Вконтакте Facebook Twitter Лента RSS

Условия воспламенения и сгорания газового топлива

А. С.Иссерлин

В основе процесса горения лежат химические реакции соедине­ния топлива с окислителем. Для протекания процесса горения газа должны быть созданы специальные условия. Во-первых, необхо­димо к горючему газу подвести в достаточном количестве окислитель (чаще всего воздух) и перемешать их. Во-вторых, газовоздушная смесь должна иметь концентрационные пределы воспламеняемости и должен быть создан источник воспламенения. В-третьих, необхо­димо создать условия для развития процесса горения, т. е. опреде­ленный температурный уровень.

Смесеобразование (равномерное смешение газа с воздухом) - одна из основных стадий всего процесса горения. От процесса сме­сеобразования во многом зависят и все дальнейшие стадии, через которые проходит топливо при превращении химической энергии в тепловую. Поскольку в зоне горения всегда устанавливается вы­сокий температурный уровень, время, затрачиваемое на химиче­ские реакции горения, всегда значительно меньше времени, необ­ходимого для процесса смесеобразования.

Сжигание газового топлива, как и любого другого, в воздушном потоке в соответствии с современными воззрениями возможно на основе кинетического и диффузионного принципов.

Полное время сгорания газа, определяющее скорость сгорания,

ТП ТС~1"~Х1

Где тс - время смесеобразования, необходимое для смешения газа с окислителем; тх - время протекания химических реакций.

Если тс<Стх, то практически тп«т*. В этом случае процесс про­текает в кинетической области. Если же, наоборот, Тс^-Тх, то Тп»тс и, следовательно, процесс протекает в диффузионной об­ласти.

При протекании процесса горения в кинетической области ско­рость горения зависит от свойств данной горючей смеси, темпера­туры в реакционном объеме и концентрации реагентов в зоне го­рения, т. е. регулируется законами химической кинетики. В то же время скорость процесса в кинетической области не зависит от гидродинамических факторов, т. е. от скорости потока, геометриче­ских размеров реакционной камеры и т. д.

Наоборот, в диффузионной области скорость процесса опреде­ляется гидродинамическими факторами и не зависит от кинетиче­ских. В этой области перестают играть определяющую роль свой­ства горючей смеси и температурный фактор. Сравнительно про стыми гидродинамическими средствами можно влиять на интен­сивность смешения, что приведет к изменению характеристик диф­фузионного факела.

При кинетическом принципе в горелке предварительно создается однородная газовоздушная смесь, которая и подается в топочную камеру. Поэтому горение такой смеси протекает при постоянном значении всех основных характеристик (теплонапряжение, избыток воздуха и т. д.). Чисто кинетическое горение возникает лишь при соблюдении условия А^1,0. При а<1 кинетическое горение про­текает лишь на первой стадии, т. е. до тех пор, пока не израсходо­ван весь кислород смеси. Остаток горючих компонентов, разбав­ленных продуктами сгорания, может быть сожжен только при условии подвода дополнительного окислителя (воздуха).

Диффузионный принцип сжигания подразумевает создание та­ких условий для возникновения процесса, при которых смесь сго­рает немедленно при самом ее возникновении, т. е. при соприкос­новении топлива и окислителя в соответствующих количественных соотношениях. Процесс диффузионного горения регулируется из­менением интенсивности смесеобразования путем варьирования конструктивных и режимных параметров горелки. В результате в зависимости от технологических требований можно добиться уко­рочения зоны смешения или ее удлинения.

В практике часто применяется сжигание газа, сочетающее в себе оба упомянутых принципа. В этом случае часть воздуха предварительно смешивается с газом в горелке, а остальная часть, необходимая для полного сгорания, подается непосредственно в зону горения. Изменяя это соотношение, можно воздействовать на длину газового факела. В большинстве горелок газ подается под тем или иным углом к потоку воздуха.

Изучению процесса смесеобразования посвящено много работ. Это позволяет сформулировать некоторые общие закономер­ности.

Для прямоточных газовых горелок смешение тем лучше, чем большую часть поперечного сечения горелки охватывают газовые струи, т. е. чем больше дально­бойность газовых струй. В горелках с сильно закрученными потоками не следует стремиться к большой дальнобойности газовых струй.

Увеличение крутки потока воздуха приводит к перераспределению газа и воздуха по сечению горелки, повышению интенсивности перемешивания газа с воздухом и увеличению центральной зоны обратных токов в горелке.

Характер влияния крутки воздушного потока на процесс смесеобразования различен в зависимости от остальных определяющих параметров. Так, при по­даче газа в периферийные зоны горелки (независимо от ее типа) увеличение крутки потока приводит к заметному улучшению смесеобразования. Наоборот, при подаче газа в центральную зону горелки рост крутки не приводит, как пра­вило, к улучшению процесса,«решения.

Совокупность явлений, которую мы называем горением, может протекать только в определенной последовательности, от одной стадии к другой. Г. Ф. Кнорре дает следующие схемы установив­шегося процесса горения газового и жидкого топлива с фиксиро­ванным очагом, которые он называет поточными (рис. 1). Про­стейшая поточная схема возникает при сжигании газового топлива, состоящего из простых молекул (например, водород), не требую­щих предварительного сложного пирогенного разложения (рис. 1, А). Когда же сжигается газовое или жидкое углеводородное топливо, А 6

Поточный процесс горения осложняется: возникает еще одна про­межуточная стадия - пирогенное разложение. Для жидкого топ­лива этой стадии предшествует стадия испарения (рис. 1,6). Для осуществления поточной схемы необходим достаточный темпера­турный уровень в очаге горения, к которому непрерывными пото­ками подводятся топливо и окислитель. Продукты сгорания после завершения реакций также непрерывно отводятся от очага горения.

Известно, что газовоздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в опре­деленных (для каждого газа) пределах. При незначительных со­держаниях газа количество тепла, выделившегося при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения. То же наблюдается и при слишком большом со­держании газа в газовоздушной смеси. Недостаток кислорода воз­духа, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до

Температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости (табл. 1). Поэтому кроме перемешивания газа с воздухом в определенных пропорция должны быть созданы начальные условия для воспламенения смеси.

Таблица /

Пределы воспламеняемости и температуры воспламенения различных газов в воздухе

Пределы воспламеняе­мости, % газа в смеси с воздухом

Температура воспла­менения, °С

Водород........................................

Окись углерода.............................

Метан. . ........................................

Этан................................................

Пропан...........................................

Бутан..............................................

Ацетилен........................................

Коксовый.....................................

Водяной. ......................................

Сланцевый....................................

Природный...................................

Окисление горючих газов возможно при низких температурах, но тогда оно протекает чрезвычайно медленно из-за, незначитель­ной скорости реакций. При повышении температуры скорость реак­ции окисления возрастает до наступления самовоспламенения (вместо медленного окисления начинается процесс самопроизволь­ного горения). Значит, нагретая до температуры воспламенения горючая смесь обладает такой энергией, которая не только компен­сирует потери тепла в окружающую среду, но обеспечивает нагрев и подготовку газовоздушной смеси, поступающей к зону горения, к воспламенению.

Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газовоздушной смеси, давления, способа нагрева смеси и т. д., и поэтому не является точной величиной. В табл. 1 приведены значения температур вос­пламенения некоторых горючих газов в воздухе.

В практике встречаются два способа воспламенения горючих смесей: самовоспламенение и зажигание.

При Самовоспламенении весь объем горючей газовоздушной смеси постепенно доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздей­ствия.

В технике широко применяется второй способ, именуемый За­жиганием. При этом способе не требуется нагревать всю газовоз­душную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпе­ратурным источником (искра, накаленное тело, дежурное пламя и т. д.). В результате воспламенение передается на весь объем смеси самопроизвольно путем распространения пламени, происхо­дящего не мгновенно, а с определенной пространственной ско­ростью. Эта скорость называется Скоростью распространения пла­мени в газовоздушной смеси и является важнейшей характеристи­кой, определяющей условия протекания и стабилизации горе­ния. Устойчивость работы горелок, как будет показано ниже, свя­зана со скоростью распространения пламени.

Таким образом, процесс горения газового топлива состоит из смешения газа с воздухом, нагрева полученной смеси до темпера­туры воспламенения, зажигания ее и протекания реакций горения, сопровождающихся выделением тепла. Причем смешение газа с воздухом и нагрев смеси занимают большую часть времени в про­цессе горения, так как реакции горения протекают практически мгновенно.

В зависимости от технологического процесса (получение пара и горячей воды в котельном агрегате, нагрев изделий в печной установке и т. д.) возникает необходимость влиять на процесс го­рения, изменяя его конечные характеристики. Это достигается раз­личными конструктивными приемами, которые изложены в гл. III.

Показательно сопоставление полей температур в объеме факела при сжигании газа с различными коэффициентами избытка воз­духа. Пример такого сопоставления дан на рис. 2 для горелки с диаметром выходного насадка 35 мм в виде зависимости

Где И - текущее значение температуры в факеле, °С; £тах - макси­мальная температура в факеле (замеренная), °С; Х - расстояние от точки замера до начала факела, м; У - расстояние от точки за­мера до оси факела, м; Й - диаметр насадка горелки, м.

На рис. 2 приведены графики распределения температур для трех коэффициентов избытка воздуха. Причем координате Х/й =О соответствует выходное сечение насадка горелки, а координате У/й =0 - ось факела.

Как видно из рисунка, распределение температур в свободном факеле неравномерно. При малых избытках первичного воздуха, например а=0,5, наличие внутреннего ядра в факеле сильно иска­жает температурное поле и оно выравнивается только на расстоя­нии х/с/ =10, тогда как при а=0,75 выравнивание наступает уже при Х/й =2,5, а при а=1,0 еще раньше - при Х/й=1,0.

Наивысшие температуры в открытых факелах наблюдаются в начальных сечениях на расстоянии от оси факела У/й = 0,5, а за­тем по центру факела. Причем с увеличением коэффициента из­бытка воздуха максимум температур смещается к устью горелки. Так, наивысшая температура при а=0,75 измерена на расстоянии Х/й =2,5, а при а =1,0 - на расстоянии Х/й=1,0.

При совместном рассмотрении распределения температур и кон­центраций С02 в факеле наблюдается совпадение максимумов

Температур и содержаний С02. Следовательно, максимальному температурному уровню в факеле соответствует и максимальная величина степени выгорания горючих.

Потери части тепла, выделившегося в результате сгорания газа, неизбежны. Однако они могут быть снижены до минимума при правильном ведении топочного процесса. Рассмотрим, из каких же. составляющих складываются эти потери.

При сжигании газового топлива имеют место следующие по­тери тепла: с уходящими газами, от химической неполноты сгора­ния и в окружающую среду. На основании определения отдельных потерь тепла по обратному балансу может быть подсчитан к. п. д (коэффициент полезного действия) агрегата, °/о:

Где <72 - потери тепла с уходящими газами, %; - потери тепла

От химической неполноты сгорания, %; Q5 - потери тепла в окру­жающую среду, %.

Потери тепла с уходящими газами - физическое тепло продук­тов сгорания, покидающих агрегат, - являются основными. Пол­ностью устранить их невозможно, однако необходимо стремиться к уменьшению. Потери тепла с уходящими газами зависят от тем­пературы газов и их количества. Чем ниже температура уходящих газов, тем меньше тепла будет теряться, поэтому следует стре­миться к снижению в разумных пределах температуры уходящих газов. Влияние температуры уходящих газов на потери тепла видно из табл. 2.

Таблица 2

Потери тепла с уходящими газами при сжигании природного газа, %

Температура уходящих газов, °С

Коэффициент избытка воздуха за агрегатом аа

Потерю тепла с уходящими газами выражают обычно в процен­тах от всего располагаемого тепла, т. е. от теплоты сгорания топ­лива. Например, если потеря тепла составляет 700 ккал/м3 при сжигании природного газа, то

700-100 ___ „ 24°/

Количество покидающих агрегат газов зависит от коэффици - ента избытка воздуха, с которым работает горелка, и присосов

Воздуха через неплотности в агрегате. Чем больше коэффициент избытка воздуха на выходе из горелки и присосы воздуха в агре­гат, тем выше потери тепла с уходящими газами. Из табл. 2 видно, что изменение общего коэффициента избытка воздуха в продуктах сгорания с аа= 1,2-5-1,6 увеличивает потерю тепла с уходящими га­зами с 10,5 до 13,2% (при неизменной температуре уходящих газов 240° С).

Таким образом, для снижения потерь тепла с уходящими га­зами необходимо вести процесс горения с наименьшим допусти­мым коэффициентом избытка воздуха, обеспечивать наибольшую плотность агрегата и добиваться снижения температуры уходящих газов.

Потери тепла от химической неполноты сгорания газа возни­кают при недостатке воздуха, плохом смешении в газовой горелке, при резком снижении температурного уровня в зоне горения. В ре­зультате горение газа протекает неполно и с продуктами сгорания уходят горючие компоненты (например, водород, окись углерода и др.). Это приводит к недоиспользованию химической энергии топлива и снижению экономичности работы агрегата. Даже не­большое содержание горючих компонентов в продуктах сгорания приводит к существенным потерям тепла от химической неполноты сгорания. Предположим, что в продуктах сгорания содержалось 0,7% водорода и 0,5% окиси углерода. В агрегате сжигался при­родный газ с коэффициентом избытка воздуха за установкой а» = = 1,5. Потери тепла от химической неполноты сгорания составили ~450 ккал/м3 или

А___ 450-100 поо/

Таким образом, из рассмотренного примера видно, что горючие компоненты в продуктах сгорания должны полностью‘отсутство­вать или составлять минимальную величину.

Потери тепла в окружающую среду связаны с тем, что стенки агрегата имеют более высокую температуру, чем окружающий его воздух. Величина этих потерь зависит в основном от разности тем­ператур между наружными стенками агрегата и окружающим воз­духом, величины поверхности стен, теплопроводности материала кладки и ее толщины. Потери в окружающую среду подсчиты­ваются теоретически или принимаются из норм теплового расчета в зависимости от конструкции и производительности агрегата.

Если просуммируем все тепловые потери, которые имеют место при сжигании газа в агрегате, и вычтем их из 100, то получим к. п. д. агрегата. Например, воспользуемся цифрами, приведен­ными выше, приняв <75 равным 3,60%, тогда к. п. д. агрегата

Т]= 100-(8,24+5,28+3,60)=82,88%*

Общие сведения. Другой важный источник внутреннего загрязнения, сильный сенсибилизирующий фактор для человека - природный газ и продукты его сгорания. Газ - многокомпонентная система, состоящая из десятков различных соединений, в том числе и специально добавляемых (табл.

Имеется прямое доказательство того, что использование приборов, в которых происходит сжигание природного газа (газовые плиты и котлы), оказывает неблагоприятный эффект на человеческое здоровье. Кроме того, индивидуумы с повышенной чувствительностью к факторам окружающей среды реагируют неадекватно на компоненты природного газа и продукты его сгорания.

Природный газ в доме - источник множества различных загрязнителей. Сюда относятся соединения, которые непосредственно присутствуют в газе (одоранты, газообразные углеводороды, ядовитые металлоорганические комплексы и радиоактивный газ радон), продукты неполного сгорания (оксид углерода, диоксид азота, аэрозольные органические частицы, полициклические ароматические углеводороды и небольшое количество летучих органических соединений). Все перечисленные компоненты могут воздействовать на организм человека как сами по себе, так и в комбинации друг с другом (эффект синергизма).

Таблица 12.3

Состав газообразного топлива

Одоранты. Одоранты - серосодержащие органические ароматические соединения (меркаптаны, тиоэфиры и тио- ароматические соединения). Добавляются к природному газу с целью его обнаружения при утечках. Хотя эти соединения присутствуют в весьма небольших, подпороговых концентрациях, которые не рассматриваются как ядовитые для большинства индивидуумов, их запах может вызывать тошноту и головные боли у здоровых людей.

Клинический опыт и эпидемиологические данные указывают, что химически чувствительные люди реагируют неадекватно на химические соединения, присутствующие даже в подпороговых концентрациях. Индивидуумы, страдающие астмой, часто идентифицируют запах как промотор (триггер) астматических приступов.

К одорантам относится, к примеру, метантиол. Метанти- ол, известный также как метилмеркаптан (меркаптометан, тиометилалкоголь), - газообразное соединение, которое обычно используется как ароматическая добавка к природному газу. Неприятный запах ощущает большинство людей в концентрации 1 часть на 140 млн, однако это соединение может быть обнаружено при значительно меньших концентрациях высокочувствительными индивидуумами. Токсикологические исследования на животных показали, что 0,16% метантиола, 3,3% этантиола или 9,6% диметилсульфида способны стимулировать коматозное состояние у 50% крыс, подвергнутых воздействию этих соединений в течение 15 мин.

Другой меркаптан, используемый тоже как ароматическая добавка к природному газу, - меркаптоэтанол C2H6OS) известен также как 2-тиоэтанол, этилмеркаптан. Сильный раздражитель для глаз и кожи, способен оказывать токсический эффект через кожу. Огнеопасен и при нагревании разлагается с образованием высокоядовитых паров SOx.

Меркаптаны, являясь загрязнителями воздуха помещений, содержат серу и способны захватывать элементарную ртуть. В высоких концентрациях меркаптаны могут вызывать нарушение периферического кровообращения и учащение пульса, способны стимулировать потерю сознания, развитие цианоза или даже смерть.

Аэрозоли. Сгорание природного газа приводит к образованию мелких органических частиц (аэрозолей), включая канцерогенные ароматические углеводороды, а также некоторые летучие органические соединения. ДОС - предположительно сенсибилизирующие агенты, которые способны индуцировать совместно с другими компонентами синдром «больного здания», а также множественную химическую чувствительность (МХЧ).

К ДОС относится и формальдегид, образующийся в небольших количествах при сгорании газа. Использование газовых приборов в доме, где проживают чувствительные индивидуумы, увеличивает воздействие к этим раздражителям, впоследствии усиливая признаки болезни и также способствуя дальнейшей сенсибилизации.

Аэрозоли, образованные в процессе сгорания природного газа, могут стать центрами адсорбции для разнообразных химических соединений, присутствующих в воздухе. Таким образом, воздушные загрязнители могут концентрироваться в микрообъемах, реагировать друг с другом, особенно когда металлы выступают в роли катализаторов реакций. Чем меньше по размеру частица, тем выше концентрационная активность такого процесса.

Более того, водяные пары, образующиеся при сгорании природного газа, - транспортное звено для аэрозольных частиц и загрязнителей при их переносе к легочным альвеолам.

При сгорании природного газа образуются и аэрозоли, содержащие полициклические ароматические углеводороды. Они оказывают неблагоприятное воздействие на дыхательную систему и являются известными канцерогенными веществами. Помимо этого, углеводороды способны приводить к хронической интоксикации у восприимчивых людей.

Образование бензола, толуола, этилбензола и ксилола при сжигании природного газа также неблагоприятно для здоровья человека. Бензол, как известно, канцерогенен в дозах, значительно ниже пороговых. Воздействие к бензолу коррелирует с увеличенным риском возникновения рака, особенно лейкемии. Сенсибилизирующие эффекты бензола не известны.

Металлоорганические соединения. Некоторые компоненты природного газа могут содержать высокие концентрации ядовитых тяжелых металлов, включая свинец, медь, ртуть, серебро и мышьяк. По всей вероятности, эти металлы присутствуют в природном газе в форме металлоорганических комплексов типа триметиларсенита (CH3)3As. Связь с органической матрицей этих токсичных металлов делает их растворимыми в липидах. Это ведет к высокому уровню поглощения и тенденции к биоаккумуляции в жировой ткани человека. Высокая токсичность тетраметилплюмбита (СН3)4РЬ и диметилртути (CH3)2Hg предполагает влияние на здоровье человека, так как метилированные составы этих металлов более ядовиты, чем сами металлы. Особую опасность представляют эти соединения во время лактации у женщин, так как в этом случае происходит миграция липидов из жировых депо организма.

Диметилртуть (CH3)2Hg - особенно опасное металлоорганическое соединение из-за его высокой липофильности. Метилртуть может быть инкорпорирована в организм путем ингаляционного поступления, а также через кожу. Всасывание этого соединения в желудочно-кишечном трактате составляет почти 100%. Ртуть обладает выраженным нейро- токсическим эффектом и свойством влиять на репродуктивную функцию человека. Токсикология не располагает данными о безопасных уровнях ртути для живых организмов.

Органические соединения мышьяка также весьма ядовиты, особенно при их метаболическом разрушении (метаболическая активация), заканчивающимся образованием высокоядовитых неорганических форм.

Продукты сгорания природного газа. Диоксид азота способен действовать на легочную систему, что облегчает развитие аллергических реакций к другим веществам, уменьшает функцию легких, восприимчивость к инфекционным заболеваниям легких, потенцирует бронхиальную астму и другие респираторные заболевания. Это особенно выражено у детей.

Имеются доказательства того, что N02, полученный при сжигании природного газа, может индуцировать:

  • воспаление легочной системы и уменьшение жизненной функции легких;
  • увеличение риска астмоподобных признаков, включая появление хрипов, одышку и приступы заболевания. Это особенно часто проявляется у женщин, приготавливающих еду на газовых плитах, а также у детей;
  • уменьшение резистентности к бактериальным заболеваниям легких из-за снижения иммунологических механизмов защиты легких;
  • оказание неблагоприятных эффектов в целом на иммунную систему человека и животных;
  • воздействие как адъюванта на развитие аллергических реакций к другим компонентам;
  • увеличение чувствительности и усиление аллергической ответной реакции на побочные аллергены.

В продуктах сгорания природного газа присутствует довольно высокая концентрация сероводорода (H2S), который загрязняет окружающую среду. Он ядовит в концентрациях ниже, чем 50.ppm, а в концентрации 0,1- 0,2% смертелен даже при непродолжительной экспозиции. Так как организм имеет механизм для детоксикации этого соединения, токсичность сероводорода связана больше с его воздействующей концентрацией, чем с продолжительностью экспозиции.

Хотя сероводород имеет сильный запах, его непрерывное низкоконцентрационное воздействие ведет к утрате чувства запаха. Это делает возможным токсический эффект для людей, которые несознательно могут подвергаться действию опасных уровней этого газа. Незначительные концентрации его в воздухе жилых помещений приводят к раздражению глаз, носоглотки. Умеренные уровни вызывают головную боль, головокружение, а также кашель и затруднение дыхания. Высокие уровни ведут к шоку, конвульсиям, коматозному состоянию, которые заканчиваются смертью. Оставшиеся в живых после острого токсического воздействия сероводорода испытывают неврологические дисфункции типа амнезии, тремора, нарушение равновесия, а иногда и более серьезного повреждения головного мозга.

Острая токсичность относительно высоких концентраций сероводорода хорошо известна, однако, к сожалению, имеется немного информации по хроническому НИЗКОДОЗО- вому воздействию этого компонента.

Радон. Радон (222Rn) также присутствует в природном газе и может быть доставлен по трубопроводам к газовым плитам, которые становятся источниками загрязнения. Так как радон распадается до свинца (период полураспада 210РЬ равен 3,8 дня), это приводит к созданию тонкого слоя радиоактивного свинца (в среднем толщиной 0,01 см), который покрывает внутренние поверхности труб и оборудования. Образование слоя радиоактивного свинца повышает фоновое значение радиоактивности на несколько тысяч распадов в минуту (на площади 100 см2). Удаление его очень сложно и требует замены труб.

Следует учитывать, что простого отключения газового оборудования недостаточно, чтобы снять токсическое воздействие и принести облегчение химически чувствительным пациентам. Газовое оборудование должно быть полностью удалено из помещения, так как даже не работающая газовая плита продолжает выделять ароматические соединения, которые она поглотила за годы использования.

Совокупные эффекты природного газа, влияние ароматических соединений, продуктов сгорания на здоровье человека точно не известны. Предполагается, что воздействие от нескольких соединений может умножаться, при этом реакция от воздействия нескольких загрязнителей может быть больше, чем сумма отдельных эффектов.

Таким образом, характеристиками природного газа, вызывающими беспокойство в отношении здоровья человека и животных, являются:

  • огнеопасность и взрывоопасный характер;
  • асфиксические свойства;
  • загрязнение продуктами сгорания воздушной среды помещений;
  • присутствие радиоактивных элементов (радон);
  • содержание в продуктах сгорания высокотоксичных соединений;
  • присутствие следовых количеств ядовитых металлов;
  • содержание токсичных ароматических соединений, добавляемых к природному газу (особенно для людей с множественной химической чувствительностью);
  • способность компонентов газа к сенсибилизации.

Методы сжигания природного газа

Все методы сжигания базируются на приготовлении газовоздушной смеси определенного состава.

I. диффузионный метод сжигания
Особенности. В корневой зоне никакого процесса горения нет. На границе корневой зоны молекулы кислорода успевают смешиваться и начинает газ гореть. В зоне основного горения выгорает углерод.
Этот процесс горения называется диффузионным, так как воздух сам приходит из атмосферы. Смешение молекул воздуха и газа происходит по газовым законам. Не будем углубляться в науку, а посмотрим процесс горения схематично, чтобы понять суть.
К фронту горения газ поступает под давлением, а необходимый для горения воздух из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения. Поэтому скорость горения равна скорости смесеобразования.
Важной характеристикой горения газообразного топлива является скорость распространения пламени в газовоздушной среды. Нормальная скорость это скорость распространения движения фронта пламени в направлении перпендикулярному направлению поверхности фронта пламени.

Рис.1 Горелка используяющая диффузионный метод сжигания газа

-Нормальная скорость метана равна 0,67 м/с;
-нормальная скорость пропана равна 0,82 м/с;
-нормальная скорость водорода 4,83 м/с.

Данные диффузионные горелки (для промышленных котлов) обладают следующими свойствами:
1. к струе газа диффундирует воздух, а из струи газа в воздух газ. Таким образом, в близи выхода газа из горелки создается газовоздушная смесь.
2. процесс горения начинается в зоне первично горения и заканчивается в основной зоне.
3. интенсивность процесса горения определяется скоростью образования газовоздушной смеси.
4. выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха.

В целом горение при таком методе образования газовоздушных смеси протекает достаточно медленно и пламя имеет большой объем и как правило обладает светимостью.

Достоинства горелок диффузионного типа
-Высокая устойчивость пламени при изменении тепловых нагрузок;
-невозможность проскока пламени в горелку, так как в горелке находится чистый газ;
-возможность регулирования горения в широком диапазоне.

Недостатки горелок диффузионного типа
-большой объем пламени снижает теплонапряженность в единице объема;
-вероятность термического распада метана на горючие составляющие;
-увеличивается опасность отрыва пламени от горелки.

II. Смешанный метод сжигания газа
Смешанный метод обеспечивается предварительным смешиванием газа только с частью воздуха, необходимого для полного сгорания газа. Остальной воздух поступает из окружающей среды, непосредственно к факелу.
Сначала выгорает часть газа смешанного с первичным воздухом, а остальная часть, разбавленная продуктами горения, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается менее коротким и менее светящимся. Теплонапряженность в единице объема факела возрастает.



Рис. 2 Горелка использующая смешанный метод сжигания газа

III. Кинетический метод горения газа
К месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле и обладает малой светимостью.



Достоинства кинетического метода горения:
-малая вероятность химического недожога;
-высокая теплопроизводительность.

Недостаток. Необходимость стабилизации газового пламени. Это вызвано тем, что горелки чувствительны к изменению параметров давления газа и воздуха, что приводит к нарушению процесса горения. Для устранения данного недостатка горелки оснащаются стабилизаторами пламени.

02.04.2010

Купить систему очистки воды по приятной цене на сайте vodorazdel.com в Санкт Петербурге.

Горение газообразного топлива представляет собой сочетание следующих физических и химических процессов: смешение горючего газа с воздухом, подогрев смеси, термическое разложение горючих компонентов, воспламенение и химическое соединение горючих элементов с кислородом воздуха.

Устойчивое горение газовоздушной смеси возможно при непрерывном подводе к фронту горения необходимых количеств горючего газа и воздуха, их тщательном перемешивании и нагреве до температуры воспламенения или самовоспламенения (табл. 5).

Воспламенение газовоздушной смеси может быть осуществлено:

  • нагревом всего объема газовоздушной смеси до температуры самовоспламенения. Такой способ применяют в двигателях внутреннего сгорания, где газовоздушную смесь нагревают быстрым сжатием до определенного давления;
  • применением посторонних источников зажигания (запальников и т. д.). В этом случае до температуры воспламенения нагревается не вся газовоздушная смесь, а ее часть. Данный способ применяется при сжигании газов в горелках газовых приборов;
  • существующим факелом непрерывно в процессе горения.

Для начала реакции горения газообразного топлива следует затратить определенное количество энергии, необходимой для разрыва молекулярных связей и создания новых.

Химическая формула сгорания газового топлива с указанием всего механизма реакции, связанного с возникновением и исчезновением большого количества свободных атомов, радикалов и других активных частиц, сложна. Поэтому для упрощения пользуются уравнениями, выражающими начальное и конечное состояния реакций горения газа.

Если углеводородные газы обозначить С m Н n , то уравнение химической реакции горения этих газов в кислороде примет вид

C m H n + (m + n/4)O 2 = mCO 2 + (n/2)H 2 O ,

где m - количество атомов углерода в углеводородном газе; n - количество атомов водорода в газе; (m + n/4) - количество кислорода, необходимое для полного сгорания газа.

В соответствии с формулой выводятся уравнения горения газов:

  • метана СН 4 + 2O 2 = СO 2 + 2Н 2 O
  • этана С 2 Н 6 + 3,5O 2 = 2СO 2 + ЗН 2 O
  • бутана С 4 Н 10 + 6,5O 2 = 4СO 2 + 5Н 2 0
  • пропана C 3 H 8 + 5O 3 = ЗСO 2 + 4Н 2 O.

В практических условиях сжигания газа кислород берется не в чистом виде, а входит в состав воздуха. Так как воздух состоит по объему на 79 % из азота и на 21 % из кислорода, то на каждый объем кислорода требуется 100: 21 = 4,76 объема воздуха или 79: 21 = = 3,76 объема азота. Тогда реакцию горения метана в воздухе можно записать следующим образом:

СН 4 + 2O 2 + 2*3,76N 2 = CO 2 + 2H 2 O + 7,52N 2 .

Из уравнения видно, что для сжигания 1 м 3 метана требуется 1 м 3 кислорода и 7,52 м 3 азота или 2 + 7,52 = 9,52 м 3 воздуха.

В результате сгорания 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 водяных паров и 7,52 м 3 азота. В таблице ниже приведены эти данные для наиболее распространенных горючих газов.

Для процесса горения газовоздушной смеси необходимо, чтобы количество газа и воздуха в газовоздушной смеси было в определенных пределах. Эти пределы называются пределами воспламеняемости или пределами взрываемости. Различают нижний и верхний пределы воспламеняемости. Минимальное содержание газа в газовоздушной смеси, выраженное в объемных процентах, при котором происходит воспламенение, называется нижним пределом воспламеняемости. Максимальное содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительной теплоты, называется верхним пределом воспламеняемости.

Количество кислорода и воздуха при сжигании некоторых газов

Для сжигания 1 м 3 газа требуется, м 3

При сжигании 1 м 3 газа выделяется, м 3

Теплота сгорания Он,кДж/м 3

кислорода

диоксида

углерода

Оксид углерода

Если в газовоздушной смеси содержится газа меньше нижнего предела воспламеняемости, то она не будет гореть. Если в газовоздушной смеси недостаточно воздуха, то горение протекает не полностью.

Большое влияние на величины пределов взрываемости оказывают инертные примеси в газах. Увеличение содержания в газе балласта (N 2 и СO 2) сужает пределы воспламеняемости, а при повышении содержания балласта выше определенных пределов газовоздушная смесь не воспламеняется при любых соотношениях газа и воздуха (таблица ниже).

Количество объемов инертного газа на 1 объем горючего газа, при котором газовоздушная смесь перестает быть взрывоопасной

Наименьшее количество воздуха, необходимое для полного сжигания газа, называется теоретическим расходом воздуха и обозначается Lt, то есть если низшая теплота сгорания газового топлива 33520 кДж/м 3 , то теоретически необходимое количество воздуха для сжигания 1 м 3 газа

L T = (33 520/4190)/1,1 = 8,8 м 3 .

Однако действительный расход воздуха всегда превышает теоретический. Объясняется это тем, что очень трудно достигнуть полного сгорания газа при теоретических расходах воздуха. Поэтому любая газовая установка для сжигания газа работает с некоторым избытком воздуха.

Итак, практический расход воздуха

L n = αL T ,

где L n - практический расход воздуха; α - коэффициент избытка воздуха; L T - теоретический расход воздуха.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет α = 1,05 - 1,2. Коэффициент α показывает, во сколько раз действительный расход воздуха превышает теоретический, принимаемый за единицу. Если α = 1, то газовоздушная смесь называется стехиометрической .

При α = 1,2 сжигание газа производится с избытком воздуха на 20 %. Как правило, сжигание газов должно проходить с минимальным значением а, так как с уменьшением избытка воздуха снижаются потери теплоты с уходящими газами. Воздух, принимающий участие в горении, бывает первичным и вторичным. Первичным называется воздух, поступающий в горелку для смешения в ней с газом; вторичным — воздух, поступающий в зону горения не в смеси с газом, а отдельно.

В зависимости от способа образования газовоздушной смеси методы сжигания газа подразделяются (рисунок ниже):

  • на диффузионные;
  • смешанные;
  • кинетические.

Методы сжигания газа

а - диффузионный; б - смешанный; в - кинетический; 1 - внутренний конус; 2 - зона первичного горения; 3 - зона основного горения; 4 - продукты сгорания; 5 - первичный воздух; 6 - вторичный воздух

При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух — из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.

Процесс горения начинается после контакта между газом и воздухом и образования газовоздушной смеси необходимого состава. К струе газа диффундирует воздух, а из струи газа в воздух - газ. Таким образом, вблизи струи газа создается газовоздушная смесь, в результате горения которой образуется зона первичного горения газа 2. Горение основной части газа происходит в зоне 3, а в зоне 4 движутся продукты сгорания.

Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно, с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.

Достоинством диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметра сопла горелки, регулированием давления газа и т. д.

К преимуществам диффузионного метода сжигания относятся: высокая устойчивость пламени при изменении тепловых нагрузок, отсутствие проскока пламени, равномерность температуры по длине пламени.

Недостатками этого метода являются: вероятность термического распада углеводородов, низкая интенсивность горения, вероятность неполного сгорания газа.

При смешанном методе сжигания горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.

При кинетическом методе сжигания к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле. Достоинство этого метода сжигания - малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок. Недостаток - необходимость стабилизации газового пламени.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции