Вконтакте Facebook Twitter Лента RSS

Пример расчета стропильной фермы. Расчет металлической фермы Расчет ферм на прочность

Расчёт металлоконструкций стал камнем преткновения для многих строителей. На примере простейших ферм для уличного навеса мы расскажем, как правильно рассчитать нагрузки, а также поделимся простыми способами самостоятельной сборки без использования дорогостоящего оборудования.

Общая методология расчёта

Фермы применяют там, где использовать цельную несущую балку нецелесообразно. Эти конструкции отличаются меньшей пространственной плотностью, при этом сохраняют устойчивость воспринимать воздействия без деформаций благодаря правильному расположению деталей.

Конструкционно ферма состоит из внешнего пояса и заполняющих элементов. Суть работы такой решётки довольно проста: поскольку каждый горизонтальный (условно) элемент не может выдержать полную нагрузку ввиду недостаточно большого сечения, два элемента располагаются на оси главного воздействия (силы тяжести) таким образом, чтобы расстояние между ними обеспечивало достаточно большое сечение поперечного среза всей конструкции. Ещё проще можно объяснить так: с точки зрения восприятия нагрузок ферму рассматривают так, будто она выполнена из цельного материала, при этом заполнение обеспечивает достаточную прочность, исходя лишь из расчётного приложенного веса.

Конструкция фермы из профильной трубы: 1 — нижний пояс; 2 — раскосы; 3 — стойки; 4 — боковой пояс; 5 — верхний пояс

Такой подход крайне прост и зачастую его с лихвой хватает для сооружения простых металлоконструкций, однако материалоёмкость при грубом расчёте получается крайне высокой. Более подробное рассмотрение действующих воздействий помогает снизить расход металла в 2 и более раз, такой подход и будет наиболее полезным для нашей задачи — сконструировать лёгкую и достаточно жёсткую ферму, а потом собрать её.

Основные профили ферм для навеса: 1 — трапециевидный; 2 — с параллельными поясами; 3 — треугольный; 4 — арочный

Начать следует с определения общей конфигурации фермы. Обычно она имеет треугольный или трапециевидный профиль. Нижний элемент пояса располагают преимущественно горизонтально, верхний — под наклоном, обеспечивающим правильный уклон кровельной системы . Сечение и прочность элементов пояса при этом следует выбирать близкими к таким, чтобы конструкция могла поддерживать свой собственный вес при имеющейся системе опоры. Далее производится добавление вертикальных перемычек и косых связей в произвольном количестве. Конструкцию нужно отобразить на эскизе для визуализации механики взаимодействия, указав реальные размеры всех элементов. Далее в дело вступает её величество Физика.

Определение сочетанных воздействий и реакции опоры

Из раздела статики школьного курса механики мы возьмём два ключевых уравнения: равновесия сил и моментов. Их мы будем применять, чтобы вычислить реакцию опор, на которые положена балка. Для простоты вычислений опоры будем считать шарнирными, то есть не имеющими жёстких связей (заделки) в точке касания с балкой.

Пример металлической фермы: 1 — ферма; 2 — балки обрешётки; 3 — кровельное покрытие

На эскизе нужно предварительно отметить шаг обрешётки системы кровли, ведь именно в этих местах должны находиться точки сосредоточения приложенной нагрузки. Обычно именно в точках приложения нагрузки и размещаются узлы схождения раскосов, так проще выполнить расчёт нагрузки. Зная общий вес кровли и число ферм в навесе, нетрудно вычислить нагрузку на одну ферму, а фактор равномерности покрытия определит, равны ли будут приложенные силы в точках сосредоточения, или же они будут отличаться. Последнее, к слову, возможно, если в определённой части навеса один материал покрытия сменяется другим, имеется проходной трап или, например, зона с неравномерно распределённой снеговой нагрузкой. Также воздействие на разные точки фермы будет неравномерным, если её верхняя балка имеет скругление, в этом случае точки приложения силы нужно соединить отрезками и рассматривать дугу как ломанную линию.

Когда все действующие усилия проставлены на эскизе фермы, приступаем к вычислению реакции опоры. Относительно каждой из них ферму можно представить не иначе как рычаг с соответствующей суммой воздействий на него. Чтобы вычислить момент силы в точке опоры, нужно умножить нагрузку на каждую точку в килограммах на длину плеча приложения этой нагрузки в метрах. Первое уравнение гласит, что сумма воздействий в каждой точке и равняется реакции опоры:

  • 200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6 = R 2 · 6 — уравнение равновесия моментов относительно узла а , где 6 м — длина плеча)
  • R 2 = (200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6) / 6 = 400 кг

Второе уравнение определяет равновесность: сумма реакций двух опор будет в точности равна приложенному весу, то есть зная реакцию одной опоры, можно легко найти значение для другой:

  • R 1 + R 2 = 100 + 200 + 200 + 200 + 100
  • R1 = 800 - 400 = 400 кг

Но не ошибитесь: здесь также действует правило рычага, поэтому если ферма имеет существенный вынос за одну из опор, то и нагрузка в этом месте будет выше пропорционально разнице расстояний от центра масс до опор.

Дифференциальный расчёт усилий

Переходим от общего к частному: теперь необходимо установить количественное значение усилий, действующих на каждый элемент фермы. Для этого перечисляем каждый отрезок пояса и заполняющие вставки списком, затем каждый из них рассматриваем как сбалансированную плоскую систему.

Для удобства вычислений каждый соединительный узел фермы можно представить в виде векторной диаграммы, где векторы воздействий пролегают по продольным осям элементов. Всё, что нужно для вычислений — знать длину сходящихся в узле отрезков и углы между ними.

Начинать нужно с того узла, для которого в ходе вычисления реакции опоры было установлено максимально возможное число известных величин. Начнём с крайнего вертикального элемента: уравнение равновесия для него гласит, что сумма векторов сходящихся нагрузок равна нулю, соответственно, противодействие силе тяжести, действующей по вертикальной оси, эквивалентно реакции опоры, равной по величине, но противоположной по знаку. Отметим, что полученное значение — лишь часть общей реакции опоры, действующая для данного узла, остальная нагрузка придётся на горизонтальные части пояса.

Узел b

  • -100 + S 1 = 0
  • S 1 = 100 кг

Далее перейдём к крайнему нижнему угловому узлу, в котором сходятся вертикальный и горизонтальный сегменты пояса, а также наклонный раскос. Сила, действующая на вертикальный отрезок, вычислена в предыдущем пункте — это давящий вес и реакция опоры. Сила, действующая на наклонный элемент, вычисляется по проекции оси этого элемента на вертикальную ось: из реакции опоры вычитаем действие силы тяжести, затем «чистый» результат делим на sin угла, под которым раскос наклонён к горизонтали. Нагрузка на горизонтальный элемент находится также путём проекции, но уже на горизонтальную ось. Только что полученную нагрузку на наклонный элемент мы умножаем на cos угла наклона раскоса и получаем значение воздействия на крайний горизонтальный сегмент пояса.

Узел a

  • -100 + 400 - sin(33,69) · S 3 = 0 — уравнение равновесия на ось у
  • S 3 = 300 / sin(33,69) = 540,83 кг — стержень 3 сжат
  • -S 3 · cos(33,69) + S 4 = 0 — уравнение равновесия на ось х
  • S 4 = 540,83 · cos(33,69) = 450 кг — стержень 4 растянут

Таким образом, последовательно переходя от узла к узлу, необходимо вычислить действующие в каждом из них силы. Обратите внимание, что встречно направленные векторы воздействий сжимают стержень и наоборот — растягивают его, если направлены противоположно друг от друга.

Определение сечения элементов

Когда для фермы известны все действующие нагрузки, пора определяться с сечением элементов. Оно не обязательно должно быть равным для всех деталей: пояс традиционно выполняют из проката более крупного сечения, чем детали заполнения. Так обеспечивается запас надёжности конструкции.

где: F тр — площадь поперечного сечения растянутой детали; N — усилие от расчётных нагрузок; R y γ с

Если с разрывающими нагрузками для стальных деталей всё относительно просто, то расчёт сжатых стержней производится не на прочность, а на устойчивость, так как итоговый результат количественно меньше и, соответственно, считается критическим значением. Рассчитать можно на онлайн-калькуляторе, а можно и вручную, предварительно определив коэффициент приведения длины, определяющий, на какой части общей протяжённости стержень способен изгибаться. Этот коэффициент зависит от метода крепления краёв стержня: для торцевой сварки это единица, а при наличии «идеально» жёстких косынок может приближаться к 0,5.

где: F тр — площадь поперечного сечения сжатой детали; N — усилие от расчётных нагрузок; φ — коэффициент продольного изгиба сжатых элементов (определяется по таблице); R y — расчётное сопротивление материала; γ с — коэффициент условий работы.

Также нужно знать минимальный радиус инерции, определяемый как квадратный корень из частного от деления осевого момента инерции на площадь сечения. Осевой момент определяется формой и симметрией сечения, лучше взять это значение из таблицы.

где: i x — радиус инерции сечения; J x — осевой момент инерции; F тр — площадь сечения.

Таким образом, если разделить длину (с учётом коэффициента приведения) на минимальный радиус инерции, можно получить количественное значение гибкости. Для устойчивого стержня соблюдается условие, что частное от деления нагрузки на площадь поперечного сечения не должно быть меньше произведения допустимой сжимающей нагрузки на коэффициент продольного изгиба, который определяется значением гибкости конкретного стержня и материалом его изготовления.

где: l x — расчётная длина в плоскости фермы; i x — минимальный радиус инерции сечения по оси x; l y — расчётная длина из плоскости фермы; i y — минимальный радиус инерции сечения по оси y.

Обратите внимание, что именно в расчёте сжатого стержня на устойчивость отображена вся суть работы фермы. При недостаточном сечении элемента, не позволяющем обеспечить его устойчивость, мы вправе добавить более тонкие связи, изменив систему крепления. Это усложняет конфигурацию фермы, но позволяет добиться большей устойчивости при меньшем весе.

Изготовление деталей для фермы

Точность сборки фермы крайне важна, ведь все расчёты мы проводили методом векторных диаграмм, а вектор, как известно, может быть только абсолютно прямым. Поэтому малейшие напряжения, возникающие вследствие искривлений из-за неправильной подгонки элементов, сделают ферму крайне неустойчивой.

Сначала нужно определиться с размерами деталей внешнего пояса. Если с нижней балкой всё достаточно просто, то для нахождения длины верхней можно воспользоваться либо теоремой Пифагора, либо тригонометрическим соотношением сторон и углов. Последнее предпочтительно при работе с такими материалами, как угловая сталь и профильная труба. Если угол ската фермы известен, его можно вносить как поправку при подрезке краёв деталей. Прямые углы пояса соединяются подрезкой под 45°, наклонные — путём добавления к 45° угла наклона с одной стороны стыка и вычитанием его же с другой.

Детали заполнения вырезают по аналогии с элементами пояса. Основная загвоздка в том, что ферма — изделие строго унифицированное, а потому для её изготовления потребуется точная деталировка. Как и при расчёте воздействий, каждый элемент нужно рассматривать индивидуально, определяя углы схождения и, соответственно, углы подреза краёв.

Довольно часто фермы изготавливают радиусными. Такие конструкции имеют более сложную методику расчёта, но большую конструкционную прочность, обусловленную более равномерным восприятием нагрузок. Изготавливать скругленными элементы заполнения смысла нет, а вот для деталей пояса это вполне применимо. Обычно арочные фермы состоят из нескольких сегментов, которые соединяются в местах схождения заполняющих раскосов, что нужно учитывать при проектировании.

Сборка на метизах или сваривание?

В заключение было бы неплохо обозначить практическую разницу между способами сборки фермы свариванием и с помощью разъёмных соединений. Начать следует с того, что сверление в теле элемента отверстий под болты или заклёпки практически не влияет на его гибкость, а потому на практике не учитывается.

Когда речь зашла о способе скрепления элементов фермы, мы установили, что при наличии косынок длина участка стержня, способного изгибаться, существенно сокращается, за счёт чего можно уменьшить его сечение. В этом преимущество сборки фермы на косынках, которые крепятся сбоку к элементам фермы. В таком случае особой разницы в методе сборки нет: длины сварочных швов будет с гарантией достаточно, чтобы выдержать сосредоточенные напряжения в узлах.

Если же сборка фермы производится стыкованием элементов без косынок, здесь нужны особые навыки. Прочность всей фермы определяется наименее прочным её узлом, а потому брак в сваривании хотя бы одного из элементов может привести к разрушению всей конструкции. При недостаточном навыке ведения сварочных работ рекомендуется провести сборку на болтах или заклёпках с использованием хомутов, угловых кронштейнов или накладных пластин. При этом крепление каждого элемента к узлу должно осуществляться не менее чем в двух точках.

Министерство науки и образования Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение

высшего профессионального образования «Ростовский государственный строительный университет»

РАСЧЕТ ПЛОСКИХ ФЕРМ

Методические указания и контрольные задания для студентов заочного отделения

Ростов – на – Дону

Расчет плоских ферм: Методические указания и контрольные задания для студентов заочного отделения.- Ростов–на-Дону: Рост. гос. строит. ун -т, 2006 - 23 с.

Предназначены для студентов заочного отделения всех специальностей. Приводятся различные методы расчета плоских ферм и разбираются решения типовых примеров.

Составители: Т.В.Виленская С.С.Савченкова

Рецензент: npoф. И.Ф.Хрджиянц

Редактор Н.Е.Гладких Темплан 2006 г., поз. 171

Подписано в печать 24.05.06. Формат 60х84/16. Бумага писчая. Ризограф. Уч.-изд. л.. 1,4. Тираж 100 экз. Заказ Редакционно – издательский центр РГСУ

344022, Ростов н/Д, ул. Социалистическая, 162

© Ростовский государственный строительный университет, 2006

ВВЕДЕНИЕ

При постройке мостов, подъемных кранов и других сооружений применяются конструкции, называемые фермами.

Фермой называется конструкция, состоящая из стержней, соединённых между собой на концах шарнирами и образующих геометрически неизменяемую систему.

Шарнирные соединения стержней фермы называют её узлами. Если оси всех стержней фермы лежат в одной плоскости, то ферма называется плоской.

Мы будем рассматривать только плоские фермы. Предполагаем, что выполняются следующие условия:

1) все стержни фермы прямолинейные;

2) трение в шарнирах отсутствует;

3) все заданные силы приложены только в узлах фермы;

4) весом стержней можно пренебречь.

В этом случае каждый стержень фермы находится под действием только двух сил, которые будут вызывать его растяжение или сжатие.

Пусть ферма имеет «m» стержней и «n» узлов. Найдём зависимость между m и n, обеспечивающую жесткость конструкции (рис. 1).

Чтобы связать первые три узла, необходимо три стержня, для жесткого присоединения каждого из остальных (n-3) узлов нужно по 2 стержня, то есть

или m = 2n-3. (1)

Если m < 2n - 3, то конструкция не будет геометрически неизменяемой, если m > 2n - 3, ферма будет иметь «лишний» стержень.

Равенство (1) называется условием жесткости.

Ферма, изображенная на рис. 1 , является жесткой конструкцией

Рис. 1 Расчёт фермы сводится к определению опорных реакций и усилий в

стержнях, то есть сил, действующих со стороны узлов на примыкающие к нему стержни.

Выясним, при каком соотношении между числом стержней и узлов ферма будет статически определимой. Если все неизвестные силы можно определить из уравнений равновесия, то есть количество независимых уравнений равно числу неизвестных, то конструкция статически определима.

Так как на каждый узел фермы действует плоская система сходящихся сил, то всегда можно составить 2n уравнений равновесия. Общее количество неизвестных - m + 3, (где m усилий в стержнях и 3 опорные реакции).

Условие статической определимости фермы m + 3 = 2n

или m = 2n - 3 (2)

Сравнивая (2) с (1), видим, что условие статической определимости совпадает с условием жесткости. Следовательно, жёсткая ферма без лишних стержней является статически определимой.

ОПРЕДЕЛЕНИE ОПОРНЫХ РЕАКЦИЙ

Для определения опорных реакций рассматриваем равновесие всей фермы в целом под действием произвольной плоской системы сил. Составляем три уравнения равновесия. После нахождения опорных реакций необходимо сделать проверку.

ОПРЕДЕЛЕНИЕ УСИЛИЙ В СТЕРЖНЯХ ФЕРМЫ Усилия в стернях фермы можно определить двумя способами: методом

вырезания узлов и методом сечения (метод Риттера).

Метод вырезания узлов состоит в следующем:

последовательно рассматривается равновесие всех узлов фермы, находящихся под действием внешних сил и реакций перерезанных стержней. К каждому узлу приложена плоская система сходящихся сил, для которой можно составить два уравнения равновесия. Расчёт целесообразно начинать с того узла, где сходятся два стержня. При этом одно уравнение равновесия предпоследнего узла и два уравнения последнего узла являются проверочными.

Метод Риттера состоит в следующем:

ферма, к которой приложены внешние силы, включая реакции опор, рассекается на две части по трём стержням, если это возможно. В число перерезанных стержней должны входить те усилия, которые требуется определить.

Одна из частей фермы отбрасывается. Действие отброшенной части на оставшуюся заменяется неизвестными реакциями.

Рассматривается равновесие оставшейся части. Уравнения равновесия составляются так, чтобы в каждое из них входило только одно неизвестное. Это достигается специальным выбором уравнений: при составлении уравнения моментов моментная точка выбирается там, где пересекаются линии действия двух неизвестных усилий, которые в данный момент не определяются. При составлении уравнения проекций ось проекций выбирается перпендикулярно

двум параллельным усилиям.

При составлении уравнений равновесия обоими методами предполагается, что все стержни растянуты. Если результат получается со знаком минус, стержень сжат.

Типовой пример: Определить опорные реакции и усилия в стержнях фермы, если F=20 kH, P=20 kH, α=60°, Q=30 kH.(рис. 2, 3).

Определяем опорные реакции, рассматривая равновесие системы в целом (рис.3).

∑ X = 0:Х А –F · соs α + Q = 0;

∑ Н = 0:Y А + YВ – Р – F · sin α = 0;

∑ M А = 0:-Q · а – Р · 2а – F · sin α · 3а + F · соs α · а + YВ · 4а = 0.

Решая эти уравнения, находим:

ХА = -20 kH; YА = 9.33 kH; YВ = 28 kH.

Проверим правильность полученных результатов. Для этого составим сумму моментов сил относительно точки С.

∑ МС = ХА · а – YA · а – Р · а – F · sin α · 2а + YВ · 3а = = (-20 – 9.33 – 20 - 20·1.73 + 28 · 3) ·а = 0.

Переходим к определению усилий в стержнях фермы.

Метод вырезания узлов.

Начинаем расчёт с узла А, где сходятся два стержня.

Следует изобразить тот узел, равновесие которого рассматривается (рис.4). Так как мы предполагаем, что все стержни растянуты, реакции стержней направляем от узла (S 1 и S 5 ). Тогда усилия в стержнях (реакции

Для узла А составляем два уравнения равновесия:

∑ Х = 0:+Х А + S5 + S1 · cos 45° = 0;

∑ Y = 0:Y А + S1 · cos 45° = 0.

Получаем: S 1 13.2 kH ;

S 5 29.32kH .

∑ Х = 0:Q + S 2 + S6 · cos 45° - S1 · cos 45°= 0;

∑ Y = 0:- S 1 · cos 45° - S6 · cos 45° = 0.

При подстановке значения S1 учитываем, что усилие отрицательное.

Получаем: S 6 13.2 kH ;

S 2 48.7kH .

Аналогично рассчитываются остальные узлы (рис. 6,7).

∑ Х = 0:- S 2 – S7 · cos 45° - S3 · cos 45° - F · cos α= 0;

∑ Y = 0:- S 7 · cos 45° - S3 · cos 45° - F · sin α = 0.

Отсюда: S 3 39.6 kH ;

S 7 15.13kH .

∑ Х = 0:- S 4 – S3 · cos 45° = 0;

Второе уравнение проверочное:

∑ Y = +Y B + S3 · cos 45° = 28-39.6 · 0.71 =0. S4 = 28.0kH.

Для проверки рассмотрим равновесие узла Е.(Рис.8)

∑ Х = - S 5 + S4 – S6 · cos 45° + S7 · cos 45° = 0;

∑ Y = S 6 · cos 45° + S7 · cos 45° - P = 0.

Так как уравнения обратились в тождества, то расчёт сделан верно.

Метод сечения (метод Риттера).

Метод Риттера удобно использовать, если требуется определить усилия не во всех стержнях, и как проверочный, так как он позволяет определить каждое усилие независимо от остальных.

Определим усилия в стержнях 2, 6, 5. Разрезаем ферму на две части по стержням 2, 6, 5. Отбрасываем правую часть и рассматриваем равновесие левой

Для определения усилия S5 составляем уравнение моментов относительно точки, где пересекаются силы S2 и S6 (точка С).

∑ МС = 0: ХА · а – YA · а + S5 · a = 0;. S5 = 29.32 kH.

Для определения усилия S2 составляем уравнение моментов относительно точки Е:

∑ МЕ = 0:- Q · а – S2 · а – YA · 2а =0; S2 = 48.64kH.

Для определения усилия S6 следует составить уравнение проекций на ось Y:

∑ Y = 0:-S6 · cos 45° + YA = 0; S6 = 13.2kH.

Результаты следует занести в табл. 1.

Усилия в стержнях фермы, кН

№ стержня, способ

вырезания

Способ Риттера

РАСЧЁТ ФЕРМЫ С ПОМОЩЬЮ ПРИНЦИПА ВОЗМОЖННЫХ ПЕРЕМЕЩЕНИЙ

Принцип возможных перемещений является основным принципом аналитической механики. Он даёт самые общие методы решения задач статики и позволяет определять каждое неизвестное усилие независимо от всех остальных, составляя для него одно уравнение равновесия.

Принцип возможных перемещений (теорема ЛагранжаОстроградского):

Для равновесия механической системы, подчиненной идеальным, геометрическим и стационарным связям, необходимо и достаточно, чтобы сумма работ активных сил, действующих на систему, была равна нулю на любом возможном перемещении системы:

А k (а ) 0 . k 1

Стационарные связи - связи, явно не зависящие от времени.

Идеальные связи - связи, сумма работ реакций которых на любом возможном перемещении системы равна нулю.

Геометрические связи - связи, накладывающие ограничения только на координаты точек системы.

Активные силы - силы, действующие на систему, кроме реакций связи.

Возможные перемещения системы

Возможные перемещения механической системы - бесконечно малые перемещения системы, допускаемые наложенными на неё связями.

Величины возможных перемещений обозначаются символами, например - δ S, δφ, δХ.

Приведём примеры возможных перемещений систем (ограничимся рассмотрением плоских систем):

1. Тело закреплено неподвижным шарниром, позволяющим телу вращаться вокруг оси, проходящей через точку О, перпендикулярно

плоскости чертежа (рис. 10).

Возможное перемещение тела - поворот вокруг оси на угол δφ.

2. Тело закреплено двумя подвижными шарнирами

Эти связи позволяют телу перемещаться поступательно параллельно плоскостям катков.

Возможное перемещение тела - δХ.

3.Тело тоже закреплено двумя подвижными шарнирами (плоскости катков не параллельны).

Эти связи позволяют плоскому телу перемещаться только в плоскости чертежа. Возможное перемещение этого тела будет плоскопараллельным перемещением. А плоскопараллельное перемещение тела можно в данный момент рассматривать как вращательное движение вокруг оси, проходящей через

мгновенный центр скоростей тела (м.ц.с.) перпендикулярно плоскости чертежа

Следовательно, чтобы увидеть возможное перемещение данного тела, надо знать, где находится м.ц.с. этого тела. Чтобы построить м.ц.с., нужно знать направления скоростей двух точек тела, провести перпендикуляры к скоростям в этих точках, точка пересечения перпендикуляров и будет м.ц.с. тела. В примере нам известны направления скоростей точек А и В (они параллельны плоскостям катков). Значит, возможное перемещение этого тела - поворот на угол δφ вокруг оси, проходящей через точку А перпендикулярно плоскости чертежа.

ВЫВОД: Так как в дальнейшем рассматриваются только плоские системы, то чтобы увидеть возможное перемещение системы, состоящей из плоских твёрдых тел, надо для каждого твёрдого тела увидеть или построить

будет поворот вокруг своего м.ц.с., или тело будет двигаться поступательно, если м.ц.с. отсутствует. Возможные перемещения системы определяются только связями, наложенными на систему, и не зависят от сил, действующих на систему. В случае геометрических и стационарных связей направления возможных перемещений точек системы совпадают с направлениями скоростей этих точек при реальном движении.

Работа силы на возможном перемещении

В рассматриваемых задачах твёрдые тела будут иметь возможность либо двигаться поступательно, либо вращаться вокруг оси, перпендикулярной плоскости чертежа. 3апишем формулы для нахождения возможной работы силы при таких перемещениях тел.

1.Тело движется поступательно.

Тогда каждая точка тела перемещается на r . Следовательно, точка приложения силы F перемещается на r . Тогда A F r .

Частные случаи:

A 0.

2. Тело вращается вокруг оси.

Работа силы F находится как элементарная работа силы, приложенной к вращающемуся телу. Тело поворачивается на угол δφ.

δА = Мz (F ) · δφ,

где Мz (F ) - момент силы F относительно оси вращения тела (в наших задачах ось z перпендикулярна плоскости чертежа и нахождение Мz (F ) сводится к нахождению момента силы F относительно точки пересечения оси с плоскостью).

δА > 0, если сила создаёт момент, направленный в сторону вращения тела;.

δА < 0 , если сила создаёт момент, направленный в сторону, противоположную вращению тела.

8 февраля 2012

Пример. Расчет стропильной фермы. Требуется рассчитать и подобрать сечения элементов стропильной фермы промышленного здания. На ферме посередине пролета расположен фонарь высотой 4 м.

Пролет фермы L = 24 м; расстояние между фермами b = 6 м; панель фермы d = 3 м. Кровля теплая по крупнопанельным железобетонным плитам размером 6 X 1,6 м. Снеговой район III. Материал фермы марки Ст. 3. Коэффициент условий работы для сжатых элементов фермы m = 0,95, для растянутых m = 1.

1) Расчетные нагрузки. Определение расчетных нагрузок приведено в таблице.

Собственный вес стальных конструкций ориентировочно принят в соответствии с таблицей Ориентировочные веса стального каркаса промышленных зданий в кг на 1м 2 здания: фермы — 25 кг/м 2 , фонарь — 10 кг/м 2 , связи — 2 кг/м 2 .

Снеговая нагрузка для III района 100 кг/м 2 ; нагрузка от снега вне фонаря вследствие возможных заносов принята с коэффициентом с = 1,4 (смотрите ).

Суммарная расчетная равномерно распределенная нагрузка:

на фонаре q 1 = 350 + 140 = 490 кг/м 2 ;

на ферме q 2 = 350 + 200 = 550 кг/м 2 .

2) Узловые нагрузки. Вычисление узловых нагрузок приведено в таблице.

Узловые нагрузки Р 1 , Р 2 , Р 3 и Р 4 получены как произведение из равномерно распределенной нагрузки на соответствующие грузовые площади. К нагрузке Р 3 добавлена нагрузка G 1 складывающаяся из веса бортовой плитки 135 кг/м и веса остекленных поверхностей фонаря высотой 3 м, принимаемого равным 35 кг/м 2 .

Местная нагрузка Р м, показанная пунктиром на фигуре, возникает вследствие опирания железобетонных плит шириной 1,5 м в середине панели и вызывает изгиб верхнего пояса. Ее величина уже учтена при вычислении узловых нагрузок Р 1 — Р 4 .

3) Определение усилий. Определение усилий в элементах фермы производим графическим путем, строя диаграмму Кремоны-Максвелла. Найденные величины расчетных усилий записываем в таблице. Верхний пояс подвергается, кроме сжатия, также и местному изгибу.

Примечание. Расчетные напряжения в сжатых элементах фермы определены с учетом коэффициента условий работы (m — 0,95) с целью сопоставления во всех случаях с расчетным сопротивлением.

в первой панели

во второй панели

4) Подбор сечений. Подбор сечений начинаем с самого нагруженного элемента верхнего пояса, имеющего N = — 68,4 т и М2 = 3,3 тм. Намечаем сечение из двух равнобоких уголков 150 X 14, для которого по таблицам сортамента находим геометрические характеристики: F = 2 * 40,4 = 80,8 см 2 , момент сопротивления для наиболее сжатого (верхнего) волокна сечения W см 1 = 203 X 2 = 406 см 3 ; ρ = W/F = 406/80,8 = 5,05см, r х = 4,6 см; r у = 6,6см.

Здесь коэффициент η = 1,3 взят по табл. 4 приложения II. Так как е1 < 4, то проверку сечения производим по , определив предварительно φ вн по табл. 2 приложения II в зависимости от e 1 = 1,4 и = 65 (интерполяцией между четырьмя ближайшими значениями е 1 и λ): φ вн = 0,45.

Проверка напряжения

Проверку напряжения в плоскости, перпендикулярной плоскости действия момента, производим но формуле (28.VIII), для чего предварительно определяем коэффициент с по формуле (29.VIII)

Напряжение

Производим для подобранного сечения проверку элемента верхнего пояса В 4 . Усилие в элементе N = — 72,5 т, изгибающий момент отсутствует. Сечение из двух уголков 150 X 14. Гибкость

Коэффициенты: φ х = 0,83; φ у = 0,68.

Напряжение

Сохраняем принятое сечение пояса по конструктивным соображениям. Первая панель верхнего пояса подвергается только местному изгибу, вследствие чего сечение ее не должно определять выбора профилей уголков пояса, предназначенных в основном для работы на сжатие.

Поэтому, оставляя в первой панели те же два уголка 150 X 14, усилием их вертикальным листом 200 X 12, расположенным между уголками, и проверяем полученное сечение на изгиб.

Определяем положение центра тяжести сечения:

где z 0 и z л — расстояния до центров тяжести уголков и листа от верхней, кромки уголков;

Момент инерции

Момент сопротивления

Наибольшее растягивающее напряжение

Расчетные данные подобранного сечения верхнего пояса вписываем в таблице выше.

Для этого находим необходимые минимальные радиусы инерции (учитывая, что l x = 0,8l):

Равнобокие уголки, наиболее соответствующие полученным радиусам инерции, определяем по табл. 1 приложения III. Можно также использовать, данные табл. 32 для равнобоких уголков:

Этим данным наиболее близко отвечают уголки 75 X 6, имеющие r x = 2,31 см и r y — 3,52 см.

Соответственные значения гибкости будут равны:

Эти уголки и приняты для средних раскосов фермы и занесены в таблице выше. Хотя раскос Д 4 растянут, но, как указывалось выше, в результате возможной несимметричной нагрузки средние раскосы могут испытывать незначительное сжатие, т. е. изменить знак усилия. Поэтому они всегда проверяются на предельную гибкость.

Первый раскос имеет большое усилие, но меньше, чем нижний пояс; однако вследствие того, что он сжат, профиль нижнего пояса из уголков 130 X 90 X 8 для него недостаточен. Приходится вводить еще один, четвертый, профиль — уголок 150 X 100 X 10.

Наконец, для растянутого раскоса Д 2 получаются уголки 65 X 6. Эти же уголки используем для стоек (чтобы не вводить нового профиля). Проверка напряжений, приведенная в таблице выше, показывает, что отсутствуют как перенапряжения в элементах ферм, так и превышения предельных гибкостей.

«Проектирование стальных конструкций»,
К.К.Муханов

При подборе сечений элементов ферм необходимо стремиться к возможно меньшему числу различных номеров и калибров уголковых профилей в целях упрощения прокатки и удешевления транспортировки металла (поскольку прокатка на заводах специализирована по профилям). Обычно удается рационально подобрать сечения элементов стропильных ферм, применяя уголки в пределах 5 — 6 различных калибров сортамента. Подбор сечений начинается со сжатого…

В критическом состоянии потеря устойчивости сжатого стержня возможна в любом направлении. Рассмотрим два главных направления — в плоскости фермы и из плоскости фермы. Возможная деформация верхнего пояса фермы при потере устойчивости в плоскости фермы может произойти так, как показано на фигуре, а, т. е. между узлами фермы. Такая форма деформации соответствует основному случаю продольного изгиба…

Выбор типа уголков для верхнего сжатого пояса стропильных ферм производится с учетом минимального расхода металла, обеспечения равноустойчивости пояса во всех направлениях, а также создания необходимой для удобства транспортировки и монтажа жесткости из плоскости фермы. Так как расчетные длины пояса в плоскости и из плоскости фермы во многих случаях значительно отличаются друг от друга (lу =…

Имеется открытая площадка размерами 10х5 м возле дома и эту площадку хочется сделать закрытой, чтобы летом можно было пить чай на улице, не взирая на погодные условия, точнее взирая, но из-под надежного навеса, а еще чтобы можно было поставить машину под навес, сэкономив на гараже, да и вообще чтобы была защита от солнечного зноя в летний день. Вот только 10 метров - пролет большой и балку для такого пролета подобрать трудно, да и слишком массивной будет эта самая балка - скучно и вообще напоминает заводской цех. В таких случаях оптимальный вариант - сделать вместо балок фермы, а потом уже по фермам кидать обрешетку и делать кровлю. Само собой форма фермы может быть любой, но далее будет рассматриваться расчет треугольной фермы, как наиболее простой вариант. Проблемы расчета колонн для подобного навеса рассматриваются отдельно, расчет двух или ригелей, на которые будут опирать фермы, здесь также не приводится.

Пока предполагается, что фермы будут располагаться с шагом 1 метр, а нагрузка на ферму от обрешетки будет передаваться только в узлах фермы. Кровельным материалом будет служить профнастил. Высота фермы может быть теоретически любой, вот только если это навес, примыкающий к основному зданию, то главным ограничителем будет форма кровли, если здание одноэтажное, или окна второго этажа, если этажей больше, но в любом случае сделать высоту фермы больше 1 м вряд ли получится, а с учетом того, что надо делать еще и ригеля между колоннами, то и 0.8 м не всегда выйдет (тем не менее примем эту цифру для расчетов). На основании этих предположений уже можно конструировать ферму:

Рисунок 272.1. Общая предварительная схема навеса по фермам.

На рисунке 272.1 голубым цветом показаны балки обрешетки, синим цветом - ферма, которую следует рассчитать, фиолетовым цветом - балки или фермы, на которые опираются колонны, изменение цвета от светло-голубого к темно-фиолетовому в данном случае показывает увеличение расчетной нагрузки, а значит для для более темных конструкций потребуются более мощные профили. Фермы на рисунке 272.1 показаны темно-зеленым цветом из-за совершенно иного характера нагрузки. Таким образом расчет всех элементов конструкции по отдельности, как то:

Балок обрешетки (балки обрешетки можно рассматривать как многопролетные балки , если длина балок будет около 5 м, если балки будут делаться длиной около 1 м, т.е. между фермами, тогда это обычные однопролетные балки на шарнирных опорах)

Ферм кровли (достаточно определить нормальные напряжения в поперечных сечениях стержней, о чем речь ниже)

Балок или ферм под фермами кровли (рассчитываются как однопролетные балки или фермы)

никаких особых проблем не представляет. Однако целью данной статьи является показать пример расчета именно треугольной фермы, этим мы и займемся. На рисунке 272.1 можно рассмотреть 6 треугольных ферм, при этом на крайние (переднюю и заднюю) фермы нагрузка будет в 2 раза меньше, чем на остальные фермы. Это означает, что эти две фермы если есть стойкое желание сэкономить на материалах, следует рассчитывать отдельно. Однако из эстетических и технологических соображений лучше все фермы сделать одинаковыми, а это значит, что достаточно рассчитать все лишь одну ферму (показана на рис.272.1 синим цветом). В данном случае ферма будет консольной, т.е. опоры фермы будут располагаться не на концах фермы, а в узлах, показанных на рисунке 272.2. Такая расчетная схема позволяет более равномерно распределить нагрузки, а значит, и использовать для изготовления ферм профили меньшего сечения. Для изготовления ферм планируется использовать квадратные профильные трубы одного типа, а подобрать требуемое сечение профильной трубы поможет дальнейший расчет.

Если балки обрешетки будут опираться сверху на узлы ферм, то нагрузку от навеса из профнастила и снега лежащего на этом профнастиле, можно считать сосредоточенной, приложенной в узлах фермы. Стержни фермы будут свариваться между собой, при этом стержни верхнего пояса скорее всего будут неразрезными длиной примерно 5.06 м. Однако будем считать, что все узлы фермы - шарнирные. Эти уточнения могут показаться незначительной мелочью, однако позволяют максимально ускорить и упростить расчет , по причинам, изложенным в другой статье. Единственное, что нам осталось определить для дальнейших расчетов, сосредоточенную нагрузку, но и это сделать не сложно, если профнастил или балки обрешетки уже рассчитаны. При расчете профнастила мы выяснили, что листы профнастила длиной 5.1-5.3 м представляют собой многопролетную неразрезную балку с консолью. Это означает, что опорные реакции для такой балки и соответственно нагрузки для нашей фермы будут не одинаковыми, однако изменения опорных реакций для 5 пролетной балки будут не такими уж и значительными и для упрощения расчетов можно считать, что нагрузка от снега, профнастила и обрешетки будет передаваться равномерно, как в случае с однопролетными балками. Такое допущение приведет только к небольшому запасу по прочности. В итоге мы получаем следующую расчетную схему для нашей фермы:

Рисунок 272.2 . Расчетная схема для треугольной фермы.

На рисунке 272.2 а) представлена общая расчетная схема нашей фермы, расчетная нагрузка составляет Q = 190 кг , что вытекает из расчетной снеговой нагрузки 180 кг/м 2 , веса профнастила и возможного веса балки обрешетки. На рисунке 272.2 б) показаны сечения, благодаря которым можно рассчитать усилия во всех стержнях фермы с учетом того что ферма и нагрузка на ферму является симметричной и значит достаточно рассчитывать не все стержни фермы, а чуть больше половины. А чтобы не запутаться во многочисленных стержнях при расчете, стержни и узлы ферм принято маркировать. Маркировка, показанная на рис.272.2 в) означает, что у фермы есть:

Стержни нижнего пояса: 1-а, 1-в, 1-д, 1-ж, 1-и;

Стержни верхнего пояса: 2-а, 3-б, 4-г, 5-е, 6-з;

Раскосы: а-б, б-в, в-г, г-д, д-е, е-ж, ж-з, з-и.

Если будет рассчитываться каждый стержень фермы, то желательно составить таблицу, в которую следует внести все стержни. Затем в эту таблицу будет удобно вносить полученное значение сжимающих или растягивающих напряжений.

Ну а сам расчет никаких особенных сложностей не представляет, если ферма будет свариваться из 1-2 видов профилей замкнутого сечения. Например, весь расчет фермы можно свести к тому, чтобы рассчитать усилия в стержнях 1-и, 6-з и з-и. Для этого достаточно рассмотреть продольные силы, возникающие при отсечении части фермы по линии IX-IX (рис. 272.2 г).

Но оставим сладкое на третье, и посмотрим как это делается на более простых примерах, для этого рассмотрим

сечение I-I (рис. 272.2.1 д)

Если указанным образом отсечь лишнюю часть фермы, то нужно определить усилия только в двух стержнях фермы. Для этого используются уравнения статического равновесия. Так как в узлах фермы шарниры, то и значение изгибающих моментов в узлах фермы равно нулю, а кроме того, исходя из тех же условий статического равновесия сумма всех сил относительно оси х или оси у также равна нулю. Это позволяет составить как минимум три уравнения статического равновесия (два уравнения для сил и одно для моментов), но в принципе уравнений моментов может быть столько же сколько узлов в ферме и даже больше, если использовать точки Риттера. А это такие точки в которых пересекаются две из рассматриваемых сил и при сложной геометрии фермы точки Риттера не всегда совпадают с узлами фермы. Тем не менее в данном случае у нас геометрия достаточно простая (до сложной геометрии мы еще успеем добраться) и потому для определения усилий в стержнях достаточно имеющихся узлов фермы. Но при этом опять же из соображений простоты расчета обычно выбираются такие точки, уравнение моментов относительно которой позволяет сразу определить неизвестное усилие, не доводя дело до решения системы из 3 уравнений.

Выглядит это примерно так. Если составить уравнение моментов относительно точки 3 (рис. 272.2.2 д), то в нем будут всего два члена, причем один из них уже известный:

М 3 = -Ql /2 + N 2-a h = 0 ;

N 2-a h = Ql/2 ;

где l - расстояние от точки 3 до точки приложения силы Q/2, которое в данном случае и является плечом действия силы, согласно принятой нами расчетной схемы l = 1.5 м ; h- плечо действия силы N 2-a (плечо показано на рис. 272.2.2 д) синим цветом).

При этом третий возможный член уравнения равен нулю, так как сила N 1-а (на рис. 272.2.2 д) показана серым цветом) направлена по оси, проходящей через точку 3 и значит плечо действия равно нулю. Единственное, что в этом уравнении нам неизвестно - это плечо действия силы N 2-а, впрочем определить его, владея соответствующими знаниями по геометрии, легко.

Наша ферма имеет расчетную высоту 0.8 м и общую расчетную длину 10 м. Тогда тангенс угла α составит tgα = 0.8/5 = 0.16, соответственно значение угла α = arctgα = 9.09 о. И тогда

h = l sin α

Теперь нам ничего не мешает определить значение силы N 2-a :

N 2-a = Ql /(2lsin α) = 190/(2·0.158) = 601.32 кг

Подобным же образом определяется значение N 1-а . Для этого составляется уравнение моментов относительно точки 2:

М 2 = -Ql /2 + N 1-a h = 0;

N 1-a h = Ql /2

N 1-a = Q/(2 tg α) = 190/(2·0.16) = 593.77 кг

Проверить правильность вычислений мы можем, составив уравнения сил:

ΣQ y = Q/2 - N 2-a sin α = 0; Q/2 = 95= 601.32·0.158 = 95 кг

ΣQ x = N 2-a cos α - N 1-a = 0; N 1-a = 593.77 = 601.32·0.987 = 593.77 кг

Условия статического равновесия выполняются и любое из уравнений сил, использованных для проверки, можно было использовать для определения усилий в стержнях. Вот, собственно и все, дальнейший расчет фермы - чистейшая механика, но на всякий случай рассмотрим еще

сечение II-II (рис. 272.2. e)

На первый взгляд кажется, что более простым будет уравнение моментов относительно точки 1 для определения силы N а-б , однако в этом случае потребуется для определения плеча силы сначала найти значение угла β. А вот если рассматривать равновесие системы относительно точки 3, то:

М 3 = -Ql /2 - Ql /3 + N 3-б h = 0 ;

N 3-б h = 5Ql /6 ;

N 3-б = 5Q/(6sin α) = 5·190/(6·0.158) = 1002.2 кг (работает на растяжение)

Ну а теперь все же определим значение угла β. Исходя из того, что известны все стороны некоего прямоугольного треугольника (нижний катет или длина треугольника - 1 м, боковой катет или высота треугольника - 0.16 м, гипотенуза - 1.012 м и даже угол α), то соседний прямоугольный треугольник с высотой 0.16 м и длиной 0.5 м будет иметь tgβ = 0.32 и соответственно угол между длиной и гипотенузой β = 17.744 о, полученный из арктангенса. И теперь проще составить уравнение сил относительно оси х :

ΣQ x = N 3-б cos α + N а-б cos β- N 1-а = 0;

N a-б = (N 1-а - N 3-б cos α)/cos β = (593.77 - 1002.2·0.987)/ 0.952 = - 415.61 кг

В данном случае знак "-" показывает, что сила направлена в сторону, противоположную от той, которую мы приняли при составлении расчетной схемы. И тут пришло время поговорить о направлении сил, точнее, о том значении, которое в это направление вкладывается. Когда мы заменяем внутренние усилия в рассматриваемом поперечном сечении стержней фермы, то под силой направленной от поперечного сечения подразумеваются растягивающие напряжения, если сила направлена к поперечному сечению, то подразумеваются сжимающие напряжения. С точки зрения статического равновесия не важно какое направление силы принимать при расчетах, если сила будет направлена в противоположную сторону, то значит у этой силы будет знак минус. Однако при расчете важно знать, на какое именно усилие рассчитывается данный стержень. Для растягиваемых стержней принцип определения необходимого сечения простейший:

При расчете стержней, работающих на сжатие, следует учитывать множество различных факторов и в общем виде формулу для расчета сжатых стержней можно выразить так:

σ = N/φF ≤ R

Примечание : расчетную схему можно составлять так, чтобы все продольные силы были направлены от поперечных сечений. В этом случае знак "-" перед значением силы, полученный при расчетах, будет показывать, что данный стержень работает на сжатие.

Так результаты предыдущего расчета показывают, что в стержнях 2-а и 3-б возникают растягивающие напряжения, в стержнях 1-а и а-б - сжимающие усилия. Ну а теперь вернемся к цели нашего расчета - определению максимальных нормальных напряжений в стержнях. Как и в обычной симметричной балке, у которой максимальные напряжения при симметричной нагрузке возникают в сечении, наиболее удаленном от опор, в ферме максимальные напряжения возникают в стержнях наиболее удаленных от опор, т.е. в стержнях, отсекаемых сечением IX-IX.

сечение IX-IX (рис. 272.2. г)

М 9 = -4.5Q/2 - 3.5Q - 2.5Q - 1.5Q -0.5Q + 3V A - 4.5N 6-з sin α = 0 ;

N 6-з = (15Q - 10.25Q)/(4.5sin α) = 4.75·190/(4.5·0.158) = 1269.34 кг (работает на сжатие)

где V A = 5Q , определяются опорные реакции ферм все по тем же уравнениям равновесия системы, так как ферма и нагрузки симметричные, то

V A = ΣQ y /2 = 5Q ;

так как горизонтальных нагрузок у нас пока не предусмотрено, то горизонтальная опорная реакция на опоре А будет равна нулю, поэтому H A показано на рисунке 272.2 б) светло фиолетовым цветом.

плечи у всех сил в данном случае разные, а потому сразу подставлены числовые значения плеч в формулу.

Чтобы определить усилие в стержне з-и, нужно сначала определить значение угла γ (на рисунке не показан). Исходя из того, что известны две стороны некоего прямоугольного треугольника (нижний катет или длина треугольника - 0.5 м, боковой катет или высота треугольника - 0.8 м, то tgγ = 0.8/0.5 = 1.6 и значение угла γ = arctgγ = 57.99 о. И тогда для точки 3

h = 3sin γ = 2.544 м. Тогда:

М 3 = - 1.5Q/2 - 0.5Q + 0.5Q + 1.5Q + 2.5Q - 1.5N 6-з sin α + 2.544N з-и = 0 ;

N з-и = (1.25Q - 4.5Q + 1.5N 6-з sin α) /2.544 = (332.5 - 617.5)/2.544 = -112 кг

И теперь проще составить уравнение сил относительно оси х :

ΣQ x = - N 6-з cos α - N з-и cos γ + N 1-и = 0;

N 1-и = N 6-з cos α + N з-и cos γ = 1269.34·0.987 - 112·0.53 = 1193.46 кг (работает на растяжение)

Так как верхний и нижний пояса фермы будут из одного типа профиля, то тратить время и силы на расчет стержней нижнего пояса 1-в, 1-д и 1-ж, равно как и стержней верхнего пояса 4-г и 5-е нет необходимости. Усилия в этих стержнях будут явно меньше уже определенных нами. Если бы ферма была бесконсольной, т.е. опоры располагались на концах фермы, то усилия в раскосах также были бы меньше уже определенных нами, однако у нас ферма с консолями и потому воспользуемся еще несколькими сечениями, чтобы определить усилия в раскосах по приведенному выше алгоритму (подробности расчета не приводятся):

N б-в = -1527.34 кг - работает на сжатие (сечение III-III, рис.272.2 ж), определялось по уравнению моментов относительно точки 1)

N в-г = 634.43 кг - работает на растяжение (сечение IV-IV, рис.272.2 з), определялось по уравнению моментов относительно точки 1)

N г-д = - 493.84 кг - работает на сжатие (сечение V-V, определялось по уравнению моментов относительно точки 1)

Таким образом самыми загруженными у нас являются два стержня N 6-з = 1269.34 кг и N б-в = - 1527.34 кг. Оба стержня работают на сжатие и если вся ферма будет изготавливаться из одного типа профиля, то достаточно рассчитать один из этих стержней по предельным напряжениям и на основе этих расчетов подобрать необходимое сечение профиля. Однако тут все не так просто, на первый взгляд кажется, что достаточно рассчитать стержень N б-в, но при расчете сжатых элементов большое значение имеет расчетная длина стержня. Так длина стержня N 6-з составляет 101.2 см, в то время как длина стержня N б-в составляет 59.3 см. Поэтому, чтобы не гадать, лучше рассчитать оба стержня.

стержень N б-з

Расчет сжатых стержней ничем не отличается от расчета центрально сжатых колонн , поэтому далее приводятся только основные этапы расчета без подробных пояснений.

по таблице 1 (см. ссылку выше) определяем значение μ = 1 (не смотря на то, что верхний пояс фермы будет из цельного профиля, расчетная схема фермы подразумевает шарнирное закрепление стержней в узлах фермы, поэтому более правильным будет принять вышеуказанное значение коэффициента).

Принимаем предварительно значение λ = 90, тогда по таблице 2 коэффициент изгиба φ = 0.625 (для стали С235 прочностью R y = 2350 кгс/см 2 , определяется интерполяцией значений 2050 и 2450)

Тогда требуемый радиус инерции составит:

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции