггером типа D (Delay - задержка)называется триггер с двумя устойчивыми состояниями равновесия и одним информационным входом D (рис. 3.13). Значения, поступающие на вход D, записываются на выход Q, т.е. триггер работает как повторитель.

Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

Инструкция . При вводе с клавиатуры используйте следующие обозначения:

Логическое выражение :

Вывод промежуточных таблиц для таблицы истинности
Построение СКНФ
Построение СДНФ
Построение полинома Жегалкина
Построение карты Вейча-Карно
Минимизация булевой функции
Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис .

Правила ввода логической функции

  1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
  2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
  3. Максимальное количество переменных равно 10 .

Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
Если определены не все значения, функция называется частично определённой.
Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
Для представления функции алгебры логики используется следующие способы:
По алгебраической форме можно построить схему логического устройства, используя логические элементы.


Рисунок1- Схема логического устройства

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

Операция НЕ - логическое отрицание (инверсия)

Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
  • если исходное выражение истинно, то результат его отрицания будет ложным;
  • если исходное выражение ложно, то результат его отрицания будет истинным.
Для операции отрицания НЕ приняты следующие условные обозначения:
не А, Ā, not A, ¬А, !A
Результат операции отрицания НЕ определяется следующей таблицей истинности:
A не А
0 1
1 0

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
Применяемые обозначения: А или В, А V В, A or B, A||B.
Результат операции ИЛИ определяется следующей таблицей истинности:
Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

Операция И - логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
Применяемые обозначения: А и В, А Λ В, A & B, A and B.
Результат операции И определяется следующей таблицей истинности:
A B А и B
0 0 0
0 1 0
1 0 0
1 1 1

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Операция «ЕСЛИ-ТО» - логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
Применяемые обозначения:
если А, то В; А влечет В; if A then В; А→ В.
Таблица истинности:
A B А → B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А ↔ В, А ~ В.
Таблица истинности:
A B А↔B
0 0 1
0 1 0
1 0 0
1 1 1

Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

Применяемое обозначение: А XOR В, А ⊕ В.
Таблица истинности:
A B А⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приоритет логических операций

  • Действия в скобках
  • Инверсия
  • Конъюнкция (&)
  • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
  • Импликация (→)
  • Эквивалентность (↔)

Совершенная дизъюнктивная нормальная форма

Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
  1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все логические слагаемые формулы различны.
  3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
  4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

Совершенная конъюнктивная нормальная форма

Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
  1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
  2. Все элементарные дизъюнкции различны.
  3. Каждая элементарная дизъюнкция содержит переменную один раз.
  4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.
© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции