Вконтакте Facebook Twitter Лента RSS

Балки сечений испытывают плоский изгиб. Архив рубрики: Задачи на изгиб. Определяем опорные реакции

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой . Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой .

Изгиб называется плоским или прямым , если плоскость действия нагрузки проходит через главную центральную ось инерции сечения (рис.6.1).

Рис.6.1

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M . В раме при плоском поперечном изгибе возникают три усилия: продольная N , поперечная Q силы и изгибающий момент M .

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называетсячистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным . Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; попереч­ный изгиб относят к простым видам сопротивления условно, так как в большинстве слу­чаев (для достаточно длинных балок) действием поперечной силы при расчетах на проч­ность можно пренебречь.

22.Плоский поперечный изгиб. Дифференциальные зависимости между внутренними усилиями и внешней нагрузкой. Между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки существуют дифференциальные зависимости, основанные на теореме Журавского, названной по имени русского инженера-мостостроителя Д. И. Журавского (1821-1891 г.г.).

Эта теорема формулируется так:

Поперечная сила равна первой производной от изгибающего момента по абсциссе сечения балки.

23. Плоский поперечный изгиб. Посторение эпюр поперечных сил и изгибающих моментов. Определение поперечных сил и изгибающих моментов - сечение 1

Отбросим правую часть балки и заменим ее действие на левую часть поперечной силой и изгибающим моментом. Для удобства вычисления закроем отбрасываемую правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением 1.

Поперечная сила в сечении 1 балки равна алгебраической сумме всех внешних сил, которые видим после закрытия

Видим только реакцию опоры, направленную вниз. Таким образом, поперечная сила равна:

кН.

Знак «минус» нами взят потому, что сила вращает видимую нами часть балки относительно первого сечения против хода часовой стрелки (или потому, что одинаково направлена с направлением поперечной силы по правилу знаков)

Изгибающий момент в сечении 1 балки, равен алгебраической сумме моментов всех усилий, которые мы видим после закрытия отброшенной части балки, относительно рассматриваемого сечения 1.

Видим два усилия: реакцию опоры и момент M. Однако у силыплечо практически равно нулю. Поэтомуизгибающий момент равен:

кН·м.

Здесь знак «плюс» нами взят потому, что внешний момент M изгибает видимую нами часть балки выпуклостью вниз. (или потому, что противоположно направлен направлению изгибающего момента по правилу знаков)

Определение поперечных сил и изгибающих моментов - сечение 2

В отличие от первого сечения, у силы реакциипоявилось плечо, равное а.

поперечная сила:

кН;

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 3

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 4

Теперь удобнее закрывать листком левую часть балки .

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 5

поперечная сила:

изгибающий момент:

Определение поперечных сил и изгибающих моментов - сечение 1

поперечная сила и изгибающий момент:

.

По найденным значениям производим построение эпюры поперечных сил (рис. 7.7, б) и изгибающих моментов(рис. 7.7, в).

КОНТРОЛЬ ПРАВИЛЬНОСТИ ПОСТРОЕНИЯ ЭПЮР

Убедимся в правильности построения эпюр по внешним признакам, пользуясь правилами построения эпюр.

Проверка эпюры поперечных сил

Убеждаемся: под незагруженными участками эпюра поперечных сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклоненной вниз прямой. На эпюре продольной силы три скачка: под реакцией– вниз на 15 кН, под силой P – вниз на 20 кН и под реакцией– вверх на 75 кН.

Проверка эпюры изгибающих моментов

На эпюре изгибающих моментов видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой q эпюра изгибающих моментов изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре изгибающего момента – экстремум, поскольку эпюра поперечной силы в этом месте проходит через нулевое значение.

1. Прямой чистый изгиб Поперечный изгиб - деформация стержня силами, перпендикулярными оси (поперечными) и парами, плоскости действия которых перпендикулярны нормальным сечениям. Стержень работающий на изгиб называют балкой. При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор - изгибающий момент Mz. Так как Qy=d. Mz/dx=0, то Mz=const и чистый прямой изгиб может быть реализован при нагружении стержня парами сил, приложенными в торцевых сечениях стержня. σ Поскольку изгибающий момент Mz по определению равен сумме моментов внутренних сил относительно оси Оz с нормальными напряжениями его связывает выкающее из этого определения уравнение статики:

Анализ напряженного состояния при чистом изгибе Проанализируем деформации модели стержня на боковой поверхности которого нанесена сетка продольных и поперечных рисок: Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, а следовательно Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон, то есть То есть изо всех компонентов тензора напряжений при чистом изгибе не равно нулю только напряжение σx=σ и чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями σ. При этом часть волокон находится в зоне растяжения (на рис. это-нижние волокна), а другая часть-в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (n-n), не меняющим своей длины, напряжения в котором равны нулю.

Правило знаков изгибающих моментов Правила знаков моментов в задачах теоретической механики и сопротивления материалов не совпадают. Причина этого в различии рассматриваемых процессов. В теоретической механике рассматриваемым процессом является движение или равновесие твердых тел, поэтому два момента на рисунке стремящиеся повернуть Mz стержень в разные стороны (правый момент по часовой стрелке, а левый – против) имеют в задачах теоретической механики разный знак. В задачах сопромата рассматриваются возникающие в теле напряжения и деформации. С этой точки зрения оба момента вызывают в верхних волокнах напряжения сжатия, а в нижних напряжения растяжения, поэтому моменты имеют одинаковый знак. Правила знаков изгибающих моментов относительно сечения С-С представлены на схеме:

Расчет значений напряжений при чистом изгибе Выведем формулы для расчета радиуса кривизны нейтрального слоя и нормальных напряжений в стержне. Рассмотрим призматический стержень в условиях прямого чистого изгиба с поперечным сечением, симметричным относительно вертикальной оси Oy. Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно. Отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mz=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня. При изгибе с постоянной кривизной нейтральный слой стержня становится дугой окружности, ограниченной углом φ. Рассмотрим вырезанный из стержня бесконечно малый элемент длиной dx. При изгибе он превратится в бесконечно малый элемент дуги, ограниченный бесконечно малым углом dφ. φ ρ dφ С учетом зависимостей между радиусом окружности, углом и длиной дуги:

Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости dφ считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным. Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у: Из подобия треугольников COO 1 и O 1 BB 1 следует, что то есть: Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений. Тогда нормальное напряжение, растягивающее волокно АВ, на основании закона Гука будет равно:

Полученная формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя 1/ρ и положение нейтральной оси Ох, от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы Подставляя в это уравнение выражение для σ: и учитывая, что, получаем, что: Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси (оси проходящей через центр тяжести сечения). Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения. Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом. Подставляя в это уравнение выражение для напряжений, получим:

Интеграл в полученном уравнении ранее изучен: Jz- момент инерции относительно оси Оz. В соответствии с выбранным положение осей координат он же главный центральный момент инерции сечения. Получаем формулу для кривизны нейтрального слоя: Кривизна нейтрального слоя 1/ρ является мерой деформации стержня при прямом чистом изгибе. Кривизна тем меньше, чем больше величина EJz, называемая жесткостью поперечного сечения при изгибе. Подставляя выражение в формулу для σ, получаем: Таким образом, нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси. геометрическая характеристика, имеющая размерность м 3 называется момент сопротивления при изгибе.

Определение моментов сопротивления Wz поперечных сечений - У простейших фигур в справочнике (лекция 4) или рассчитать самостоятельно - У стандартных профилей в сортаменте ГОСТ

Расчет на прочность при чистом изгибе Проектировочный расчет Условие прочности при расчете чистого изгиба будет иметь вид: Из данного условия определяют Wz, а далее либо подбирают нужный профиль из сортамента стандартного проката, либо по геометрическим зависимостям рассчитывают размеры сечения. При расчете балок из хрупких материалов следует различать наибольшие растягивающие и наибольшие сжимающие напряжения, которые сравниваются соответственно с допускаемыми напряжениями на растяжение и сжатие. Условий прочности в этом случае будет два, отдельно по растяжению и по сжатию: Здесь - соответственно допускаемые напряжения на растяжение и на сжатие.

2. Прямой поперечный изгиб τxy τxz σ При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мz и поперечная сила Qy, которые связаны с нормальными и касательными напряжениями Выведенная в случае чистого изгиба стержня формула для расчета нормальных напряжений в случае прямого поперечного изгиба, строго говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями, происходит депланация (искривление) поперечных сечении, то есть нарушается гипотеза плоских сечений. Однако для балок с высотой сечения h

При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы: а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия σy могут быть достаточно велики и во много раз превышать продольные напряжения, убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы; б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис, напряжения от давления на верхние волокна балки. Сравнивая их с продольными напряжениями σz, имеющими порядок: приходим к выводу, что напряжения σy

Расчет касательных напряжений при прямом поперечном изгибе Примем, что касательные напряжения равномерно распределены по ширине поперечного сечения. Непосредственное определение напряжений τyx затруднительно, поэтому находим равные им касательные напряжения τxy, возникающие на продольной площадке с координатой у элемента длиной dx, вырезанного из балки z x Mz

От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями τ. Нормальные напряжения σ и σ+dσ , действующие на торцевых площадках элемента, также заменим их равнодействующими y Mz τ Mz+d. Mz by ω y z Qy Qy +d. Qy dx Nω+d Nω d. T статический момент отсеченной части площади поперечного сечения ω относительно оси Оz. Рассмотрим условие равновесия отсеченного элемента составив для него уравнение статики Nω dx b

откуда после несложных преобразований, учитывая, что получим Формула Журавского Kасательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси Mz z Учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют, а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям

3. Составные балки при изгибе Касательные напряжения в продольных сечениях являются выражением существующей связи между слоями стержня при поперечном изгибе. Если эта связь в некоторых слоях нарушена, характер изгиба стержня меняется. В стержне, составленном из листов, каждый лист при отсутствии сил трения изгибается самостоятельно. Изгибающий момент равномерно распределяется между составными листами. Максимальное значение изгибающего момента будет в середине балки и будет равно. Mz=P·l. Наибольшее нормальное напряжение в поперечном сечении листа равно:

Если листы плотно стянуть достаточно жесткими болтами, стержень будет изгибаться как целый. В этом случае наибольшее нормальное напряжение оказывается в n раз меньше, т. е. В поперечных сечениях болтов при изгибе стержня возникают поперечные силы. Наибольшая поперечная сила будет в сечении, совпадающем с нейтральной плоскостью изогнутого стержня.

Эту силу можно определить из равенства сумм поперечных сил в сечениях болтов и продольной равнодействующей касательных напряжений в случае целого стержня: где m - число болтов. Сопоставим изменение кривизны стержня в заделке в случае связанного и несвязанного пакетов. Для связанного пакета: Для несвязанного пакета: Пропорционально изменениям кривизны меняются и прогибы. Таким образом, по сравнению с целым стержнем набор свободно сложенных листов оказывается в n 2 раз более гибким и только в n раз менее прочным. Это различие в коэффициентах снижения жесткости и прочности при переходе к листовому пакету используют на практике при создании гибких рессорных подвесок. Силы трения между листами повышают жесткость пакета, так как частично восстанавливают касательные силы между слоями стержня, устраненные при переходе к листовому пакету. Рессоры нуждаются поэтому в смазке листов и их следует оберегать от загрязнения.

4. Рациональные формы поперечных сечений при изгибе Наиболее рациональным является сечение, обладающее минимальной площадью при заданной нагрузке на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Для этого необходимо, чтобы наибольшие напряжения растяжения и наибольшие напряжения сжатия одновременно достигали допускаемых напряжений. Приходим к рациональному для пластичного материала сечению в форме симметричного двутавра, у которого возможно большая часть материала сосредоточена на полках, соединенных стенкой, толщина которой назначается из условий прочности стенки по касательным напряжениям. . К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение

Для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие которое вытекает из требования Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов. а-двутавр, б- швеллер, в - неравнобокий уголок, холодногнутые замкнутые г-равнобокий уголок. сварные профили

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

При построении эпюры изгибающих моментов М у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. - вниз , а отрицательные - вверх от оси балки. Поэтому говорят, что строители строят эпюры на растянутых волокнах. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх. Механики строят эпюры на сжатых волокнах.

Главные напряжения при изгибе. Эквивалентные напряжения .

В общем случае прямого изгиба в поперечных сечениях балки возникают нормальные и касательные напряжения . Эти напряжения изменяются как по длине, так и по высоте балки.

Таким образом, в случае изгиба имеет место плоское напряженное состояние.

Рассмотрим схему, где балка нагружена силой Р

Наибольшие нормальные напряжения возникают в крайних, наиболее удаленных от нейтральной линии точках, а касательные напряжения в них отсутствуют. Таким образом, для крайних волокон ненулевыми главными напряжениями являются нормальные напряжения в поперечном сечении.

На уровне нейтральной линии в поперечном сечении балки возникают наибольшие касательные напряжения, а нормальные напряжения равны нулю . значит, в волокнах нейтрального слоя главные напряжения определяются значениями касательных напряжений.

В данной расчетной схеме верхние волокна балки будут растянуты, а нижние – сжаты. Для определения главных напряжений используем известное выражение:

Полный анализ напряженного состояния представим на рисунке.

Анализ напряженного состояния при изгибе

Наибольшее главное напряжение σ 1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ 3 имеет наибольшее по абсолютной величине значение на нижних волокнах.

Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки.


При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения.

Материал находится в условиях плоского напряженного состояния и требуется проверка по эквивалентным напряжениям.

Условия прочности балок из пластичных материалов по третьей (теории наибольших касательных напряжений) и четвертой (теория энергии формоизменений) теориям прочности.

Как правило,в прокатных балках эквивалентные напряжения не превышают нормальных напряжений в крайних волокнах и специальной проверки не требуется. Другое дело - составные металлические балки, у которых стенка тоньше , чем у прокатных профилей при той же высоте. Чаще применяются сварные составные балки из стальных листов. Расчет подобных балок на прочность: а) подбор сечения — высоты, толщины, ширины и толщины поясов балки; б) проверка прочности по нормальным и касательным напряжениям; в) проверка прочности по эквивалентным напряжениям.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Рассмотрим сечение стандартного профиля в виде двутавра и определим касательные напряжения , действующие параллельно поперечной силе:

Рассчитаем статические моменты простых фигур:

Эту величину можно вычислить и иначе , используя то обстоятельство, что для двутаврового и корытного сечения в дан статический момент половины сечения. Для этого необходимо вычесть из известной величины статического момента величину статического момента до линии А 1 В 1:

Касательные напряжения в месте примыкания полки к стенке изменяются скачкообразно , так как резко изменяется толщина стенки от t ст до b .

Эпюры касательных напряжений в стенках корытного, полого прямоугольного и других сечений имеют тот же вид, что и в случае двутаврового сечения. В формулу входит статический момент заштрихованной части сечения относительно оси Х, а в знаменателе ширина сечения (нетто) в том слое, где определяется касательное напряжение.

Определим касательные напряжения для круглого сечения.

Так как у контура сечения касательные напряжения должны быть направлены по касательной к контуру, то в точках А и В у концов какой-либо параллельной диаметру хорде АВ, касательные напряжения направлены перпендикулярно радиусам ОА и ОВ. Следовательно, направления касательных напряжений в точках А , В, К сходятся в некоторой точке Н на оси Y.

Статический момент отсеченной части:

То есть касательные напряжения меняются по параболическому закону и будут максимальны на уровне нейтральной линии, когда у 0 =0

Формула для определения касательных напряжений (формула )

Рассмотрим прямоугольное сечение

На расстоянии у 0 от центральной оси проведем сечение 1-1 и определим касательные напряжения. Статический момент площади отсеченной части:

Следует иметь в виду, что принципиально безразлично , брать статический момент площади заштрихованной или остальной части поперечного сечения. Оба статических момента равны и противоположны по знаку , поэтому их сумма, которая представляет статический момент площади всего сечения относительно нейтральной линии, а именно центральной оси х, будет равна нулю.

Момент инерции прямоугольного сечения:

Тогда касательные напряжения по формуле

Переменная у 0 входит в формулу во второй степени, т.е. касательные напряжения в прямоугольном сечении изменяются по закону квадратной параболы.

Касательные напряжения достигнут максимума на уровне нейтральной линии, т.е. когда у 0 =0:

, где А -площадь всего сечения.

Условие прочности по касательным напряжениям имеет вид:

, где S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение,Q -поперечная сила, τ — касательное напряжение, [τ] — допускаемое касательное напряжение.

Данное условие прочности позволяет производить три вида расчета (три типа задач при расчете на прочность):

1. Проверочный расчет или проверка прочности по касательным напряжениям:

2. Подбор ширины сечения (для прямоугольного сечения):

3.Определение допускаемой поперечной силы (для прямоугольного сечения):

Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений , что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ 1 , σ 2 напряжения , которые определяются по известным формулам:

где М — изгибающий момент в поперечном сечении, dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению . В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.

Для определения величины касательных напряжений в какой-либо точке поперечного сечения, расположенного на расстоянии у 0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД.

Спроецируем все силы на ось Z

Равнодействующая внутренних продольных сил по правой грани будет равна:

где А 0 – площадь фасадной грани, S x 0 – статический момент отсеченной части относительно оси Х . Аналогично на левой грани:

Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно . Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:

Составим теперь уравнение равновесия Σz=0:

или, откуда

Вспомним дифференциальные зависимости , согласно которым Тогда получаем формулу:

Эта формула получила название формулы . Эта формула получена в 1855 г. Здесь S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

— условие прочности при изгибе, где

- максимальный момент (по модулю) с эпюры изгибающих моментов; - осевой момент сопротивления сечения,геометрическая характеристика; - допускаемое напряжение (σ adm)

- максимальное нормальное напряжение.

Если расчет ведется по методу предельных состояний ,то в расчет вместо допускаемого напряжения вводится расчетное сопротивление материала R.

Типы расчетов на прочность при изгибе

1. Проверочный расчет или проверка прочности по нормальным напряжениям

2. Проектный расчет или подбор сечения

3. Определение допускаемой нагрузки (определение грузоподъемност и или эксплуатационной несущей способности)

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту , а поперечная сила оказывается равной нулю . Этот случай изгиба носит название чистого изгиба . Рассмотрим средний участок балки, подвергающийся чистому изгибу.

В нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков , в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза ) . Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.Изгибающий момент представляет собой результирующий момент внутренних нормальных сил , возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

Сечения, ограничивающие участок dz, параллельны друг другу до деформации , а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол . Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:, где -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину . Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине,тогда:

Сократим на и приведем подобные члены, тогда получим:(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям , т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем при осевом растяжении-сжатии:, тогда с учетом формулы (2) имеем (3), т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь как постоянную величину, тогда имеем. Но выражение - это осевой момент инерции сечения относительно оси х - I х . Его размерность см 4 , м 4

Тогда ,откуда (4) ,где - это кривизна изогнутой оси балки, а - жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения: (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение (6) называют осевым моментом сопротивления сечения . Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: (7)

Условие прочности при изгибе: (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения ,т.к. имеется поперечная сила . Касательные напряжения усложняют картину деформирования , они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений . Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5) . Таким образом,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать Подставим сюда формулу нормальных напряжений (3) и получим Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х , и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие (отсутствие момента внутренних сил относительно силовой линии) даст или с учетом (3) . По тем же соображениям (см. выше) . В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю , значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии , несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции