Вконтакте Facebook Twitter Лента RSS

Производственный источник зажигания. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности Зажигание горючей среды от перегрева при трении

Страница 5 из 14

Удары твердых тел с образованием искр.

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения.

Искры представляют собой нагретые до высокой температуры (раскаленные) частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более.

Температура искр удара из обычных конструкционных сталей достигает температуры плавления металла - 1550 °С.

Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т. к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Наибольшую опасность в этой связи представляют ацетилен, водород, этилен, оксид углерода и сероуглерод.

Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли).

Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы, аппараты с откидными крышками, люками и т. п.).

Мероприятия по предупреждению опасного проявления искр от удара и трения:

  1. Применение во взрывоопасных зонах (помещениях) применять искробезопасного инструмента.
  2. Обдув чистым воздухом места производства ремонтных и др. работ.
  3. Исключение попадания в машины металлических примесей и камней (магнитные уловители и камнеуловители).
  4. Для предупреждения искр от ударов подвижных механизмов машин о неподвижные:
    1. тщательная регулировка и балансировка валов;
    2. проверка зазоров между этими механизмами;
    3. недопущение перегрузки машин.
  5. Применять искробезопасные вентиляторы для транспортировки паро- и газовоздушных смесей, пылей и твердых горючих материалов.
  6. В помещениях получения и хранения ацетилена, этилена и т.п. полы выполнять из неискрящего материала или застилать их резиновыми ковриками.

Поверхностное трение тел.

Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления, размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания.

Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке.

Мероприятия по предупреждению опасного проявления поверхностного трения тел:

  1. Замена подшипников скольжения на подшипники качения.
  2. Контроль за смазкой, температурой подшипников.
  3. Контроль за степенью натяжения транспортерных лент, ремней, не допущение работы машин с перегрузкой.
  4. Замена плоскоременных передач на клиноременные.
  5. Для предупреждения наматывания волокнистых материалов на вращающиеся валы используют:
    1. применение свободнонасаженных втулок, кожухов и т.п. для защиты открытых участков валов от контакта с волокнистым материалом;
    2. предотвращение перегрузки;
    3. устройство специальных ножей для срезания наматывающихся волокнистых материалов;
    4. установка минимальных зазоров между валом и подшипником.
  6. При механической обработке горючих материалов необходимо:
    1. соблюдать режим резания,
    2. своевременно затачивать инструмент,
    3. использовать локальное охлаждения места резания (эмульсии, масла, вода и т.п.).

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала - до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями - от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов - возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал - стример, по которому устремляется от катода к аноду мощный поток электронов - происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями - электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду - аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.

Расчет параметров источников пожара (взрыва)

На этом этапе необходимо оценить возможность источников зажигания инициировать горючие вещества.

В расчете принято четыре источника зажигания:

а) вторичное действие молнии;

б) искры короткого замыкания;

в) искры электросварки;

г) колба лампы накаливания.

д) горящую изоляцию электрокабеля (провода)

Вторичное воздействие молнии

Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ с минимальной энергией зажигания до 0,25 Дж.

Вторичное действие удара молнии опасно для газа, который заполнил весь объём помещения.

Термическое действие токов короткого действия

Ясно, что при коротком замыкании, когда отказывает аппарат защиты, появившиеся искры способны воспламенить ЛВЖ и взорвать газ (эта возможность оценивается ниже). Когда срабатывает защита, ток короткого замыкания длится короткое время и способен только воспламенить поливинилхлоридную проводку.

Температура проводника t пр о С, нагреваемого током короткого замыкания, вычисляется по формуле

где t н - начальная температура проводника, о С;

I к.з. - ток короткого замыкания, А;

R - сопротивление (активное) проводника, Ом;

к.з. - продолжительность короткого замыкания, с;

С пр - теплоёмкость материала провода, Дж*кг -1 *К -1 ;

m пр - масса провода, кг.

Чтобы проводка воспламенилась необходимо, чтобы температура t пр была больше температуры воспламенения поливинилхлоридной проводки t вос.пр. =330 о С.

Начальную температуру проводника принимаем равной температуре окружающей среде 20 о С. Выше в главе 1.2.2 были рассчитаны активное сопротивление проводника (Ra=1,734 Ом) и ток короткого замыкания (I к.з. =131,07 А). Теплоёмкость меди С пр =400 Дж*кг -1 *К -1 . Масса провода есть произведение плотности на объём, а объём - произведение длины L на площадь сечения проводника S

m пр =*S*L (18)

По справочнику находим значение =8,96*10 3 кг/м 3 . В формулу (18) подставляем значение площади сечения второго провода, из табл. 11, самого короткого, то есть L=2 м и S=1*10 -6 м. Масса провода равна

m пр =8,96*10 3 *10 -6 *2=1,792*10 -2

При продолжительности короткого замыкания к.з. =30 мс, по табл.11, проводник нагреется до температуры

Данной температуры не хватит, чтобы воспламенить поливинилхлоридную проводку. А если отключит защита, то необходимо будет посчитать вероятность загорания поливинилхлоридной проводки.

Искры короткого замыкания

При коротком замыкании возникают искры, которые имеют начальную температуру 2100 о С и способны воспламенить ЛВЖ и взорвать газ.

Начальная температура медной капли 2100 о С . Высота, на которой происходит короткое замыкание, 1 м, а расстояние до лужи ЛВЖ 4 м. Диаметр капли d к =2,7 мм или d к =2,7*10 -3 .

Количество теплоты, которое капля металла способна отдать горючей среде при остывании до температуры её воспламенения, рассчитывается следующим образом: среднюю скорость полёта капли металла при свободном падении w ср, м/с, вычисляют по формуле

где g - ускорение свободного падения, 9,81 м/с 2 ;

Н - высота падения, 1 м.

Получаем, что средняя скорость полёта капли при свободном падении

Продолжительность падения капли может быть рассчитана по формуле

Затем вычисляют объём капли Vк по формуле

Масса капли m к, кг:

где - плотность металла в расплавленном состоянии, кг*м -3 .

Плотность меди в расплавленном состоянии (по данным преподавателя) равна 8,6*10 3 кг/м 3 , а масса капли по формуле (22)

m к =8,6*10 3 *10,3138*10 -9 =8,867*10 -5

Время полёта капли металла в расплавленном (жидком) состоянии р, с.:

где С р - удельная теплоёмкость расплава материала капли, для меди С р =513 Дж*кг -1 *К -1 ;

S к - площадь поверхности капли, м 2 , S к =0,785d к 2 =5,722*10 -6 ;

Т н, Т пл - температура капли в начале полёта и температура плавления металла, соответственно, Т н =2373 К, Т пл =1083 К ;

Т о - температура окружающего воздуха, Т о =293 К;

Коэффициент теплоотдачи, Вт*м -2 *К -1 .

Коэффициент теплоотдачи рассчитывается следующей последовательности:

1) сначала вычисляют число Рейнольдса

где v=1,51*10 -5 1/(м 2 *с) - коэффициент кинематической вязкости воздуха при температуре 293 К,

где =2,2*10 -2 Вт*м -1 *К -1 - коэффициент теплопроводности воздуха,

1*10 2 Вт*м -2 *К -1 .

Рассчитав коэффициент теплоотдачи найдем время полёта капли металла в расплавленном (жидком) состоянии по формуле (23)

Так как < р, то конечную температуру капли определяют по формуле

Температура самовоспламенения пропана 466 о С, а температура капли (искры) к моменту подлета её к луже ЛВЖ 2373 К или 2100 о С. При данной температуре изопрен возгорится и будет устойчиво гореть, а пропан взорвется ещё при возникновении искры короткого замыкания. Температура вспышки изопрена -48 0 С.

Электрические искры довольно часто являются причинами пожаров. Они способны воспламенить не только газы, жидкости, пыли, но и некоторые твердые вещества. В технике электрические - искры часто применяются в качестве источника воспламенения. Механизм воспламенения горючих веществ электрической искрой более сложен, чем воспламенение накаленным телом. При образовании искры в газовом объеме между электродами происходят возбуждение молекул и их ионизация, что влияет на характер протекания химических реакций. Одновременно с этим в объеме шскры происходит интенсивное повышение температуры. В связи с этим были выдвинуты две теории механизма воспламенения электрическими искрами: ионная и тепловая. В настоящее время этот вопрос в достаточной мере все еще не изучен. Исследования показывают, что в механизме воспламенения электрическими искрами участвуют как электрические, так и тепловые факторы. При этом в одних условиях преобладают электрические, в других - тепловые. Учитывая, что результаты исследований и выводы с точки зрения ионной теории не противоречат тепловой, при объяснении механизма воспламенения от электрических искр обычно при держиваются тепловой теории.
Искровой разряд. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния.
Отражение звукового импульса электрической искры от плоской стенки. Фотография получена методом темного поля.| Прохождение звукового импульса через цилиндрическую стенку с отверстиями. Фотография получена методом темного поля. Электрическая искра дает чрезвычайно короткую вспышку; скорость же света неизмеримо больше скорости звука, о величине которой мы будем говорить ниже.
Электрические искры, которые могут появляться при коротком замыкании электропроводки, при проведении электросварочных работ, при искрении электрооборудования, при разрядах статического электричества. Размеры капель металла достигают 5 мм при электросварке и 3 мм при коротком замыкании электропроводки. Температура капель металла при электросварке близка к температуре плавления, а капель металла, образующихся при коротком замыкании электропроводки, выше температуры плавления, например для алюминия она достигает 2500 С. Температуру капли в конце ее полета от источника образования до поверхности горючего вещества принимают в расчетах равной 800 С.
Электрическая искра является наиболее распространенным тепловым импульсом воспламенения. Искра возникает в момент замыкания или размыкания электрической цепи и имеет температуру, значительно превышающую температуру воспламенения многих горючих веществ.
Электрическая искра между электродами получается в результате импульсных разрядов конденсатора С, создаваемых электрическим колебательным контуром. Если между инструментом 1 и деталью 2 в момент разряда будет присутствовать жидкость (керосин или масло), то эффективность обработки повышается вследствие того, что на инструменте не оседают частицы металла, вырванные с анода-детали.
Электрическая искра может рождаться вообще без всяких проводников и сетей.
Характеристики распространения пламени в переходном режиме при искровом зажигании (Олсен и др.. / - водород (успешное зажигание. 2 - пропан (успешное зажигание. 3 - пропан (отказ зажигания. Электрическая искра бывает двух типов, а именно, высокого и низкого напряжений. Высоковольтная искра, создаваемая каким-либо генератором высокого напряжения, пробивает искровой промежуток заранее фиксированного размера. Низковольтная искра проскакивает в точке разрыва электрической цепи, когда при прерывании тока возникает самоиндукция.
Электрические искры являются источниками небольшой энергии, но, как показывает опыт, зачастую могут становиться источниками возгорания. В нормальных рабочих условиях большинство электрических приборов не испускает искр, однако работа определенных устройств обычно сопровождается искрением.
Электрическая искра имеет вид ярко светящегося тонкого канала, соединяющего электроды: канал бывает сложным образом изогнут и разветвлен. В искровом канале перемещается лавина электронов, вызывая резкое повышение температуры и давления, а также характерный треск. В искровом вольтметре сближают шаровые электроды и измеряют расстояние, при котором между шарами проскакивает искра. Молния представляет собой гигантскую электрическую искру.
Принципиальная схема генератора активизированной дуги переменного тока.| Принципиальная схема генератора конденсированной искры.
Электрическая искра представляет собой разряд, создаваемый большой разностью потенциалов между электродами. Вещество электрода поступает в искровой аналитический промежуток в результате взрывообразных выбросов-факелов из электродов. Искровой разряд при большой плотности тока и большой температуре электродов может перейти в высоковольтный дуговой.
Искровой разряд. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторой определенной величины Ек критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния.
Электрическая искра разлагает NHs на составные элементы. При соприкосновении с каталитически активными веществами происходит его частичное разложение уже при сравнительно небольшом нагревании. На воздухе аммиак при обычных условиях не горит; однако существуют смеси аммиака с воздухом, которые при поджигании загораются. Он сгорает также, если его ввести в горящее на воздухе газовое пламя.
Электрическая искра разлагает ГШз на составные элементы. При соприкосновении с каталитически активными веществами происходит его частичное разложение уже при сравнительно небольшом нагревании. На воздухе аммиак при обычных условиях не горит; однако существуют смеси аммиака с воздухом, которые при поджигании загораются. Он сгорает также, если его ввести в горящее на воздухе газовое пламя.
Электрическая искра позволяет успешно производить всевозможные операции - разрезать металлы, делать в них отверстия любой формы и размеров, шлифовать, наносить покрытие, изменять структуру поверхности... Особенно выгодно ею обрабатывать детали весьма сложной конфигурации из металлокерамических твердых сплавов, карбидных композиций, магнитных материалов, высокопрочных жаропрочных сталей и сплавов и других труднообрабатываемых материалов.
Электрическая искра, возникающая между контактами при разрыве цепи, гасится не только путем ускорения разрыва; этому способствуют также газы, выделяемые фиброй, из которой сделаны прокладки 6, специально уложенные в одной плоскости с подвижным контактом.
Принципиальная схема системы зажигания.| Схема батарейной системы зажигания. Электрическая искра получается в результате подачи импульса тока высокого напряжения на электроды свечи. Прерыватель обеспечивает размыкание контактов в соответствии с последовательностью тактов, а распределитель 4 - подачу импульсов высокого напряжения в соответствии с порядком работы цилиндров.
Установка для ультразвуковой очистки стеклянных деталей с вакуумированием рабочей камеры. Электрическая искра снимает тонкий слой стекла с обрабатываемой поверхности. При продувании через эту дугу инертный газ (аргон) частично ионизируется и молекулы загрязнений разрушаются под действием ионной бомбардировки.
Электрические искры в ряде случаев могут привести к взрывам и пожарам. Поэтому рекомендуется те части установок или машин, на которых наблюдается накопление зарядов электростатического электричества, специально соединять металлической проволокой с землей, давая тем самым электрическим зарядам свободный проход от машины в землю.
Электрическая искра состоит из быстро распадающихся атомов воздуха или другого изолятора и поэтому представляет собою очень короткое время существующий хороший проводник. Кратковременность искрового разряда долго очень затрудняла его изучение, и лишь сравнительно недавно удалось установить главнейшие законы, которым он подчиняется.
Искровой разряд. Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторого определенного значения Ек (критическая напряженность поля, или напряженность пробоя), которая зависит от рода газа и его состояния.

Обычная электрическая искра, проскакивая в приборе-генераторе, рождала, как и предполагал ученый, похожую искру в другом приборе, изолированном и удаленном от первого на несколько метров. Так впервые было обнаружено предсказанное. Максвеллом свободное электромагнитное поле, способное передавать сигналы без всяких проводов.
Вскоре электрическая искра воспламеняет спирт, фосфор и, наконец, порох. Опыт переходит в руки фокусников, становится гвоздем цирковых программ, повсеместно возбуждая жгучий интерес к таинственному агенту - электричеству.
Температуры пламен различных газовых смесей. Высоковольтная электрическая искра представляет собой электрический разряд в воздухе при нормальном давлении под действием высокого напряжения.
Электрической искрой называют также форму прохождения электрического тока через газ при высокочастотном разряде конденсатора через короткий разрядный промежуток и контур, содержащий самоиндукцию. В этом случае в течение значительной доли полупериода высокочастотного тока разряд представляет собой дуговой разряд переменного режима.
Пропуская электрические искры через атмосферный воздух, Кавендиш нашел, что азот окисляется кислородом воздуха в окись азота, которая может быть переведена в азотную кислоту. Следовав льно, решает Тимирязев, сжигая азот воздуха, можно получить азотнокислые соли, которые легко заменят на полях чилийскую селитру и повысят урожай: ерновых культур.
Пропуская электрические искры через атмосферный воздух, Кавендиш нашел, что азот окисляется кислородом воздуха в окись азота, которая может быть переведена в азотную кислоту. Следовательно, решает Тимирязев, сжигая азот воздуха, можно получить азотнокислые соли, которые легко заменят на полях чилийскую селитру и повысят урожай: ерновых культур.
От электрических искр в проводах возбуждаются высокочастотные токи. Они распространяются вдоль проводов и излучают в окружающее пространство электромагнитные волны, мешающие радиоприему. Эти помехи попадают в приемник различными путями: 1) через антенну приемника, 2) через провода осветительной сети, если приемник сетевой, 3) путем индукции от осветительных или каких-либо других проводов, по которым распространяются мешающие волны.
Действие электрической искры на горючие смеси очень сложно.
Получение электрической искры необходимой интенсивности при батарейном зажигании не ограничивается минимальным числом оборотов, а при зажигании от магнето без ускорительной муфты обеспечивается примерно при 100 об / мин.
Воспламенение электрической искрой по сравнению с другими способами требует минимальной энергии, так как малый объем газа на пути искры нагревается ею до высокой температуры за предельно короткое время. Минимальная энергия искры, необходимая для воспламенения взрывоопасной смеси при ее оптимальной концентрации, определяется экспериментально. Она приводится к нормальным атмосферным условиям - давлению 100 кПа и температуре 20 С. Обычно минимальная энергия, необходимая для воспламенения пылевоздушных взрывоопасных смесей, на один-два порядка выше энергии, необходимой для воспламенения газо - и паровоздушных взрывоопасных смесей.
Включатель зажигания. При пробое электрическая искра испаряет тонкий слой металла, нанесенного на бумагу, и вблизи места пробоя бумага очищается от металла, а отверстие пробоя заполняется маслом, что и восстанавливает работоспособность конденсатора.
Наиболее опасны электрические искры: почти всегда их время действия и энергия достаточны для воспламенения горючих смесей.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарово го разрядни-к а, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разлоеть потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам.
От действия электрической искры разлагается с увеличением объема. Хлористый метил - сильное реакционноспособ-ное органическое соединение; большая часть реакций с хлористым метилом состоит в замене атомов галоида на различные радикалы.
При пропускании электрических искр через жидкий воздух азотистый ангидрид образуется в виде голубого порошка.
Чтобы избежать электрической искры, необходимо разъединяемые части газопровода соединить перемычкой и установить заземление.
Изменение концентрационных пределов воспламенения от мощности искры. Увеличение мощности электрических искр ведет к расширению области воспламенения (взрыва) газовых смесей. Однако и здесь существует своя граница, когда дальнейшее изменение пределов воспламенения не происходит. Искры такой мощности принято называть насыщенными. Использование их в приборах по определению концентрационных и температурных пределов воспламенения, температуры вспышки и других величин дает результаты, не отличающиеся от воспламенения накаленными телами и пламенем.
При пропускании электрической искры через смесь фтористой серы и водорода образуются H2S и HF. Смеси S2F2 с сернистым газом образуют в тех же условиях фтористый тионил (SOF2), а смеси с кислородом-смесь фтористого тионила и сернистого газа.
При пропускании электрических искр через воздух в закрытом сосуде над водой происходит большее уменьшение объема газа, чем при сжигании в нем фосфора.
Величина энергии электрической искры, необходимая для инициирования взрывного разложения ацетилена, сильно зависит от давления, возрастая при его уменьшении. Согласно данным С. М. Когарко и Иванова35, взрывное разложение ацетилена возможно даже при абсолютном давлении 0 65 от, если энергия искры равна 1200 дж. Под атмосферным давлением энергия инициирующей искры составляет 250 дж.
В отсутствие электрической искры или таких легковозгорающихся примесей, как, например, жир, реакции обычно протекают заметно только при высоких температурах. Этфоран C2Fe медленно реагирует с разбавленным фтором при 300 , в то время как к-гептфоран реагирует бурно при зажигании смеси электрической искрой.
При пропускании электрических искр через кислород или воздух появляется характерный запах, причиной которого является образование нового вещества - озона. Озон можно получить из совершенно чистого ухого кислорода; отсюда следует, что он состоит только из кислорода и представляет собой его аллотропическое видоизменение.
Энергия такой электрической искры может оказаться достаточной для воспламенения горючей или взрывоопасной смеси. Искровой разряд при напряжении 3000 В может вызвать воспламенение почти всех паро - и газовоздушных смесей, а при 5000 В - воспламенение большей части горючих пылей и волокон. Таким образом, возникающие в производственных условиях электростатические заряды могут служить источником зажигания, способным при наличии горючих смесей вызвать пожар или взрыв.
Энергия такой электрической искры может оказаться достаточно большой для воспламенения горючей или взрывоопасной смеси.
При пропускании электрических искр через кислород образуется озон - газ, в состав которого входит один только элемент - кислород; озон обладает плотностью в 1 5 раза большей, чем кислород.
При проскакивании электрической искры в воздушном промежутке между двумя электродами возникает ударная волна. При воздействии этой волны на поверхность калибровочного блока или непосредственно на ПАЭ в последнем возбуждается упругий импульс длительностью порядка нескольких микросекунд.

4.9. На основании собранных данных вычисляют коэффициент безопасности K s в следующей последовательности.
4.9.1. Вычисляют среднее время существования пожаровзрывоопасного события (t0) (среднее время нахождения в отказе) по формуле
(68)
где tj - время существования i -го пожаровзрывоопасного события, мин;
m - общее количество событий (изделий);
j - порядковый номер события (изделия).
4.9.2. Точечную оценку дисперсии (D 0) среднего времени существования пожаровзрывоопасного события вычисляют по формуле
(69)
4.9.3. Среднее квадратическое отклонение () точечной оценки среднего времени существования события - t0 вычисляют по формуле
(70)
4.9.4. Из табл. 5 выбирают значение коэффициента t b в зависимости от числа степеней свободы (m -1) при доверительной вероятности b=0,95.
Таблица 5

m -1
1
2
От 3 до 5
От 6 до 10
От 11 до 20
20
t b
12,71
4,30
3,18
2,45
2,20
2,09

4.9.5. Коэффициент безопасности (K б) (коэффициент, учитывающий отклонение значения параметра t0, вычисленного по формуле (68), от его истинного значения) вычисляют из формулы
(71)
4.9.6. При реализации в течение года только одного события коэффициент безопасности принимают равным единице.
5. Определение пожароопасных параметров тепловых источников интенсивности отказов элементов
5.1. Пожароопасные параметры тепловых источников
5.1.1. Разряд атмосферного электричества
5.l.l.l. Прямой удар молнии
Опасность прямого удара молнии заключается в контакте горючей среды с каналом молнии, температура в котором достигает 30000°С при силе тока 200000 А и времени действия около 100 мкс. От прямого удара молнии воспламеняются все горючие среды.
5.1.1.2. Вторичное воздействие молнии
Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ с минимальной энергией зажигания до 0,25 Дж.
5.1.1.3. Занос высокого потенциала
Занос высокого потенциала в здание происходит по металлическим коммуникациям не только при их прямом поражении молнией, но и при расположении коммуникаций в непосредственной близости от молниеотвода. При соблюдении безопасных расстояний между молниеотводами и коммуникациями энергия возможных искровых разрядов достигает значений 100 Дж и более, то есть достаточна для воспламенения всех горючих веществ.
5.1.2. Электрическая искра (дуга)
5.1.2.1. Термическое действие токов короткого замыкания
Температуру проводника (t пр), °С, нагреваемого током короткого замыкания, вычисляют по формуле
(72)
где t н - начальная температура проводника, °С;
I к.з - ток короткого замыкания, А;
R - сопротивление проводника, Oм;
tк.з - время короткого замыкания, с;
С пр - теплоемкость проводника, Дж×кг-1×К-1;
m пр - масса проводника, кг.
Воспламеняемость кабеля и проводника с изоляцией зависит от значения кратности тока короткого замыкания I к.з, т. е. от значения отношения I к.з к длительно допустимому току кабеля или провода. Если эта кратность больше 2,5, но меньше 18 для кабеля и 21 для провода, то происходит воспламенение поливинилхлоридной изоляции.
5.1.2.2. Электрические искры (капли металла)
Электрические искры (капли металла) образуются при коротком замыкании электропроводки, электросварке и при плавлении электродов электрических ламп накаливания общего назначения. Размер капель металла при этом достигает 3 мм (при потолочной сварке - 4 мм). При коротком замыкании и электросварке частицы вылетают во всех направлениях, и их скорость не превышает 10 и 4 м×с-1 соответственно. Температура капель зависит от вида металла и равна температуре плавления. Температура капель алюминия при коротком замыкании достигает 2500 °С, температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100 °C. Размер капель при резке металла достигает 15-26 мм, скорость - 1 м×с-1 температура 1500 °C. Температура дуги при сварке и резке достигает 4000 °С, поэтому дуга является источником зажигания всех горючих веществ.
Зона разлета частиц при коротком замыкании зависит от высоты расположения провода, начальной скорости полета частиц, угла вылета и носит вероятностный характер. При высоте расположения провода 10 м вероятность попадания частиц на расстояние 9 м составляет 0,06; 7м-0,45 и 5 м-0,92; при высоте расположения 3 м вероятность попадания частиц на расстояние 8 м составляет 0,01, 6 м - 0,29 и 4 м- 0,96, а при высоте 1 м вероятность разлета частиц на 6 м- 0,06, 5 м - 0,24, 4 м - 0,66 и 3 м - 0,99.
Количество теплоты, которое капля металла способна отдать горючей среде при остывании до температуры ее самовоспламенения, рассчитывают следующим способом.
Среднюю скорость полета капли металла при свободном падении (wк), м×с-1, вычисляют по формуле
(73)
где g =9,8l м×с-1 - ускорение свободного падения;
Н - высота падения, м.
Объем капли металла (V к), м3, вычисляют по формуле
(74)
где d k - диаметр капли, м.
Массу капли (m k), кг, вычисляют по формуле
(75)
где r - плотность металла, кг×м-3.
В зависимости от продолжительности полета капли возможны три ее состояния: жидкое, кристаллизации, твердое.
Время полета капли в расплавленном (жидком) состоянии (tp), с, рассчитывают по формуле
(76)
где C p - удельная теплоемкость расплава металла, Дж×к-1К-1;
m k - масса капли, кг;
S k=0,785 - площадь поверхности капли, м2;
Т н, Т пл - температура капли в начале полета и температура плавления металла соответственно, К;
Т 0 - температура окружающей среды (воздуха), К;
a - коэффициент теплоотдачи, Вт, м-2 К-1.
Коэффициент теплоотдачи определяют в следующей последовательности:
а) вычисляют число Рейнольдса по формуле
(77)
где d k - диаметр капли м;
v = 15,1×10-6 - коэффициент кинематической вязкости воздуха при температуре 20°С, м-2×с-1.
б) вычисляют критерий Нуссельта по формуле
(78)
в) вычисляют коэффициент теплоотдачи по формуле
, (79)
где lВ=22×10-3 - коэффициент теплопроводности воздуха, Вт×м-1× -К-1.
Если t£tр, то конечную температуру капли определяют по формуле
(80)
Время полета капли, в течение которого происходит ее кристаллизация, определяют по формуле
(81)
где С кр - удельная теплота кристаллизации металла, Дж×кг-1.
Если tр (82)
Если t>(tр+tкр), то конечную температуру капли в твердом состоянии определяют по формуле
(83)
где С к - удельная теплоемкость металла, Дж кг -1×K-1.
Количество тепла (W ), Дж, отдаваемое каплей металла твердому или жидкому горючему материалу, на который она попала, вычисляют по формуле
(84)
где Т св - температура самовоспламенения горючего материала, К;
К - коэффициент, равный отношению тепла, отданного горючему веществу, к энергии, запасенной в капле.
Если отсутствует возможность определения коэффициента К , то принимают К =1.
Более строгое определение конечной температуры капли может быть проведено при учете зависимости коэффициента теплоотдачи от температуры.
5.1.2.3. Электрические лампы накаливания общего назначения
Пожарная опасность светильников обусловлена возможностью контакта горючей среды с колбой электрической лампы накаливания, нагретой выше температуры самовоспламенения горючей среды. Температура нагрева колбы электрической лампочки зависит от мощности лампы, ее размеров и расположения в пространстве. Зависимость максимальной температуры на колбе горизонтально расположенной лампы от ее мощности и времени приведена на черт. 3.


Черт. 3

5.1.2.4. Искры статического электричества
Энергию искры (W и), Дж, способной возникнуть под действием напряжения между пластиной и каким-либо заземленным предметом, вычисляют по запасенной конденсатором энергии из формулы
(85)
где С - емкость конденсатора, Ф;
U - напряжение, В.
Разность потенциалов между заряженным телом и землей измеряют электрометрами в реальных условиях производства.

Если W и³0,4 W м.э.з (W м.э.з ¾ минимальная энергия зажигания среды), то искру статического электричества рассматривают как источник зажигания.
Реальную опасность представляет “контактная” электризация людей, работающих с движущимися диэлектрическими материалами. При соприкосновении человека с заземленным предметом возникают искры с энергией от 2,5 до 7,5 мДж. Зависимость энергии электрического разряда с тела человека и от потенциала зарядов статического электричества показана на черт. 4.
5.1.3. Механические (фрикционные) искры (искры от удара и трения)
Размеры искр удара и трения, которые представляют собой раскаленную до свечения частичку металла или камня, обычно не превышают 0,5 мм, а их температура находится в пределах температуры плавления металла. Температура искр, образующихся при соударении металлов, способных вступать в химическое взаимодействие друг с другом с выделением значительного количества тепла, может превышать температуру плавления и поэтому ее определяют экспериментально или расчетом.
Количество теплоты, отдаваемое искрой при охлаждении от начальной температуры t н до температуры самовоспламенения горючей среды t св вычисляют но формуле (84), а время остывания t - следующим образом.
Отношение температур (Qп) вычисляют по формуле
(86)
где t в - температура воздуха, °С.
Коэффициент теплоотдачи (a ), Вт×м-2×К-1, вычисляют по формуле
(87)
где w и - скорость полета искры, м×с-1.
Скорость искры (w и), образующейся при ударе свободно падающего тела, вычисляют по формуле
(88)
а при ударе о вращающееся тело по формуле
(89)
где n - частота вращения, с-1;
R - радиус вращающегося тела, м.
Скорость полета искр, образующихся при работе с ударным инструментом, принимают равной 16 м×с-1, а с высекаемых при ходьбе в обуви, подбитой металлическими набойками или гвоздями, 12 м×с-1.
Критерий Био вычисляют по формуле
(90)
где d и - диаметр искры, м;
lи - коэффициент теплопроводности металла искры при температуре самовоспламенения горючего вещества (t св), Вт м -1×K-1.
По значениям относительной избыточной температуры qп и критерия В i определяют по графику (черт. 5) критерий Фурье.

Черт. 5

Длительность остывания частицы металла (t), с, вычисляют по формуле
(91)
где F 0 - критерий Фурье;
С и - теплоемкость металла искры при температуре самовоспламенения горючего вещества, Дж×кг-1×К-1;
rи - плотность металла искры при температуре самовоспламенения горючего вещества, кг×м-3.
При наличии экспериментальных данных о поджигающей способности фрикционных искр вывод об их опасности для анализируемой горючей среды допускается делать без проведения расчетов.
5.1.4. Открытое пламя и искры двигателей (печей)
Пожарная опасность пламени обусловлена интенсивностью теплового воздействия (плотностью теплового потока), площадью воздействия, ориентацией (взаимным расположением), периодичностью и временем его воздействия на горючие вещества. Плотность теплового потока диффузионных пламен (спички, свечи, газовой горелки) составляет 18-40 кВт×м-2, а предварительно перемешанных (паяльные лампы, газовые горелки) 60-140 кВт×м-2 В табл. 6 приведены температурные и временные характеристики некоторых пламен и малокалорийных источников тепла.
Таблица 6

Наименование горящего вещества (изделия) или пожароопасной операции
Температура пламени (тления или нагрева), оС
Время горения (тления), мин
Легковоспламеняющиеся и горючие жидкости
880
¾
Древесина и лесопиломатериалы
1000
-
Природные и сжиженные газы
1200
-
Газовая сварка металла
3150
-
Газовая резка металла
1350
-
Тлеющая папироса
320-410
2-2,5
Тлеющая сигарета
420¾460
26-30
Горящая спичка
600¾640
0,33

Открытое пламя опасно не только при непосредственном контакте с горючей средой, но и при ее облучении. Интенсивность облучения (g р), Вт×м-2, вычисляют по формуле
(92)
где 5,7 - коэффициент излучения абсолютно черного тела, Вт×м-2×К-4;
eпр - приведенная степень черноты системы
(93)
eф - степень черноты факела (при горении дерева равна 0,7, нефтепродуктов 0,85);
eв - степень черноты облучаемого вещества принимают по справочной литературе;
Т ф - температура факела пламени, К,
Т св - температура горючего вещества, К;
j1ф- коэффициент облученности между излучающей и облучаемой поверхностями.
Критические значения интенсивности облучения в зависимости от времени облучения для некоторых веществ приведены в табл. 7.
Пожарная опасность искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров, в значительной степени определяется их размером и температурой. Установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм-800 °С, диаметром 5 мм-600 °С.
Теплосодержание и время остывания искры до безопасности температуры вычисляют по формулам (76 и 91). При этом диаметр искры принимают 3 мм, а скорость полета искры (wи), м×с-1, вычисляют по формуле
(94)
где wв - скорость ветра, м×с-1;
H - высота трубы, м.
Таблица 7
Материал
Минимальная интенсивность облучения, Вт×м-2, при продолжительности облучения, мин

3
5
15
Древесина (сосна влажностью 12%)
18800
16900
13900
Древесно-стружечная плита плотностью 417 кг×м-3
13900
11900
8300
Торф брикетный
31500
24400
13200
Торф кусковой
16600
14350
9800
Хлопок-волокно
11000
9700
7500
Слоистый пластик
21600
19100
15400
Стеклопластик
19400
18600
17400
Пергамин
22000
19750
17400
Резина
22600
19200
14800
Уголь
¾
35000
35000
© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции