Вконтакте Facebook Twitter Лента RSS

Какие параметры определяют микроклимат производственной среды. Общие сведения о микроклиматических факторах. Источники неблагоприятных факторов и их воздействие на человекаМикроклимат производственной среды

  • Раздел II. Управление безопасностью жизнедеятельности
  • Тема 4. Управление безопасностью жизнедеятельности План
  • 1. Обеспечение безопасности жизнедеятельности
  • 2. Основные законодательные акты и нормативные документы
  • 3. Надзор и контроль за соблюдением законодательства о труде и о безопасности труда.
  • 4. Стандартизация в области безопасности труда
  • 4. Расследование и учет несчастных случаев
  • 5. Эффективность мероприятий по обеспечению безопасности на производстве
  • 7. Принципы построения и функционирования системы управления безопасностью труда
  • Тема 3. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс) и гражданской обороны (го) План
  • 1. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс)
  • 2. Гражданская оборона (го), её роль и место в Российской Федерации.
  • 2.2 Понятия го
  • 2.3 Организация и ведение го.
  • 3. Основы государственной политики в го. Принципы организации ведения го.
  • 4. Степени готовности го и их краткая характеристика
  • Раздел III. Основы физиологии труда и комфортные условия жизни
  • Тема 4.Основы физиологии труда и комфортные условия жизни План
  • 1. Анализаторы человеческого организма.
  • 2. 1 Виды деятельности человека
  • 2.2 Физический и умственный труд
  • 2.3 Физиологические изменения в организме при работе
  • 3. Понятие микроклимата, его параметры.
  • 3.1 Общие требования к параметрам микроклимата
  • 3.2 Терморегуляция организма
  • 3.3 Методы и приборы измерения параметров микроклимата
  • Аспирационный психрометр
  • Дистанционный психрометр
  • Крыльчатый анемометр -
  • Термоанемометр по своей сути является акустическим прибором, то есть использует определение характеристик звука (а именно скорость звука), а затем эту информацию преобразует в нужный сигнал.
  • 5. Общие санитарно - технические требования к производственным помещениям и рабочим местам
  • 6. Приемы и способы создания комфортных условий для работы в производственных помещениях.
  • 7. Порядок организации оптимального освещения рабочих мест, способы определения качества естественного освещения и коэффициента освещенности
  • Раздел IV. Воздействие на человека вредных и опасных факторов среды обитания
  • 1.2 Повседневные абиотические факторы
  • 1.3 Литосферные опасности
  • 1.3.1 Землетрясение
  • 1.3.2 Сели
  • 1.3.3 Снежные лавины
  • 1.3.4 Извержение вулканов
  • 1.3.5 Оползни
  • 1.4 Гидросферные опасности
  • 1.4.1 Наводнения
  • 1.4.2 Цунами
  • 1.5 Атмосферные опасности
  • 1.6 Космические опасности
  • 1.2 Природные пожары
  • 1.2.1 Понятие «пожар» и «пожарная безопасность».
  • 1.2.2 Причины возникновения пожаров.
  • 1.2.3 Лесные пожары в России.
  • Лесные пожары - одна из серьезнейших проблем российских лесов.
  • 1.2.4 Приемы и средства ликвидации последствий лесных пожаров.
  • 1.3. Массовые заболевания. Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 3.1 Массовые заболевания
  • 1.3.2 Противоэпидемические и санитарно-гигиенические мероприятия в очаге бактериального заражения
  • 1.3.3 Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 2. Техногенные опасности.
  • 2.1 Вредные вещества.
  • 2.1.1 Показатели токсичности химических веществ
  • 4.1.2 Факторы, определяющие токсическое действие химических веществ
  • 2.1.3 Гигиеническое регламентирование химических факторов среды обитания
  • 2.1.4 Классификация промышленных ядов по характеру действия на организм человека
  • 2.1.5. Комбинированное действие промышленных ядов
  • 1,5Сс о / пдксо + 3сno2 / пдкno2
  • 2.1.6 Пути поступления ядов в организм
  • 2.1.7. Распределение ядов в организме, превращение и выведение
  • 2.1.8. Оценка реальной опасности химических веществ
  • 2.1.9. Защита от воздействия вредных веществ
  • 2.2 Вибрация
  • 2.3 Акустический шум
  • 2.3.1 Акустические загрязнения
  • 2.4 Инфразвук
  • 2.4.1 Инфразвук в нашем повсевдневном окружении
  • 2.4.2 Технотронные методики
  • 2.4.3 Исследования медиков в области влияния на человека инфразвука.
  • 2.4.4 Некоторые меры борьбы с инфразвуком
  • 2.5 Электромагнитные поля и излучения
  • 2.5.1 Воздействие электромагнитных полей
  • 2.5.2 Воздействие электромагнитного излучения
  • 2.6 Лазерное излучение
  • 2.7 Электрический ток
  • 2.7.1 Условия существования электрического тока
  • 2.7.2 Основы электробезопасности
  • 2.8 Механическое воздействие
  • 2.8.1 Классификация и характеристика чрезвычайных ситуаций техногенного характера.
  • 3.Защита и действия населения
  • 3.1 Мероприятия по защите населения
  • 3.1.1 Оповещение
  • 3.1.2 Эвакуационные мероприятия
  • 3.1.3 Укрытие населения в защитных сооружениях
  • 3.2 Медицинские мероприятия по защите населения
  • Тема 8. Основы социальной, медицинской и пожарной безопасности План
  • 1. Виды социальных опасностей проживания человека в городских условиях
  • 2. Виды психического воздействия на человека и защита от них
  • 2.1 Защита от опасностей, связанных с физическим насилием
  • 2.1.1 Насилие над детьми
  • 2.1.2 Суицид
  • 2.1.3 Сексуальное насилие
  • 2.2 Психическое состояние человека, его безопасность.
  • 2.2.1 Определение психических состояний
  • 2.2.2 Типичные положительные психические состояния человека
  • 2.2.3 Отрицательные психические состояния
  • 2.2.4 Персеверация и ригидность
  • 2.2.5 Основы информационной безопасности
  • 2.2.4 Меры защиты: четыре уровня защиты
  • 2.3 Основы информационной безопасности
  • 2.3.1 Информационная безопасность
  • 2.3.2 Меры защиты информационной безопасности
  • 3. Оказание первой доврачебной помощи
  • 3.1. Оказание первой помощи
  • 3.1.2 Искусственное дыхание и непрямой массаж сердца
  • 3.1.3 Остановка кровотечения
  • 3.1.4 Наиболее распространенные виды травм, их симптомы и оказание первой помощи
  • 3.1.5 Оказание первой доврачебной помощи при переломах, вывихах, ушибах и растяжении связок
  • 3.1.5 Оказание первой доврачебной помощи при химических отравлениях
  • 3.1.6 Оказание первой доврачебной помощи при поражении электрическим током
  • 3.1.7 Учреждения, оказывающие первую медицинскую помощь
  • 4. Основы пожарной безопасности
  • 4.1 Основные нормативные документы, регламентирующие требования пожарной безопасности
  • 4.2 Организационные противопожарные мероприятия по обеспечению пожарной безопасности в зданиях и помещениях с массовым пребыванием людей
  • 4.3.Первичные средства пожаротушения
  • 4.3.1 Огнетушащие свойства воды
  • 4.3.2 К первичным средствам пожаротушения относятся:
  • 4.3.3 Огнетушители
  • 4.3.4 Оказание доврачебной помощи при пожаре
  • Раздел V. Безопасность населения и территорий в чрезвычайных ситуациях
  • 1. Транспортные аварии
  • 2.Внезапное обрушение сооружений и зданий
  • 2. Чрезвычайные ситуации природного характера
  • Природные пожары.
  • 3. Возможный характер будущей войны
  • 4. Понятие оружия массового поражения.
  • 4.1 Ядерное оружие
  • 4.2 Химическое оружие
  • 4.3 Бактериологическое (биологическое) оружие
  • 5. Основные способы защиты населения
  • 6. Основы организации аварийно-спасательных работ при ликвидации последствий чрезвычайных обстоятельств
  • Раздел VI. Экстремальные ситуации криминального характера
  • Тема 10. Основы безопасности жизнедеятельности в городских условиях План
  • 1. Общая классификация опасностей (признаки и виды).
  • 3. Естественные опасности
  • 4. Техногенные опасности
  • 5. Антропогенные опасности
  • 6. Система обеспечения безопасности
  • Тема 11. Основы личной безопасности от преступлений террористического характера План
  • Терроризм и его виды
  • 1.2. Формы терроризма
  • 1.2.1 Меры защиты при проведении террористических актов
  • 1.2.2 Угон воздушного судна и иное преступное вмешательство в деятельность гражданской авиации
  • 1.2.3 Захват и угон морского судна, и иное преступное вмешательство в деятельность международного судоходства
  • 1.2.4 Захват заложников
  • Необходимо усвоить следующие правила:
  • 1.2.5 Иные формы терроризма
  • 1.2.6 Причины терроризма
  • 2. Нападение на особо опасные объекты.
  • 2.1 Категория опасных объектов
  • 2.2 Обеспечение антитеррористической защищенности промышленных объектов и объектов инфраструктуры
  • 3. Понятие микроклимата, его параметры.

    Микроклимат производственных помещений - это микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда.

    Исследования показали, что человек может жить при атмосферном давлении 560-950 мм ртутного столба. Атмосферное давление на уровне моря 760 мм ртутного столба. При данном давлении человек испытывает комфортность. Как повышение, так и понижение атмосферного давления на большинство людей оказывает негативное влияние. С понижением давления ниже 700 мм ртутного столба наступает кислородное голодание, что сказывается на работе головного мозга и центральной нервной системы.

    Наводнение имеет серьезные последствия не только для средств к существованию и продовольственной безопасности, но и для общих стратегий адаптации к изменению климата. Последствия прошлых событий наводнений указывают на то, какие будущие последствия могут быть, если экстремальные наводнения станут более частыми. Они также указывают на то, как мы не смогли ответить и предложили, как мы можем это сделать. Последующий анализ требует изучения связей между изменчивостью осадков, топографией, геоморфологией рек, перегрузкой дренажа и изменениями в землепользовании.

    3.1 Общие требования к параметрам микроклимата

    Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или до пустимого теплового состояния организма.

    Параметрами, характеризующими микроклимат в производственных помещениях, являются:

    Оба события отражают фундаментальные проблемы, с которыми могут столкнуться все аспекты жизни в Южной Азии в случае будущей катастрофы такого масштаба. Если муссонная картина изменится из-за изменения климата, большая часть бассейна Ганги в Индии и Непале столкнется с такими последствиями, как те, с которыми сталкивается Пакистан. Как и в случае с Пакистаном, сельские средства к существованию, городское продовольствие, транспорт, связь, энергетика, здравоохранение, управление водными ресурсами и институциональные системы, от которых зависит местное население, потерпят неудачу.

    Температура воздуха, t˚C

    Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), tп ˚C

    Относительная влажность воздуха, W %

    Скорость движения воздуха, V м/с

    Интенсивность теплового облучения, P Вт/м 2

    Абсолютная влажность А – это количество водяных паров, содержащихся в 1 м3. воздуха. Максимальная влажность F max – количество водяных паров (в кг), которое полностью насыщает 1 м3 воздуха при данной температуре (упругость водяных паров).

    Этот отказ серьезно повлияет на бедные и маргинальные группы населения. Как и в Пакистане, если правительство не ответит на неотложные гуманитарные потребности пострадавших, негосударственных субъектов, некоторые из которых являются боевиками, могут заполнить пустоту.

    На протяжении большей части недавней истории стратегии правительства по смягчению последствий наводнений подчеркивали меры структурного контроля, в первую очередь набережные. Такие меры, как показывают недавние события наводнения, оказались неадекватными и во многих случаях вредными. Ограничение будет еще более усугубляться, поскольку климат продолжает меняться. Изменение динамики гидрологии, геоморфологии и социального контекста сделает структурные меры, такие как набережные, все более неэффективными, потому что наука, согласно которой такие меры будут разработаны, станет неприменимой.

    Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах:

    Когда воздух полностью насыщен водяными парами, то есть A=Fmax (во время тумана), относительная влажность воздуха φ =100%.

    На организм человека и условия его работы оказывает влияние также средняя температура всех поверхностей, ограничивающих помещение, она имеет важное гигиеническое значение.

    Используемый им вероятностный подход использует исторические данные, собранные в стационарная гидрологическая система, очевидно, что когда изменение климата делает систему нестационарной, этот подход потерпит неудачу. Альтернативы структурным мерам, которые могут помочь нам адаптироваться, включают меры по улучшению дренажа, предоставление точек убежища в периоды наводнений и совершенствование систем раннего предупреждения. Системы жизнеобеспечения, имеющие высокий уровень уровень устойчивости к перебоям, вызванным наводнениями, также поддерживает адаптивные стратегии.

    Другим важным параметром является скорость движения воздуха. При повышенной температуре скорость воздуха способствует охлаждению, а при низких температурах переохлаждению, поэтому она должна быть ограниченной, в зависимости от температурной среды.

    Санитарно - гигиенические, метеорологические и микроклиматические условия не только влияют на состояние организма, но и определяют организацию труда, то есть, продолжительность и периодичность отдыха работника и обогрева помещения.

    Хотя последствия наводнения являются драматическими, непосредственными и широко распространенными, засушливость и засуха можно считать медленным началом широкомасштабного бедствия. Динамика климата, особенно прогнозируемое увеличение изменчивости режимов осадков, свидетельствует о том, что сельское хозяйство в Непале столкнется с огромными проблемами, поскольку сезонная засуха увеличивается. В тот период большинство станций мониторинга получали менее 50% от обычного количества осадков, 30% не регистрировали осадков, а температуры были на 1-2 ° выше среднего.

    Таким образом, санитарно-гигиенические параметры воздуха рабочей зоны могут быть физически опасными и вредными производственными факторами, оказывающими существенное влияние на технико-экономические показатели производства.

    3.2 Терморегуляция организма

    Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих большое влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, местного климата, сезона года, условий отопления (в холодный период года) и вентиляции в помещениях.

    Сообщества, которые дополняют свои поставки продовольствия из сельского хозяйства лесной продукцией, также обнаружили, что засуха значительно сократила то, что они могли собрать. В настоящее время 40 районов, в основном на западе, сталкиваются с крупными продовольственными дефицитами, а Мировая продовольственная программа предполагает, что она должна обеспечить Непалу почти в четыре раза больше продовольственной помощи, которую она имела в прошлом.

    Очевидные последствия изменения климата для производства продуктов питания и продовольственной безопасности на местном уровне, вероятно, будут усугубляться другими текущими процессами. За последние полтора десятилетия сельское хозяйство Хилла сокращается, несмотря на значительные усилия и ресурсы, вложенные как правительством, так и сообществом доноров, в первую очередь из-за последствий недавнего завершенного вооруженного конфликта в Непале. Поскольку производство сократилось, местное население становится все более зависимым от импортируемой пищи и, следовательно, от условий на мировых рынках.

    Трудовая деятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Её количество зависит от степени физического напряжения в определённых климатических условиях и составляет от 85 Вт (в состоянии покоя) до 500 Вт (при тяжёлой работе). Для того, чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву, либо к переохлаждению организма и, как следствие, к потере работоспособности, быстрой утомляемости, потере сознания, к несчастным случаям и профзаболеваниям.

    Таким образом, изменение климата делает их более уязвимыми для колебаний глобального производства и мировых рыночных цен. Еще более серьезным следствием неустойчивых осадков является функционирование системы питьевого водоснабжения. В этих системах используются источники и другие местные источники воды, на которые могут серьезно повлиять изменения в характере осадков.

    Влияние продовольственной безопасности влияет не только на сельское хозяйство и региональные рынки зерна. Лесное хозяйство и другие производственные системы, которые сами подвержены влиянию изменения климата, также являются ключевым фактором. Общественное лесное хозяйство в Непале является важной историей успеха, одна из которых связана с успехом в содействии выращиванию скота и увеличении производства молока, средств к существованию, которые особенно приносят пользу женщинам в домашних хозяйствах с сезонными мужчинами-мигрантами.

    Нормальное тепловое самочувствие имеет место, когда тепловыделения человека Qтч полностью воспринимаются окружающей средой Qтс, т.е. когда имеет место тепловом баланс Qтч = Qтс, то в этом случае температура внутренних органов остаётся постоянной 36, 5 ˚C.

    Если теплопродукция организма не может быть полностью передана окружающей среде (Qтч>Qтс), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко . Теплоизоляция человека (например, в тёплой и плотной одежде), находящегося в состоянии покоя (сидя или лёжа) от окружающей среды, приведёт к повышению его температуры уже через 1 час на 1,2˚C. А то же самое при выполнении работы средней тяжести, вызовет повышение температуры на 5 ˚C, т.е. приблизится к критической (+43˚C) температуре.

    Увеличение лесного покрова также рассматривается как ключевой механизм содействия экономически эффективному углеродному циклу, который смягчает выбросы парниковых газов, обеспечивая при этом местное население множеством продуктов, которые помогают им адаптироваться к изменению климата. Если, однако, средние холмы станут более сухими, как прогнозируется, непреднамеренные последствия поощрения общинного лесоводства могут быть разрушительными. Увеличение частоты и интенсивности засух, в сочетании с расширенным лесом, значительно повысит риск лесных пожаров.

    В случае, когда окружающая среда воспринимает больше теплоты, чем её вырабатывает человек (Qтчхолодно .

    Терморегуляция организма - физиологический процесс поддержания температуры тела в границах от 36,6 до 37,2°С. Основной путь поддержания равновесия - теплоотдача.

    Эти пожары не только оказали негативное воздействие на местном уровне, но также имели потенциально серьезные последствия для скоростей таяния ледников и снега на более высоких высотах. Кроме того, по сравнению с районами с обширным растительным покровом районы, пострадавшие от пожара и засухи, вызывают гораздо более высокие нагрузки на отложения, поскольку они более уязвимы к оползням, эрозии и обломкам после интенсивных осадков и потому, что они демонстрируют «яркие» стоковые рисунки. Проблема переноса осадка имеет долгосрочные последствия.

    Теплоотдача идёт следующими путями:

    1 . Излучение тепла (Q изл) телом человека по отношению к окружающим поверхностям, имеющим меньшую температуру. Это основной путь отдачи тепла в производственных условиях. Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля - 273°С. Человек отдаёт тепло, когда температура окружающих его предметов ниже температуры наружных слоёв одежды (27 - 28°С) или открытой кожи.

    Реки Непала уже передают огромное количество осадков, полученных из природных и геологических процессов, таких как оползни и другие массовые движения, а также эрозия русел и берегов. События осадков, особенно облачные осадки, подчеркивают эти процессы, тем самым увеличивая региональную седиментацию. Отложения осадка грубого осадка особенно интенсивны у подножия холмов, где градиенты реки резко снижаются по мере поступления на равнины. В этой зоне реки часто меняют свои каналы.

    Эта динамика, несомненно, будет оказывать влияние на процессы седиментации, но степень этого воздействия непросто количественно оценить. Задача особенно сложна, поскольку никогда не было возможности измерять базовые нагрузки на отложениях, которые мобилизуются во время интенсивных событий затопления. Это отсутствие точной информации является значительным, поскольку потоки воды и осадка определяют проектирование, эксплуатацию и функционирование структурных мер контроля, таких как насыпи.

    2. Проведение (Q п) - отдача тепла предметам, непосредственно соприкасающемся с телом человека.

    3. Конвекция (Q к) - передача тепла через воздушную среду. Человек нагревает вокруг себя слой воздуха толщиной 4 - 8 мм путём проведения тепла. Нагрев более отдалённых слоёв идёт за счёт естественного и принудительного замещения прилегающих к телу более тёплых слоёв воздуха более холодными. При подвижном воздухе теплоотдача увеличивается в несколько раз.

    Лесные пожары также оказывают и другие косвенные долгосрочные последствия. Трудность в создании саженцев после пожара продлит время до того, как жители деревни смогут собирать недревесные лесные продукты. Потеря леса подразумевает потерю местных средств к существованию. Это может также повлиять на целостность местных источников воды, поскольку увеличение случаев локальных оползней может нанести им ущерб, в то время как изменения в структуре местных осадков могут повлиять на подпроцессы подземных вод в горах.

    С другой стороны, если более высокая интенсивность осадков становится более частым, это означает, что оползневые события в горах станут более распространенными. Вместе возникающая динамика изменения климата, связанная с наводнениями, засушливыми условиями, засухой и лесными пожарами, может значительно повысить воздействие на системы питания и средств к существованию на местном уровне. Понимание взаимодействия между лесами, сельским хозяйством, управлением водными ресурсами, уменьшением опасности бедствий и другими системами жизнеобеспечения, с одной стороны, и климатическими сценариями, с другой, имеет последствия для разработки эффективных стратегий адаптации к краткосрочным и долгосрочным последствиям изменения климата.

    4. Испарение воды с поверхности кожи и слизистой оболочки верхних дыхательных путей (Q ис.)- основной путь отдачи тепла при повышенной температуре воздуха, особенно, когда затрудняется или прекращается отдача излучением или конвекцией. В обычных условиях испарение идет в результате неощутимого потоотделения на большей части поверхности тела в результате диффузии воды без активного участия потовых желёз. В целом организм теряет 0,6 л воды в сутки. При выполнении физической работы в условиях повышенной температуры воздуха идёт повышенное потоотделение, при котором количество теряемой жидкости 10 - 12 л за смену. Если пот не успел испариться, он покрывает кожу влажным слоем, что не способствует отдаче тепла, и создаются условия для перегрева организма. В этом случае идёт потеря воды и солей. Это приводит к обезвоживанию организма, потере минеральных солей и водо-растворимых витаминов (С, В1, В2). Такие потери влаги приводят к сгущению крови, нарушению солевого обмена.

    Неспособность изучить эти связи поставит под угрозу способность страны адаптироваться к изменению климата. В рамках подготовки была проведена серия общих диалогов по обучению в местах вдоль трех разрезов на севере и юге. В документе определены различные приоритетные проекты и признается необходимость местного уровня планы адаптации, которые в настоящее время разрабатываются. В то время как запланированная адаптация, инициированная правительством, население во многих регионах реагирует автономно на стрессы.

    Автономная адаптация включает индивидуальные или коллективные ответы, которые группы населения, сообщества, предприятия и другие учреждения предпринимают самостоятельно в ответ на возможности и ограничения, с которыми они сталкиваются в результате изменения климата. Они могут включать в себя изменения в практике и технологиях, диверсификацию систем жизнеобеспечения, доступ к финансовым ресурсам, таким как микрострахование и микрокредитование, миграция, реконфигурация рабочей силы или распределение ресурсов и коллективные действия для доступа к услугам, ресурсам или рынкам.

    При тяжёлой работе в условиях повышенной температуры воздуха теряется 30 - 40 г соли NaCl (всего в организме 140 г NaCl). Дальнейшая потеря солей вызывает мышечные спазмы, судороги.

    5. Тепловое (инфракрасное) излучение. В условиях производства может присутствовать тепловое (инфракрасное) излучение - невидимое электромагнитное излучение. Источник - любое нагретое тело.

    В Непале автономная адаптация происходит главным образом в слабо документированном неформальном секторе. В том, что касается продовольственной безопасности, вопрос заключается в том, следует ли проводить стратегии, которые зависят от укрепления местного сельского хозяйства или тех, которые полагаются на импорт продовольствия с региональных рынков с использованием денежных переводов и других источников дохода. Лесничество - это другой сектор, который может быть затронут. Многие в международном сообществе содействуют осуществлению программы по сокращению выбросов в результате обезлесения и деградации лесов в развивающихся странах, и поскольку усилия в области лесоводства в Непале рассматриваются как большой успех, вполне вероятно, что в Непале произойдет увеличение инвестиций в лесовосстановление. риск возникновения пожара может быть сведен к минимуму, изменение климатических условий может сделать использование лесного хозяйства для углеродного банкинга и местной адаптации контрпродуктивным как на местном уровне, так и в связи с региональными климатическими условиями, которые влияют на доступность воды на уровне бассейна и нагрузки на отложения. изменения, в свою очередь, могут повлиять на попытки поддержать местные средства к существованию через орошаемое земледелие и диверсификацию в местные лесные мероприятия.

    В зависимости от длины волны оно делится на коротковолновое, средневолновое, длинноволновое. Проходя через воздух эти лучи его не нагревают, но, поглотившись твёрдым телом, лучистая энергия переходит в тепловую.

    Особенности действия лучистого тепла зависят от длины волны инфракрасного излучения. Длинные волны (1,4 - 10 мкм) поглощаются слоем кожи, вызывая калящий эффект. Короткие волны проникают глубоко внутрь организма, нагревая внутренние органы, мозг, кровь. Длительное воздействие повышенной температуры в сочетании с большой влажностью может привести к перегреванию организма. При этом у человека возникает головная боль, тошнота, сердцебиение, общая слабость, рвота, потоотделение, частое дыхание, тахикардия. При работе на воздухе, в результате облучения головы инфракрасными лучами коротковолнового диапазона, происходит тяжелое поражение мозговой ткани вплоть до выраженного менингита и энцефалита. В тяжелых случаях наблюдаются судороги, бред, потеря сознания. При этом температура тела остается нормальной или повышается незначительно.

    Нормальный теплообмен (т.е. тепловой комфорт) образуется тогда, когда

    Q тч=Q к + Q т + Q изл + Q исп + Q в = Q тс

    При значительном превышении теплопродукции организма человека (Qтч»Qтс) возникает перегрев (гипертермия), угрожающая жизни и здоровью человека; при значительном уменьшении теплопродукции организма по сравнению с поглотительными возможностями среды, возникает переохлаждение (гипотермия), опасное для здоровья и жизни человека.

    В условиях теплового гомеостаза баланс тепла в организме гомойотермов описывается выражением:

    ΔQ = M - E ± C ± R ± K ± W = 0

    где ΔQ - изменения теплосодержания; М - продукция тепла, а остальные члены уравнения - отдача тепла организмом во внешнюю среду различными путями. В условиях температурного комфорта ΔQ = 0.

    Здесь сразу же необходимо оговорить то существенное современное понимание гомеостаза, в соответствии с которым любой его вид, в том числе и тепловой гомеостаз, выражается не в жесткой фиксации тех или иных показателей на определенном уровне, а скорее в их колебании вокруг среднего значения. Это принципиальное соображение, по крайней мере для человека, подтверждается еще и фактически - феноменом крайней нестабильности теплового обмена тела человека.

    О. Бартон и А. Эдхолм (1957) указывают, что даже при кратковременных исследованиях в специальных климатических камерах со строгим контролем метеорологических условий и состояния исследуемых термостабильное состояние не достигается на протяжении нескольких часов. Выражение 1 есть полное уравнение теплового баланса, но эволюционно - биологическое значение его составляющих далеко не одинаково. Так, продукция тепла в организме (М) генетически не обусловлена тепловым обменом, а является следствием коренных процессов, характеризующих жизнедеятельность. Живой организм характеризуется непрерывным обменом веществ и энергии, который происходит в соответствии с известным уравнением термодинамики:

    ΔН = ΔZ + TΔS

    где ΔН - изменение энтальпии - меры общего запаса химически превращаемой энергии; ΔZ - изменение термодинамического потенциала или свободной энергии - части энтальпии системы, которая может быть с пользой использована для совершения работы; ΔS - изменения энтропии (термодинамической) для данных условий - меры неопределенности системы, зависящей от действия межмолекулярных сил и теплового движения и измеряемой величиной рассеяния потенциальной энергии химических веществ в виде тепла; Т - °К (градусы Кельвина).

    Источником теплопродукции (М), таким образом, служат процессы обмена веществ и энергии, непрерывно совершающиеся в организме. В ходе расщепления энергетических материалов энергия, кумулируемая в макроэргических соединениях, может рассеиваться в виде тепла ("первичная теплота"), либо превращаться в те или иные виды работы, в конечном счете также переходящие в тепловую энергию. Однако основное тепло организм получает в результате осуществления тех или иных видов работы (70% теплопродукции), в то время как теплорассеяние составляет лишь 30%.

    Таблица 3. 1. Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Орган

    Масса, кг

    Артериовенозная разница по кислороду, см 3

    Потребление кислорода

    абсолютное, см 3 /мин

    относительное

    см 3 /(мин·100 г)

    % от общего

    Скелетные мышцы

    Другие части тела

    Тело в целом

    Для проблемы регуляции теплового обмена существенный интерес представляют источники продукции тепла в покое и при мышечной работе. Образование тепла неразрывно связано с энергетическим обменом. В условиях нормальной жизнедятельности в покое о величине теплопродукции можно судить по интенсивности окислительных процессов (потреблению кислорода). Соответствующие данные приведены в табл. 3.1

    В покое наиболее высокий вклад в теплопродукцию (58,8%) обеспечивается печенью, мозгом и скелетными мышцами. При этом в первых двух органах высоки и относительные показатели энергетического обмена (артериовенозная разница по кислороду и его относительное потребление органом); в то же время интенсивность обмена в покоящихся мышцах невелика и валовое значение их теплопродукции определяется просто значительной массой мышечпой ткани.

    Структура энергозатрат в тканях (Иванов К. П., 1972) показывает, что из 1600 ккал/сут (в условиях основного обмена) около 900 ккал улавливается в форме макроэргических связей АТФ, 215 ккал идет на поддержание неравновесных ионных концентраций по обе стороны клеточных мембран, 415 ккал обеспечивает процессы обновления белков, липидов и полисахаридов, и лишь 270 ккал затрачивается на сокращение сердечной мышцы и дыхательных мышц. Вместе с тем все эти процессы характеризуются низкими величинами КПД, например синтез белка имеет КПД 10-13%, транспорт ионов - 20%, синтез АТФ - 50% и т. д. Таким образом, происходит накопление "первичного" и "вторичного" тепла.

    При совершении мышечной работы энергетический обмен в мышцах резко возрастает, о чем можно судить и по такому косвенному показателю, как величина минутного объема крови, протекающей через мышцы в покое и при их сокращении: в первом случае она равна 840 мл/мин, а во втором - 12 500 мл/мин, что указывает на повышение потребления кислорода мышцами по крайней мере в 5 раз. Таким образом, увеличение теплопродукции при мышечной работе обусловлено повышенным образованием тепла в первую очередь в ткани скелетных мышц. Однако следует учитывать еще и адекватное возрастание энергетических процессов (и теплопродукции) в органах, обеспечивающих мышечную работу - в головном и спинном мозге, сердце, дыхательных мышцах, в печени и других органах.

    В условиях термического комфорта важнейшее значение в термогенезе имеют произвольные мышечные движения, потому что именно к ним, как гениально заметил И. М. Сеченов (1863), сводится "все бесконечное разнообразие внешних проявлений мозговой деятельности". Измерения энерготрат при "обыденных" двигательных актах человека показывают их различную (иногда и значительную) термогенетическую стоимость (Кандрор И. С., 1968).

    В зависимости от поведения человека даже на протяжении нескольких часов сдвиги теплопродукции могут носить характер быстрых и значительных пиков.

    Параметры микроклимата регламентируются с учётом тяжести физического труда и времени года.

    Изменение параметров микроклимата вызывает изменение соотношения величин теплопродукции Q. Так, при нормальных условиях во время лёгкой физической работы доля Qк+ Qтсоставляет около 30 % всей теплоотдачи, Qизл около 45 %, Qисп=20 % и Qв=5 %.

    Чем выше температура окружающих предметов, тем меньше теплоотдача излучением. При повышении температуры окружающего воздуха до температуры тела человека и выше, эффективность теплоотдачи теплопроводностью Qт, конвекциейQ ки излучением Qизл уменьшается и решающее значение приобретает отвод тепла путём испарения влаги (пота) с поверхности тела Qисп. Но интенсивность испарения влаги с поверхности тела человека зависит от относительной влажности Wи скорости движения окружающего воздухаV.

    При Wболее 75 % процесс испарения влаги резко замедляется, а при W=100 % прекращается полностью. Вместе с этим замедляется, а затем и прекращается теплоотдача Qисп. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» потоотделение, изнуряющее организм и не создаёт необходимую теплоотдачу. Происходит обезвоживание организма, которое влечёт за собой нарушение остроты зрения и умственной деятельности. Потеря влаги на 15-20% приводит к смертельному исходу.

    Недостаточная влажность (<20%) также оказывает неблагоприятное воздействие на организм, вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания, растрескивания и кровотечения.

    Увеличение скорости воздуха υ всегда приводит к увеличению теплоотдачи в окружающую среду.

    При лёгкой работе разрешается более высокая температура и меньшая скорость движения воздуха.

    В тёплый период года (при температуре вне помещения +10°С и выше) температура в производственном помещении должна быть не более +28°С при лёгкой работе и не более +26°С при тяжёлой работе. Если вне помещения температура более +25°С, то в помещении допускается повышение температуры до +33°С.

    Согласно ДСН 3.3.6 042-99 «Санитарные нормы микроклимата производственных помещений», по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года (табл.3.2).

    Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда (табл. 3.2.).

    Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации (табл. 3.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности.

    Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека.

    Оптимальные условия микроклимата создаются для постоянных рабочих мест.

    Таблица 3. 2

    Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

    Период года

    Температура воздуха, 0 С

    Относительная влажность, %

    Скорость движения, м/с

    Холодный период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Теплый период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Допустимые значения микроклиматических условий устанавливаются в случае, когда на рабочем месте не удается обеспечить оптимальные условия микроклимата согласно технологическим требованиям производства или экономической целесообразности.

    Перепад температуры воздуха по высоте рабочей зоны при обеспечении допустимых условий микроклимата не должна быть более 3-х градусов для всех категорий работ, а по горизонтали не должен выходить за пределы допустимых температур категорий работ.

    Внешняя среда, окружающая человека на производстве, влияет на организм человека, на его физиологические функции, психику, производительность труда.

    В организме человека постоянно происходят теплообменные процессы, интенсивность которых зависит в основном от параметров микроклимата рабочей зоны (температуры, влажности, скорости движения воздуха и тепловых излучений), а также от тяжести и напряженности труда. Оценка микроклимата проводится на основе измерений его параметров на всех местах пребывания работника в течение смены и сопоставления их с нормативами.

    Основой для оценки условий труда по данному фактору и защиты работающих от последствий превышения допустимых уровней параметров микроклимата, а также отнесения условий труда к тому или иному классу вредности по уровню воздействия фактора на работника являются документы «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» Р 2.2.2006-05 и «Гигиенические требования к микроклимату производственных помещений» СанПиН 2.2.4.548-96.

    Если измеренные параметры соответствуют требованиям этих документов, то условия труда по показателям микроклимата характеризуются как оптимальные (1-й класс) или допустимые (2-й класс). В случае несоответствия измеренных параметров требованиям указанных документов условия труда относят к вредным. При этом устанавливается степень вредности, которая характеризует уровень перегревания или охлаждения организма человека.

    Температура. Рассматривают нагревающий и охлаждающий микроклимат, а также микроклимат нестандартных ситуаций с переходами от нагревающей в охлаждающую среду и наоборот (работа на открытой территории и в помещении при различной продолжительности и физической активности).

    Нагревающий микроклимат — сочетание параметров микроклимата (температуры воздуха, влажности, скорости движения воздуха, относительной влажности, теплового излучения), при котором имеет место нарушение нормального теплообмена человека с окружающей средой. Оно выражается в накоплении тепла в организме выше верхней границы оптимальной величины и (или) увеличении доли потерь тепла выделением и испарением пота (более 30 %). При этом появляется дискомфорт теплоощущений (слегка тепло, тепло, жарко).

    Нагревающий микроклимат рассматривают как негативный фактор. Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару или профзаболеванию. У работающих длительное время при повышенной температуре происходит нарушение водно-солевого обмена, связанное с дефицитом в организме ионов калия. Перегрев организма — возможная причина несчастного случая на производстве (теплового удара).

    На объектах железнодорожного транспорта к зонам с нагревающим микроклиматом относят тепляки, где производится оттайка смерзшегося при перевозке сыпучего груза, кабины локомотивов в летнее время, термические, гальванические, сварочные и горячие цехи на предприятиях по ремонту подвижного состава.

    Охлаждающий микроклимат — сочетание параметров микроклимата, при котором нарушение теплообмена приводит к образованию дефицита тепла в организме в результате снижения температуры глубоких и поверхностных слоев тканей организма.

    Одним из ранних признаков охлаждения, характеризующих сосудистую реакцию на холодовое раздражение, является изменение температуры кожи открытых участков тела. Охлаждение вызывает ослабление и даже полное исчезновение рефлексов, снижение чувствительности кожи. Следствием этого становится снижение работоспособности, а при систематическом воздействии — появление профессиональных заболеваний. Низкая температура воздуха может стать причиной простудного заболевания или обморожения. Наибольшая частота проявления временной нетрудоспособности на железнодорожном транспорте связана с охлаждающим микроклиматом рабочей среды. Охлаждающий микроклимат вызывает такие профессиональные заболевания, как хронические воспаления легких, хронические насморки и др. Общее охлаждение организма — возможная причина несчастного случая на производстве (обморожения).

    При температуре воздуха минус 40 °С и ниже необходима защита органов дыхания и лица.

    На объектах железнодорожного транспорта к зонам с охлаждающим микроклиматом относятся зоны работ на путях в холодные периоды года, работ в охлаждаемых складах и рефрижераторных вагонах.

    Например, для климатического региона (пояса) III при соответствующих ему средней температуре воздуха зимних месяцев (-9,7 °С), и средней скорости ветра в зимние месяцы (5,6 м/с), для работ категории II а и II б условия труда работающих на открытой территории оценивается классом 3.3 при отсутствии регламентированных перерывов и классом 3.2 при наличии таковых (см. табл. 9 «Руководства»).

    В климатический регион III входят области: Астраханская, Белгородская, Брянская, Владимирская, Волгоградская, Воронежская, Ивановская, Калужская, Курская, Ленинградская, Липецкая, Московская, Нижегородская, Новгородская, Орловская, Ростовская; республики: Марий Эл, Мордовия, Калмыкия.

    Микроклимат в помещении, в котором температура воздуха на рабочем месте ниже нижней границы, допустимой нормами СанПиН 2.2.4.548-96, является вредным. Класс вредности определяют по среднесменным величинам температуры воздуха и сравнению их с указанными в «Руководстве».

    Оценка микроклимата при работе в течение рабочей смены как на открытой территории, так и в помещении или в других нестандартных ситуациях, при различной продолжительности и физической активности, требует раздельной его оценки. Класс условий труда определяют применительно к каждому уровню микроклимата и оценивают наибольшей величиной при условии продолжительности пребывания на этом (худшем) рабочем месте больше или равной 50 % рабочей смены.

    При резких изменениях температуры окружающей среды организму человека требуется определенное время для адаптации к новым условиям, что приводит к дополнительной нагрузке на механизмы терморегуляции.

    На объектах железнодорожного транспорта к зонам с динамическим микроклиматом относятся участки погрузочно-разгрузочных работ в рефрижераторные вагоны из холодильных складов через открытые пространства в летнее время.

    Для работников путевых машинных станций метеорологические условия на открытых рабочих площадках определяются сезонными погодными условиями и часто связаны с резкими изменениях температуры. В кабинах машинистов в летний период температура достигает плюс 40 °С при резком снижении относительной влажности и низкой подвижности воздуха (0,2—0,5 м/с), при том, что на воздухе в это время температура составляет в среднем плюс 20 °С. Зимой температура воздуха на путевых машинах СМ-2 при наружной температуре минус 20 °С составляет лишь плюс 4 °С, при этом наблюдаются значительные перепады температуры при их отрицательных значениях на уровне пола.

    Нагревающее или охлаждающее действие усиливается или ослабляется в зависимости от влажности воздуха.

    Влажность. Влажность воздуха оказывает ощутимое влияние на терморегуляцию. В зависимости от соотношения между температурой и влажностью воздуха человек чувствует себя по-разному, получает различные тепловые ощущения.

    При низких температурах наличие водяных паров в воздухе усиливает отдачу тепла с поверхности кожи и способствует переохлаждению организма, при высоких температурах — затрудняет ее, что может привести к перегреву организма.

    Повышенная влажность на предприятиях железнодорожного транспорта свойственна участкам мойки подвижного состава, цехам, где установлены моечные ванны или действуют оросительные устройства. Высокая влажность также присутствует в тоннелях и при работах на железнодорожных путях в непогоду.

    Подвижность воздуха. Движение воздуха, как и влажность, оказывает воздействие на тепловые ощущения человека. С попаданием в поток воздуха теплоотдача тела человека значительно повышается. Подвижность воздуха положительно проявляет себя при высоких температурах, отрицательно — при низких.

    Подвижность воздуха в производственных помещениях возникает при вентиляции (естественной и/или искусственной), при неравномерном нагреве различных объемов воздуха помещения и возникновении на этой основе воздушных потоков, а также за счет перемещения воздушных масс в помещении движущимися частями оборудования и транспортными средствами. При высокой температуре воздуха его подвижность положительно влияет на самочувствие работников, так как повышает теплоотдачу. Однако в холодный период года движение воздуха приводит к сквознякам и вызывает простудные заболевания.

    На объектах железнодорожного транспорта сквозняки присутствуют в транспортных средствах, кабинах машинистов, ремонтных цехах, при работе на путях в ветреную погоду.

    Недостаточный воздухообмен в помещениях предприятий (духота) ослабляет внимание, вызывает нервозность, раздражительность и как результат снижает производительность и качество труда. В то же время высокая подвижность воздуха (сквозняки) вызывает простудные заболевания.

    Тепловое излучение. Тепловое (инфракрасное) излучение представляет собой часть электромагнитных излучений, энергия которых при поглощении тканями человеческого тела вызывает их нагревание. Интенсивное и длительное тепловое облучение может привести к ожогам, перегреву тела, истощению обменных процессов, нарушению деятельности сердечнососудистой и нервной систем, возбуждению, заболеванию глаз. После органов зрения наиболее поражаемым у человека является кожный покров. При хроническом облучении могут появиться стойкие изменения пигментации, красный цвет лица у рабочих (стеклодувов, сталеваров и др.).

    Источниками инфракрасных излучений являются нагретые до высокой температуры плавильные печи, расплавленный металл, газосветные лампы, ртутные выпрямители и другое производственное оборудование.

    Длительное воздействие на человека неблагоприятных метеорологических условий резко ухудшает его самочувствие, снижает производительность труда и приводит к заболеваниям. Поэтому на рабочих местах достаточно часто возникают проблемы, связанные с необходимостью нормализации воздушной среды.

    © 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции