Вконтакте Facebook Twitter Лента RSS

Горение газа. Условия воспламенения и сгорания газового топлива

А. С.Иссерлин

В основе процесса горения лежат химические реакции соедине­ния топлива с окислителем. Для протекания процесса горения газа должны быть созданы специальные условия. Во-первых, необхо­димо к горючему газу подвести в достаточном количестве окислитель (чаще всего воздух) и перемешать их. Во-вторых, газовоздушная смесь должна иметь концентрационные пределы воспламеняемости и должен быть создан источник воспламенения. В-третьих, необхо­димо создать условия для развития процесса горения, т. е. опреде­ленный температурный уровень.

Смесеобразование (равномерное смешение газа с воздухом) - одна из основных стадий всего процесса горения. От процесса сме­сеобразования во многом зависят и все дальнейшие стадии, через которые проходит топливо при превращении химической энергии в тепловую. Поскольку в зоне горения всегда устанавливается вы­сокий температурный уровень, время, затрачиваемое на химиче­ские реакции горения, всегда значительно меньше времени, необ­ходимого для процесса смесеобразования.

Сжигание газового топлива, как и любого другого, в воздушном потоке в соответствии с современными воззрениями возможно на основе кинетического и диффузионного принципов.

Полное время сгорания газа, определяющее скорость сгорания,

ТП ТС~1"~Х1

Где тс - время смесеобразования, необходимое для смешения газа с окислителем; тх - время протекания химических реакций.

Если тс<Стх, то практически тп«т*. В этом случае процесс про­текает в кинетической области. Если же, наоборот, Тс^-Тх, то Тп»тс и, следовательно, процесс протекает в диффузионной об­ласти.

При протекании процесса горения в кинетической области ско­рость горения зависит от свойств данной горючей смеси, темпера­туры в реакционном объеме и концентрации реагентов в зоне го­рения, т. е. регулируется законами химической кинетики. В то же время скорость процесса в кинетической области не зависит от гидродинамических факторов, т. е. от скорости потока, геометриче­ских размеров реакционной камеры и т. д.

Наоборот, в диффузионной области скорость процесса опреде­ляется гидродинамическими факторами и не зависит от кинетиче­ских. В этой области перестают играть определяющую роль свой­ства горючей смеси и температурный фактор. Сравнительно про стыми гидродинамическими средствами можно влиять на интен­сивность смешения, что приведет к изменению характеристик диф­фузионного факела.

При кинетическом принципе в горелке предварительно создается однородная газовоздушная смесь, которая и подается в топочную камеру. Поэтому горение такой смеси протекает при постоянном значении всех основных характеристик (теплонапряжение, избыток воздуха и т. д.). Чисто кинетическое горение возникает лишь при соблюдении условия А^1,0. При а<1 кинетическое горение про­текает лишь на первой стадии, т. е. до тех пор, пока не израсходо­ван весь кислород смеси. Остаток горючих компонентов, разбав­ленных продуктами сгорания, может быть сожжен только при условии подвода дополнительного окислителя (воздуха).

Диффузионный принцип сжигания подразумевает создание та­ких условий для возникновения процесса, при которых смесь сго­рает немедленно при самом ее возникновении, т. е. при соприкос­новении топлива и окислителя в соответствующих количественных соотношениях. Процесс диффузионного горения регулируется из­менением интенсивности смесеобразования путем варьирования конструктивных и режимных параметров горелки. В результате в зависимости от технологических требований можно добиться уко­рочения зоны смешения или ее удлинения.

В практике часто применяется сжигание газа, сочетающее в себе оба упомянутых принципа. В этом случае часть воздуха предварительно смешивается с газом в горелке, а остальная часть, необходимая для полного сгорания, подается непосредственно в зону горения. Изменяя это соотношение, можно воздействовать на длину газового факела. В большинстве горелок газ подается под тем или иным углом к потоку воздуха.

Изучению процесса смесеобразования посвящено много работ. Это позволяет сформулировать некоторые общие закономер­ности.

Для прямоточных газовых горелок смешение тем лучше, чем большую часть поперечного сечения горелки охватывают газовые струи, т. е. чем больше дально­бойность газовых струй. В горелках с сильно закрученными потоками не следует стремиться к большой дальнобойности газовых струй.

Увеличение крутки потока воздуха приводит к перераспределению газа и воздуха по сечению горелки, повышению интенсивности перемешивания газа с воздухом и увеличению центральной зоны обратных токов в горелке.

Характер влияния крутки воздушного потока на процесс смесеобразования различен в зависимости от остальных определяющих параметров. Так, при по­даче газа в периферийные зоны горелки (независимо от ее типа) увеличение крутки потока приводит к заметному улучшению смесеобразования. Наоборот, при подаче газа в центральную зону горелки рост крутки не приводит, как пра­вило, к улучшению процесса,«решения.

Совокупность явлений, которую мы называем горением, может протекать только в определенной последовательности, от одной стадии к другой. Г. Ф. Кнорре дает следующие схемы установив­шегося процесса горения газового и жидкого топлива с фиксиро­ванным очагом, которые он называет поточными (рис. 1). Про­стейшая поточная схема возникает при сжигании газового топлива, состоящего из простых молекул (например, водород), не требую­щих предварительного сложного пирогенного разложения (рис. 1, А). Когда же сжигается газовое или жидкое углеводородное топливо, А 6

Поточный процесс горения осложняется: возникает еще одна про­межуточная стадия - пирогенное разложение. Для жидкого топ­лива этой стадии предшествует стадия испарения (рис. 1,6). Для осуществления поточной схемы необходим достаточный темпера­турный уровень в очаге горения, к которому непрерывными пото­ками подводятся топливо и окислитель. Продукты сгорания после завершения реакций также непрерывно отводятся от очага горения.

Известно, что газовоздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в опре­деленных (для каждого газа) пределах. При незначительных со­держаниях газа количество тепла, выделившегося при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения. То же наблюдается и при слишком большом со­держании газа в газовоздушной смеси. Недостаток кислорода воз­духа, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до

Температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости (табл. 1). Поэтому кроме перемешивания газа с воздухом в определенных пропорция должны быть созданы начальные условия для воспламенения смеси.

Таблица /

Пределы воспламеняемости и температуры воспламенения различных газов в воздухе

Пределы воспламеняе­мости, % газа в смеси с воздухом

Температура воспла­менения, °С

Водород........................................

Окись углерода.............................

Метан. . ........................................

Этан................................................

Пропан...........................................

Бутан..............................................

Ацетилен........................................

Коксовый.....................................

Водяной. ......................................

Сланцевый....................................

Природный...................................

Окисление горючих газов возможно при низких температурах, но тогда оно протекает чрезвычайно медленно из-за, незначитель­ной скорости реакций. При повышении температуры скорость реак­ции окисления возрастает до наступления самовоспламенения (вместо медленного окисления начинается процесс самопроизволь­ного горения). Значит, нагретая до температуры воспламенения горючая смесь обладает такой энергией, которая не только компен­сирует потери тепла в окружающую среду, но обеспечивает нагрев и подготовку газовоздушной смеси, поступающей к зону горения, к воспламенению.

Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газовоздушной смеси, давления, способа нагрева смеси и т. д., и поэтому не является точной величиной. В табл. 1 приведены значения температур вос­пламенения некоторых горючих газов в воздухе.

В практике встречаются два способа воспламенения горючих смесей: самовоспламенение и зажигание.

При Самовоспламенении весь объем горючей газовоздушной смеси постепенно доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздей­ствия.

В технике широко применяется второй способ, именуемый За­жиганием. При этом способе не требуется нагревать всю газовоз­душную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпе­ратурным источником (искра, накаленное тело, дежурное пламя и т. д.). В результате воспламенение передается на весь объем смеси самопроизвольно путем распространения пламени, происхо­дящего не мгновенно, а с определенной пространственной ско­ростью. Эта скорость называется Скоростью распространения пла­мени в газовоздушной смеси и является важнейшей характеристи­кой, определяющей условия протекания и стабилизации горе­ния. Устойчивость работы горелок, как будет показано ниже, свя­зана со скоростью распространения пламени.

Таким образом, процесс горения газового топлива состоит из смешения газа с воздухом, нагрева полученной смеси до темпера­туры воспламенения, зажигания ее и протекания реакций горения, сопровождающихся выделением тепла. Причем смешение газа с воздухом и нагрев смеси занимают большую часть времени в про­цессе горения, так как реакции горения протекают практически мгновенно.

В зависимости от технологического процесса (получение пара и горячей воды в котельном агрегате, нагрев изделий в печной установке и т. д.) возникает необходимость влиять на процесс го­рения, изменяя его конечные характеристики. Это достигается раз­личными конструктивными приемами, которые изложены в гл. III.

Показательно сопоставление полей температур в объеме факела при сжигании газа с различными коэффициентами избытка воз­духа. Пример такого сопоставления дан на рис. 2 для горелки с диаметром выходного насадка 35 мм в виде зависимости

Где И - текущее значение температуры в факеле, °С; £тах - макси­мальная температура в факеле (замеренная), °С; Х - расстояние от точки замера до начала факела, м; У - расстояние от точки за­мера до оси факела, м; Й - диаметр насадка горелки, м.

На рис. 2 приведены графики распределения температур для трех коэффициентов избытка воздуха. Причем координате Х/й =О соответствует выходное сечение насадка горелки, а координате У/й =0 - ось факела.

Как видно из рисунка, распределение температур в свободном факеле неравномерно. При малых избытках первичного воздуха, например а=0,5, наличие внутреннего ядра в факеле сильно иска­жает температурное поле и оно выравнивается только на расстоя­нии х/с/ =10, тогда как при а=0,75 выравнивание наступает уже при Х/й =2,5, а при а=1,0 еще раньше - при Х/й=1,0.

Наивысшие температуры в открытых факелах наблюдаются в начальных сечениях на расстоянии от оси факела У/й = 0,5, а за­тем по центру факела. Причем с увеличением коэффициента из­бытка воздуха максимум температур смещается к устью горелки. Так, наивысшая температура при а=0,75 измерена на расстоянии Х/й =2,5, а при а =1,0 - на расстоянии Х/й=1,0.

При совместном рассмотрении распределения температур и кон­центраций С02 в факеле наблюдается совпадение максимумов

Температур и содержаний С02. Следовательно, максимальному температурному уровню в факеле соответствует и максимальная величина степени выгорания горючих.

Потери части тепла, выделившегося в результате сгорания газа, неизбежны. Однако они могут быть снижены до минимума при правильном ведении топочного процесса. Рассмотрим, из каких же. составляющих складываются эти потери.

При сжигании газового топлива имеют место следующие по­тери тепла: с уходящими газами, от химической неполноты сгора­ния и в окружающую среду. На основании определения отдельных потерь тепла по обратному балансу может быть подсчитан к. п. д (коэффициент полезного действия) агрегата, °/о:

Где <72 - потери тепла с уходящими газами, %; - потери тепла

От химической неполноты сгорания, %; Q5 - потери тепла в окру­жающую среду, %.

Потери тепла с уходящими газами - физическое тепло продук­тов сгорания, покидающих агрегат, - являются основными. Пол­ностью устранить их невозможно, однако необходимо стремиться к уменьшению. Потери тепла с уходящими газами зависят от тем­пературы газов и их количества. Чем ниже температура уходящих газов, тем меньше тепла будет теряться, поэтому следует стре­миться к снижению в разумных пределах температуры уходящих газов. Влияние температуры уходящих газов на потери тепла видно из табл. 2.

Таблица 2

Потери тепла с уходящими газами при сжигании природного газа, %

Температура уходящих газов, °С

Коэффициент избытка воздуха за агрегатом аа

Потерю тепла с уходящими газами выражают обычно в процен­тах от всего располагаемого тепла, т. е. от теплоты сгорания топ­лива. Например, если потеря тепла составляет 700 ккал/м3 при сжигании природного газа, то

700-100 ___ „ 24°/

Количество покидающих агрегат газов зависит от коэффици - ента избытка воздуха, с которым работает горелка, и присосов

Воздуха через неплотности в агрегате. Чем больше коэффициент избытка воздуха на выходе из горелки и присосы воздуха в агре­гат, тем выше потери тепла с уходящими газами. Из табл. 2 видно, что изменение общего коэффициента избытка воздуха в продуктах сгорания с аа= 1,2-5-1,6 увеличивает потерю тепла с уходящими га­зами с 10,5 до 13,2% (при неизменной температуре уходящих газов 240° С).

Таким образом, для снижения потерь тепла с уходящими га­зами необходимо вести процесс горения с наименьшим допусти­мым коэффициентом избытка воздуха, обеспечивать наибольшую плотность агрегата и добиваться снижения температуры уходящих газов.

Потери тепла от химической неполноты сгорания газа возни­кают при недостатке воздуха, плохом смешении в газовой горелке, при резком снижении температурного уровня в зоне горения. В ре­зультате горение газа протекает неполно и с продуктами сгорания уходят горючие компоненты (например, водород, окись углерода и др.). Это приводит к недоиспользованию химической энергии топлива и снижению экономичности работы агрегата. Даже не­большое содержание горючих компонентов в продуктах сгорания приводит к существенным потерям тепла от химической неполноты сгорания. Предположим, что в продуктах сгорания содержалось 0,7% водорода и 0,5% окиси углерода. В агрегате сжигался при­родный газ с коэффициентом избытка воздуха за установкой а» = = 1,5. Потери тепла от химической неполноты сгорания составили ~450 ккал/м3 или

А___ 450-100 поо/

Таким образом, из рассмотренного примера видно, что горючие компоненты в продуктах сгорания должны полностью‘отсутство­вать или составлять минимальную величину.

Потери тепла в окружающую среду связаны с тем, что стенки агрегата имеют более высокую температуру, чем окружающий его воздух. Величина этих потерь зависит в основном от разности тем­ператур между наружными стенками агрегата и окружающим воз­духом, величины поверхности стен, теплопроводности материала кладки и ее толщины. Потери в окружающую среду подсчиты­ваются теоретически или принимаются из норм теплового расчета в зависимости от конструкции и производительности агрегата.

Если просуммируем все тепловые потери, которые имеют место при сжигании газа в агрегате, и вычтем их из 100, то получим к. п. д. агрегата. Например, воспользуемся цифрами, приведен­ными выше, приняв <75 равным 3,60%, тогда к. п. д. агрегата

Т]= 100-(8,24+5,28+3,60)=82,88%*

Методы сжигания природного газа

Все методы сжигания базируются на приготовлении газовоздушной смеси определенного состава.

I. диффузионный метод сжигания
Особенности. В корневой зоне никакого процесса горения нет. На границе корневой зоны молекулы кислорода успевают смешиваться и начинает газ гореть. В зоне основного горения выгорает углерод.
Этот процесс горения называется диффузионным, так как воздух сам приходит из атмосферы. Смешение молекул воздуха и газа происходит по газовым законам. Не будем углубляться в науку, а посмотрим процесс горения схематично, чтобы понять суть.
К фронту горения газ поступает под давлением, а необходимый для горения воздух из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения. Поэтому скорость горения равна скорости смесеобразования.
Важной характеристикой горения газообразного топлива является скорость распространения пламени в газовоздушной среды. Нормальная скорость это скорость распространения движения фронта пламени в направлении перпендикулярному направлению поверхности фронта пламени.

Рис.1 Горелка используяющая диффузионный метод сжигания газа

-Нормальная скорость метана равна 0,67 м/с;
-нормальная скорость пропана равна 0,82 м/с;
-нормальная скорость водорода 4,83 м/с.

Данные диффузионные горелки (для промышленных котлов) обладают следующими свойствами:
1. к струе газа диффундирует воздух, а из струи газа в воздух газ. Таким образом, в близи выхода газа из горелки создается газовоздушная смесь.
2. процесс горения начинается в зоне первично горения и заканчивается в основной зоне.
3. интенсивность процесса горения определяется скоростью образования газовоздушной смеси.
4. выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха.

В целом горение при таком методе образования газовоздушных смеси протекает достаточно медленно и пламя имеет большой объем и как правило обладает светимостью.

Достоинства горелок диффузионного типа
-Высокая устойчивость пламени при изменении тепловых нагрузок;
-невозможность проскока пламени в горелку, так как в горелке находится чистый газ;
-возможность регулирования горения в широком диапазоне.

Недостатки горелок диффузионного типа
-большой объем пламени снижает теплонапряженность в единице объема;
-вероятность термического распада метана на горючие составляющие;
-увеличивается опасность отрыва пламени от горелки.

II. Смешанный метод сжигания газа
Смешанный метод обеспечивается предварительным смешиванием газа только с частью воздуха, необходимого для полного сгорания газа. Остальной воздух поступает из окружающей среды, непосредственно к факелу.
Сначала выгорает часть газа смешанного с первичным воздухом, а остальная часть, разбавленная продуктами горения, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается менее коротким и менее светящимся. Теплонапряженность в единице объема факела возрастает.



Рис. 2 Горелка использующая смешанный метод сжигания газа

III. Кинетический метод горения газа
К месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле и обладает малой светимостью.



Достоинства кинетического метода горения:
-малая вероятность химического недожога;
-высокая теплопроизводительность.

Недостаток. Необходимость стабилизации газового пламени. Это вызвано тем, что горелки чувствительны к изменению параметров давления газа и воздуха, что приводит к нарушению процесса горения. Для устранения данного недостатка горелки оснащаются стабилизаторами пламени.

02.04.2010

Купить систему очистки воды по приятной цене на сайте vodorazdel.com в Санкт Петербурге.

Горение газа представляет собой сочетание следующих процессов:

· смешение горючего газа с воздухом,

· подогрев смеси,

· термическое разложение горючих компонентов,

· воспламенение и химическое соединение горючих компонентов с кислородом воздуха, сопровождаемое образованием факела и интенсивным тепловыделением.

Горение метана происходит по реакции:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Условия, необходимые для сгорания газа:

· обеспечение необходимого соотношения горючего газа и воздуха,

· нагрев до температуры воспламенения.

Если в газовоздушной смеси газа меньше нижнего предела воспламенения, то она не будет гореть.

Если в газовоздушной смеси больше газа чем верхний предел воспламенения, то она будет сгорать не полностью.

Состав продуктов полного сгорания газа:

· СО 2 – углекислый газ

· Н 2 О – водяные пары

* N 2 – азот (он не реагирует с кислородом во время горения)

Состав продуктов неполного сгорания газа:

· СО – угарный газ

· С – сажа.

Для сгорания 1 м 3 природного газа требуется 9.5м 3 воздуха. Практически расход воздуха всегда больше.

Отношение действительного расхода воздуха к теоретически необходимому расходу называется коэффициентом избытка воздуха: α = L/L t .,

Где: L - действительный расход;

L t - теоретически необходимый расход.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет 1.05 – 1.2.

2. Назначение, устройство и основные характеристики проточных водонагревателей .

Проточные газовые водонагреватели. Предназначены для нагрева воды до определенной температуры при водоразборе.. Проточные водонагреватели делятся по нагрузке тепловой мощности: 33600, 75600, 105000 кДж, по степени автоматизации - на высший и первый классы. К.п.д. водонагревателей 80%, содержание оксида не более 0,05%, температура продуктов сгорания за тягопрерывателем не менее180 0 С. Принцип основан на нагреве воды в период водоразбора.

Основными узлами проточных водонагревателей являются: газогорелочное устройство, теплообменник, система автоматики и газоотвод. Газ низкого давления подается в инжекционную горелку. Продукты сгорания проходят через теплообменник и отводятся в дымоход. Теплота сгорания передается протекающей через теплообменник воде. Для охлаждения огневой камеры служит змеевик, через который циркулирует вода, проходящая через калорифер. Газовые проточные водонагреватели оборудованы газоотводящими устройствами и тягопрерывателями, которые в случае кратковременного нарушения тяги предотвращают погасание пламени газогорелочного устройства. Для присоединения к дымоходу имеется дымоотводящий патрубок.

Газовый проточный водонагреватель –ВПГ. На передней стенке кожуха расположены: ручка управления газовым краном, кнопка включения электромагнитного клапана и смотровое окно для наблюдения за пламенем запальной и основной горелки. Вверху аппарата расположено дымоотводящее устройство, внизу- патрубки для присоединения аппарата к газовой и водяной системе. Газ поступает в электромагнитный клапан, газовый блокировочный кран водогазогорелочного блока осуществляет последовательное включение запальной горелки и подачу газа к основной горелке.

Блокировку поступления газа к основной горелке, при обязательной работе запальника, осуществляет электромагнитный клапан, работающий от термопары. Блокировка подачи газа в основную горелку в зависимости от наличия водоразбора, осуществляется клапаном, имеющим привод через шток от мембраны водяного блок- крана.

Природный газ — это самое распространенное топливо на сегодняшний день. Природный газ так и называется природным, потому что он добывается из самых недр Земли.

Процесс горения газа является химической реакцией, при которой происходит взаимодействия природного газа с кислородом, который содержится в воздухе.

В газообразном топливе присутствует горючая часть и негорючая.

Основным горючим компонентом природного газа является метан — CH4. Его содержание в природном газе достигает 98 %. Метан не имеет запаха, не имеет вкуса и является нетоксичным. Предел его воспламеняемости находится от 5 до 15 %. Именно эти качества позволили использовать природный газ, как один из основных видов топлива. Опасно для жизни концентрация метана более 10 %, так может наступить удушье, вследствие нехватки кислорода.

Для обнаружения утечки газа, газ подвергают одоризации, иначе говоря добавляют сильнопахнущее вещество (этилмеркаптан). При этом газ можно обнаружить уже при концентрации 1 %.

Кроме метана в природном газе могут присутствовать горючие газы — пропан, бутан и этан.

Для обеспечения качественного горения газа необходимо в достаточном количестве подвести воздух в зону горения и добиться хорошего перемешивания газа с воздухом. Оптимальным считается соотношение 1: 10. То есть на одну часть газа приходится десять частей воздуха. Кроме этого необходимо создание нужного температурного режима. Чтобы газ воспламенился необходимо его нагреть до температуры его воспламенения и в дальнейшем температура не должна опускаться ниже температуры воспламенения.

Необходимо организовать отвод продуктов сгорания в атмосферу.

Полное горение достигается в том случае, если в продуктах сгорания выходящих в атмосферу отсутствуют горючие вещества. При этом углерод и водород соединяются вместе и образуют углекислый газ и пары воды.

Визуально при полном сгорании пламя светло-голубое или голубовато-фиолетовое.

Полное сгорание газа.

метан + кислород = углекислый газ + вода

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Кроме этих газов в атмесферу с горючими газами выходит азот и оставшийся кислород. N 2 + O 2

Если сгорание газа происходит не полностью, то в атмосферу выбрасываются горючие вещества – угарный газ, водород, сажа.

Неполное сгорание газа происходит вследствие недостаточного количества воздуха. При этом визуально в пламени появляются языки копоти.

Опасность неполного сгорания газа состоит в том, что угарный газ может стать причиной отравления персонала котельной. Содержание СО в воздухе 0,01-0,02% может вызвать легкое отравление. Более высокая концентрация может привести к тяжелому отравлению и смерти.

Образующаяся сажа оседает на стенках котлов ухудшая тем самым передачу тепла теплоносителю снижает эффективность работы котельной. Сажа проводит тепло хуже метана в 200 раз.

Теоретически для сжигания 1м3 газа необходимо 9м3 воздуха. В реальных условиях воздуха требуется больше.

То есть необходимо избыточное количество воздуха. Эта величина обозначаемая альфа показывает во сколько раз воздуха расходуется больше, чем необходимо теоретически.

Коэффициент альфа зависит от типа конкретной горелки и обычно прописывается в паспорте горелки или в соответствие с рекомендациями организации производимой пусконаладочные работы.

С увеличением количества избыточного воздуха выше рекомендуемого, растут потери тепла. При значительном увеличение количества воздуха может произойти отрыв пламени, создав аварийную ситуацию. Если количество воздуха меньше рекомендуемого то горение будет неполным, создавая тем самым угрозу отравления персонала котельной.

Для более точного контроля качества сгорания топлива существуют приборы — газоанализаторы, которые измеряют содержание определенных веществ в составе уходящих газов.

Газоанализаторы могут поступать в комплекте с котлами. В случае если их нет, соответствующие измерения проводит пусконаладочная организация при помощи переносных газоанализаторов. Составляется режимная карта в которой прописываются необходимые контрольные параметры. Придерживаясь их можно обеспечить нормальное полное сгорание топлива.

Основными параметрами регулирования горения топлива являются:

  • соотношение газа и воздуха подаваемых на горелки.
  • коэфициент избытка воздуха.
  • разряжение в топке.
  • Кэфициент полезного действия котла.

При этом под коэфициентом полезного действия котла подразумевают соотношение полезного тепла к величине всего затраченного тепла.

Состав воздуха

Название газа Химический элемент Содержание в воздухе
Азот N2 78 %
Кислород O2 21 %
Аргон Ar 1 %
Углекислый газ CO2 0.03 %
Гелий He менее 0,001 %
Водород H2 менее 0,001 %
Неон Ne менее 0,001 %
Метан CH4 менее 0,001 %
Криптон Kr менее 0,001 %
Ксенон Xe менее 0,001 %

В зависимости от способа образования газовоздушной смеси методы сжигания газа подразделяются (рисунок ниже):

  • на диффузионные;
  • смешанные;
  • кинетические.

Методы сжигания газа

а - диффузионный; б - смешанный; в - кинетический; 1 - внутренний конус; 2 - зона первичного горения; 3 - зона основного горения; 4 - продукты сгорания; 5 - первичный воздух; 6 - вторичный воздух

При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух — из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.

Процесс горения начинается после контакта между газом и воздухом и образования газовоздушной смеси необходимого состава. К струе газа диффундирует воздух, а из струи газа в воздух - газ. Таким образом, вблизи струи газа создается газовоздушная смесь, в результате горения которой образуется зона первичного горения газа 2. Горение основной части газа происходит в зоне 3, а в зоне 4 движутся продукты сгорания.

Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно, с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.

Достоинством диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметра сопла горелки, регулированием давления газа и т. д.

К преимуществам диффузионного метода сжигания относятся: высокая устойчивость пламени при изменении тепловых нагрузок, отсутствие проскока пламени, равномерность температуры по длине пламени.

Недостатками этого метода являются: вероятность термического распада углеводородов, низкая интенсивность горения, вероятность неполного сгорания газа.

При смешанном методе сжигания горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.

При кинетическом методе сжигания к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле. Достоинство этого метода сжигания - малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок. Недостаток - необходимость стабилизации газового пламени.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции