Вконтакте Facebook Twitter Лента RSS

Виды фотоэффекта. История открытия фотоэффекта

Внутренний фотоэффект был открыт в 1873 году американцем У.Смитом и англичанином Дж.Мейем. То есть ранее, чем внешний фотоэффект.

Для наблюдения внутреннего фотоэффекта в школьных условиях можно воспользоваться фотодиодом (не путать со светодиодом) или старым транзистором, у которого аккуратно спилена металлическая крышечка, чтобы открыть доступ света к полупроводниковому кристаллу. Если его присоединить к выпрямителю и гальванометру, вы сможете наблюдать, как даже при дневном освещении проводимость кристалла резко возрастает. Такая проводимость называется фотопроводимостью.

Законы внутреннего фотоэффекта намного сложнее законов внешнего, и здесь мы не будем их рассматривать. Однако отметим, что они опираются на известные вам из химии понятия валентности, электронных уровней и др., и позволяют объяснить возникновение фотоэффекта в полупроводниках.

Внешний фотоэффект нашёл применение в технике ещё в первой половине XX века. Это, конечно же, голос прежде немого кинематографа. Фотоэлемент позволяет превратить звук, «сфотографированный» на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, изменялся и попадал на фотоэлемент (см. фото). Чем больше света проходило через дорожку, тем громче был звук в динамике. В неживой природе внешний фотоэффект проявляется миллионы лет в планетарных масштабах. Мощное солнечное излучение, воздействуя на атомы и молекулы земной атмосферы, выбивает из них электроны, то есть ионизирует верхние слои атмосферы.

Внутренний фотоэффект в настоящее время в технике используется гораздо чаще внешнего. Например, он превращает свет в электрический ток в фотоэлементах и огромных солнечных батареях космических кораблей. Фотоэффект «работает» и в специальных светочувствительных приборах, таких как, фоторезисторы, фотодиоды, фототранзисторы. Благодаря этому можно считать детали на конвейере или производить автоматическое включение и выключение различных механизмов (маяки, уличное освещение, автоматическое открывание дверей и др.). Также благодаря внутреннему фотоэффекту можно преобразовывать изображение в электрические сигналы и передавать на расстояние (телевидение).

Наиболее крупномасштабное применение фотоэффекта сегодня – это уже построенные солнечные электростанции, а также проекты строительства новых таких станций мощностью до нескольких сотен мегаватт. По оценкам специалистов, в 2020 году до 20% мировой электроэнергии будет производиться за счет фотоэлектрического преобразования солнечной энергии на Земле и в космосе.


(C) 2012. Люкина Татьяна Витальевна (Кемеровская область, г.Ленинск-Кузнецкий)

1. История открытия фотоэффекта

2. Законы Столетова

3. Уравнение Эйнштейна

4. Внутренний фотоэффект

5. Применение явления фотоэффекта

Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимаетфотоэлектрический эффект , то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

История открытия фотоэффекта

Открытие фотоэффекта следует отнести к 1887 г., когда Герц обнаружил, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между ними.

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 1).

Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один – два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается: искра начинает проскакивать Рис. 1. Схема опыта Герца.



Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта:

где – кинетическая энергия вылетающего электрона, – работа выхода для данного вещества, – частота падающего света, – постоянная Планка, которая оказалась ровно той же, что и в формуле Планка для излучения абсолютно чёрного тела.

Из этой формулы следует существование красной границы фотоэффекта. Таким образом, исследования фотоэффекта были одними из самых первых квантово – механических исследований.

Законы Столетова

Впервые (1888–1890), подробно анализируя явление фотоэффекта, русский физик А.Г. Столетов получил принципиально важные результаты. В отличие от предыдущих исследователей он брал малую разность потенциалов между электродами. Схема опыта Столетова представлена на рис. 2.

Два электрода (один в виде сетки, другой – плоский), находящиеся в вакууме, присоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1898 г. Ленард и Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд заряженных частиц, вырываемых Рис. 2. Схема опыта Столетова.

светом из катода, и получили выражение

СГСЕ ед. з/г, совпадающее с известным удельным зарядом электрона. Отсюда следовало, что под действием света происходит вырывание электронов из вещества катода.

Путем обобщения полученных результатов были установлены следующие закономерности фотоэффекта:

1. При неизменном спектральном составе света сила фототока насыщения прямо пропорциональна падающему на катод световому потоку.

2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.

3. Фотоэффект не возникает, если частота света меньше некоторой характерной для каждого металла величины , называемой красной границей.

Первую закономерность фотоэффекта, а также возникновение самого фотоэффекта легко объяснить, исходя из законов классической физики. Действительно, световое поле, воздействуя на электроны внутри металла, возбуждает их колебания. Амплитуда вынужденных колебаний может достичь такого значения, при котором электроны покидают металл; тогда и наблюдается фотоэффект.

Ввиду того, что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.

Вторая и третья закономерности фотоэффекта законами классической физики не объясняются.

Изучая зависимость фототока (рис. 3), возникающего при облучении металла потоком монохроматического света, от разности потенциалов между электродами (такая зависимость обычно называется вольт – амперной характеристикой фототока), установили, что: 1) фототок возникает не только при , но и при ; 2) фототок отличен от нуля до строго определенного для данного металла отрицательного значения разности потенциалов , так называемого задерживающего потенциала; 3) величина запирающего (задерживающего) потенциала не зависит от интенсивности падающего света; 4) фототок растет с уменьшением абсолютного значения задерживающего потенциала; 5) величина фототока растет с ростом и с какого-то определенного значения фототок (так называемый ток насыщения) становится постоянным; 6) величина тока насыщения растет с увеличением интенсивности падающего света; 7) величина задерживающего Рис. 3. Характеристика

потенциала зависит от частоты падающего света; фототока.

8) скорость вырванных под действием света электронов не зависит от интенсивности света, а зависит только от его частоты.

Уравнение Эйнштейна

Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых:

где – единичный вектор, направленный по волновому вектору. Применяя к явлению фотоэффекта в металлах закон сохранения энергии, Эйнштейн предложил следующую формулу:

, (1)

где - работа выхода электрона из металла, – скорость фотоэлектрона. Согласно Эйнштейну, каждый квант поглощается только одним электроном, причем часть энергии падающего фотона тратится на совершение работы выхода электрона металла, оставшаяся же часть сообщает электрону кинетическую энергию .

Как следует из (1), фотоэффект в металлах может возникнуть только при , в противном случае энергия фотона будет недостаточной для вырывания электрона из металла. Наименьшая частота света , под действием которого происходит фотоэффект, определяется, очевидно, из условия

Частота света, определяемая условием (2), называется «красной границей» фотоэффекта. Слово «красная» не имеет никакого отношения к цвету света, при котором происходит фотоэффект. В зависимости от рода металлов «красная граница» фотоэффекта может соответствовать красному, желтому, фиолетовому, ультрафиолетовому свету и т. д.

С помощью формулы Эйнштейна можно объяснить и другие закономерности фотоэффекта.

Положим, что , т. е. между анодом и катодом существует тормозящий потенциал. Если кинетическая энергия электронов достаточна, то они, преодолев тормозящее поле, создают фототок. В фототоке участвуют те электроны, для которых удовлетворяется условие . Величина задерживающего потенциала определяется из условия

, (3)

где – максимальная скорость вырванных электронов. Рис. 4.

Подставив (3) в (1), получим

Таким образом, величина задерживающего потенциала не зависит от интенсивности, а зависит только от частоты падающего света.

Работу выхода электронов из металла и постоянную Планка можно определить, построив график зависимости от частоты падающего света (рис. 4). Как видно, и отрезок, отсекаемый от оси потенциала, дает .

Ввиду того, что интенсивность света прямо пропорциональна количеству фотонов, увеличение интенсивности падающего света приводит к увеличению числа вырванных электронов, т. е. к увеличению фототока.

Формула Эйнштейна для фотоэффекта в неметаллах имеет вид

.

Наличие – работы отрыва связанного электрона от атома внутри неметаллов – объясняется тем, что в отличие от металлов, где имеются свободные электроны, в неметаллах электроны находятся в связанном с атомами состоянии. Очевидно, при падении света на неметаллы часть световой энергии тратится на фотоэффект в атоме – на отрыв электрона от атома, а оставшаяся часть тратится на работу выхода электрона и сообщение электрону кинетической энергии.

Электроны проводимости не покидают самопроизвольно металл в заметном количестве. Это объясняется тем, что металл представляет для них потенциальную яму. Покинуть металл удается только тем электронам, энергия которых оказывается достаточной для преодоления потенциального барьера, имеющегося на поверхности. Силы, обуславливающие этот барьер, имеют следующее происхождение. Случайное удаление электрона от наружного слоя положительных ионов решетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда. Кулоновское взаимодействие с этим зарядом заставляет электрон, скорость которого не очень велика, вернуться обратно. Таким образом, отдельные электроны все время покидают поверхность металла, удаляются от нее на несколько межатомных расстояний и затем поворачивают обратно. В результате металл оказывается окруженным тонким облаком электронов. Это облако образует совместно с наружным слоем ионов двойной электрический слой (рис. 5; кружки – ионы, черные точки – электроны). Силы, действующие на электрон в таком слое,направлены внутрь металла. Работа, совершаемая против этих сил при переводе электрона из металла наружу, идет на увеличение потенциальной энергии электрона (рис. 5).

Таким образом, потенциальная энергия валентных электронов внутри металла меньше, чем вне металла, на величину, равную глубине потенциальной ямы (рис. 6). Изменение энергии происходит на длине порядка нескольких межатомных расстояний, поэтому стенки ямы можно считать вертикальными.

Потенциальная энергия электрона Рис. 6.

и потенциал той точки, в которой находится электрон, имеют противоположные знаки. Отсюда следует, что потенциал внутри металла больше, чем потенциал в непосредственной близости к его поверхности, на величину .

Сообщение металлу избыточного положительного заряда увеличивает потенциал как на поверхности, так и внутри металла. Потенциальная энергия электрона соответственно уменьшается (рис. 7, а).

За начало отсчета приняты значения потенциала и потенциальной энергии на бесконечности. Сообщение отрицательного заряда понижает потенциал внутри и вне металла. Соответственно потенциальная энергия электрона возрастает (рис. 7, б).

Полная энергия электрона в металле слагается из потенциальной и кинетической энергий. При абсолютном нуле значения кинетической энергии электронов проводимости заключены в пределах от нуля до совпадающей с уровнем ферми энергии . На рис. 8 энергетические уровни зоны проводимости вписаны в потенциальную яму (пунктиром изображены незанятые при 0К уровни). Для удаления за пределы металла разным электронам нужно сообщить не одинаковую энергию. Так, электрону, находящемуся на самом нижнем уровне зоны проводимости, необходимо сообщить энергию ; для электрона, находящегося на уровне Ферми, достаточна энергия .

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого или жидкого тела в вакуум, называется работой выхода. Работа выхода электрона из металла определяется выражением

Мы получили это выражение в предположении, что температура металла равна 0К. При других температурах работу выхода также определяют как разность глубины потенциальной ямы и уровня Ферми, т. е. распространяют определение (4) на любые температуры. Это же определение применяется и для полупроводников.

Уровень Ферми зависит от температуры. Кроме того, из – за обусловленного тепловым расширением изменения средних расстояний между атомами слегка изменяется глубина потенциальной ямы . Это приводит к тому, что работа выхода немного зависит от температуры.

Работа выхода очень чувствительна к состоянию поверхности металла, в частности к ее чистоте. Подобрав надлежащим образом Рис. 8.

покрытие поверхности, можно сильно снизить работу выхода. Так, например, нанесение на поверхность вольфрама слоя окисла щелочноземельного металла (Ca, Sr, Ba) снижает работу выхода с 4,5 эВ (для чистого W) до 1,5 – 2 эВ.

Внутренний фотоэффект

Выше мы говорили об освобождении электронов из освещаемой поверхности вещества и переходе их в другую среду, в частности в вакуум. Такое испускание электронов называют фотоэлектронной эмиссией , а само явление внешним фотоэффектом. Наряду с ним известен также и широко используется в практических целях так называемый внутренний фотоэффект , при котором, в отличие от внешнего, оптически возбужденные электроны остаются внутри освещенного тела, не нарушая нейтральности последнего. При этом в веществе изменяется концентрация носителей заряда или их подвижность, что приводит к изменению электрических свойств вещества под действием падающего на него света. Внутренний фотоэффект присущ только полупроводникам и диэлектрикам. Его можно обнаружить, в частности, по изменению проводимости однородных полупроводников при их освещении. На основе этого явления – фотопроводимости создана и постоянно совершенствуется большая группа приемников света – фоторезисторов . Для них используется в основном селенид и сульфид кадмия.

В неоднородных полупроводниках наряду с изменением проводимости наблюдается также образование разности потенциалов (фото – э.д.с.). Это явление (фотогальванический эффект) обусловлено тем, что в силу однородностей проводимости полупроводников происходит пространственное разделение внутри объема проводника оптически возбужденных электронов, несущих отрицательный заряд и микрозон (дырок), возникающих в непосредственной близости от атомов, от которых оторвались электроны, и подобно частицам несущих положительный элементарный заряд. Электроны и дырки концентрируются на разных концах полупроводника, вследствие чего и возникает электродвижущая сила, благодаря которой и вырабатывается без приложения внешней э.д.с. электрический ток в нагрузке, подключенной параллельно освещенному полупроводнику. Таким образом достигается прямое преобразование световой энергии в электрическую. Именно по этой причине фотогальванические приемники света и используются не только для регистрации световых сигналов, Нои в электрических цепях как источники электрической энергии.

Основные промышленно выпускаемые типы таких приемников работают на основе селена и сернистого серебра. Весьма распространен также кремний, германий и ряд соединений – GaAs, InSb, CdTeи другие. Фотогальванические элементы, используемые для преобразования солнечной энергии в электрическую, приобрели особенно широкое применение в космических исследованиях как источники бортового питания. Они обладают относительно высоким коэффициентом полезного действия (до 20 %), весьма удобны в условиях автономного полета космического корабля. В современных солнечных элементах в зависимости от полупроводникового материала фото – э.д.с. достигает 1 – 2 В, съем тока с – нескольких десятков миллиампер, а на 1 кг массы выходная мощность достигает сотен ватт.

Фотоэффектом называется освобождение (полное или частичное) электронов от связей с атомами и молекулами вещества под воздействием света (видимого, инфракрасного и ультрафиолетового). Если электроны выходят за пределы освещаемого вещества (полное освобождение), то фотоэффект называется внешним (открыт в 1887 г. Герцем и подробно исследован в 1888 г. Л. Г. Столетовым). Если же электроны теряют связь только со «своими» атомами и молекулами, но остаются внутри освещаемого вещества в качестве «свободных электронов» (частичное освобождение), увеличивая тем самым электропроводность вещества, то фотоэффект называется внутренним (открыт в 1873 г. американским физиком У. Смитом).

Внешний фотоэффект наблюдается у металлов. Если, например, цинковую пластинку, соединенную с электроскопом и заряженную отрицательно, осветить ультрафиолетовыми лучами, то электроскоп быстро разрядится; в случае положительно заряженной пластинки разрядки не происходит. Отсюда следует, что свет вырывает из металла отрицательно заряженные частицы; определение величины их заряда (выполненное в 1898 г. Дж. Дж. Томсоном) показало, что эти частицы являются электронами.

Принципиальная измерительная схема, с помощью которой исследовался внешний фотоэффект, изображена на рис. 368.

Отрицательный полюс батареи присоединен к металлической пластинке К (катод), положительный - к вспомогательному электроду а (анод). Оба электрода помещены в эвакуированный сосуд, имеющий кварцевое окно F (прозрачное для оптического излучения). Поскольку электрическая цепь оказывается разомкнутой, ток в ней отсутствует. При освещении катода К свет вырывает из него электроны (фотоэлектроны), устремляющиеся к аноду; в цепи появляется ток (фототок).

Схема дает возможность измерять силу фототока (гальванометром и скорость фотоэлектронов при различных значениях напряжения между катодом и анодом и при различных условиях освещения катода.

Экспериментальные исследования, выполненные Столетовым, а также другими учеными, привели к установлению следующих основных законов внешнего фотоэффекта.

1. Фототок насыщения I (т. е. максимальное число электронов. освобождаемых светом в 1 с) прямо пропорционален световому потоку Ф:

где коэффициент пропорциональности называется фоточувствительностью освещаемой поверхности (измеряется в микроамперах на люмен, сокращенно -

2. Скорость фотоэлектронов возрастает с увеличением частоты падающего света и не зависит от его интенсивности.

3. Независимо от интенсивности света фотоэффект начинается только при определенной (для данного металла) минимальной частоте света, называемой «красной границей» фотоэффекта.

Второй и третий законы фотоэффекта нельзя объяснить на основе волновой теории света. Действительно, по этой теории, интенсивность света пропорциональна квадрату амплитуды электромагнитной волны, «раскачивающей» электрон в металле. Поэтому свет любой частоты, но достаточно большой интенсивности, должен был бы вырывать электроны из металла; иначе говоря, не должно было бы существовать «красной границы» фотоэффекта. Этот вывод противоречит третьему закону фотоэффекта. Далее, чем больше интенсивность света, тем большую кинетическую энергию должен был бы получить от него электрон. Поэтому скорость фотоэлектрона должна была бы возрастать с увеличением интенсивности света; этот вывод противоречит второму закону фотоэффекта.

Законы внешнего фотоэффекта получают простое истолкование на основе квантовой теории света. По этой теории, величина светового потока определяется числом световых квантов (фотонов), падающих в единицу времени на поверхность металла. Каждый фотон может взаимодействовать только с одним электроном. Поэтому

максимальное число фотоэлектронов должно быть пропорционально световому потоку (первый закон фотоэффекта).

Энергия фотона поглощенная электроном, расходуется на совершение электроном работы выхода А из металла (см. § 87); оставшаяся часть этой энергии представляет собой кинетическую энергию фотоэлектрона масса электрона, его скорость). Тогда, согласно закону сохранения энергии, можно написать

Эта формула, предложенная в 1905 г. Эйнштейном и подтвержденная затем многочисленными экспериментами, называется уравнением Эйнштейна.

Из уравнения Эйнштейна непосредственно видно, что скорость фотоэлектрона возрастает с увеличением частоты света и не зависит от его интенсивности (поскольку ни ни не зависят от интенсивности света). Этот вывод соответствует второму закону фотоэффекта.

Согласно формуле (26), с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (величина А постоянна для данного освещаемого вещества). При некоторой достаточно малой частоте (или длине волны кинетическая энергия фотоэлектрона станет равной нулю и фотоэффект прекратится (третий закон фотоэффекта). Это имеет место при т. е. в случае, когда вся энергия фотона расходуется на совершение работы выхода электрона. Тогда

Формулы (27) определяют «красную границу» фотоэффекта. Из этих формул следует, что она зависит от величины работы выхода (от материала фотокатода).

В таблице приведены значения работы выхода А (в электрон-вольтах) и красной границы фотоэффекта (в микрометрах) для некоторых металлов.

(см. скан)

Из таблицы видно, что, например, цезиевая пленка, нанесенная на вольфрам, дает фотоэффект даже при инфракрасном облучении, у натрия фотоэффект может быть вызван только видимым и ультрафиолетовым светом, а у цинка - только ультрафиолетовым.

На внешнем фотоэффекте основан важный физико-технический прибор, называемый вакуумным фотоэлементом (он является некоторым видоизменением установки, схематически изображенной на рис. 368).

Катодом К вакуумного фотоэлемента служит слой металла, нанесенный на внутреннюю поверхность эвакуированного стеклянного баллона В (рис. 369; G - гальванометр); анод А выполнен в виде металлического кольца, помещенного в центральной части баллона. При освещении катода в цепи фотоэлемента возникает электрический ток, сила которого пропорциональна величине светового потока.

Большинство современных фотоэлементов имеет сурьмяно-цезиевые или кислородно-цезиевые катоды, обладающие высокой фоточувствительностью. Кисйородно-цезиевые фотоэлементы чувствительны к инфракрасному и видимому свету (чувствительность сурьмяно-цезиевые фотоэлементы чувствительны к видимому и ультрафиолетовому свету (чувствительность

В некоторых случаях для увеличения чувствительности фотоэлемента его наполняют аргоном при давлении порядка 1 Па. Фототок в таком фотоэлементе усиливается вследствие ионизации аргдна, вызванной столкновениями фотоэлектронов с атомами аргона. Фоточувствительность газонаполненных фотоэлементов составляет около

Внутренний фотоэффект наблюдается у полупроводников и в меньшей мере у диэлектриков. Схема наблюдения внутреннего фотоэффекта показана на рис. 370. Полупроводниковая пластинка присоединена последовательное гальванометром к полюсам батареи. Ток в этой цепи незначителен, поскольку полупроводник обладает большим сопротивлением. Однако при освещении пластинки ток в цепи резко возрастает. Это обусловлено тем, что свет вырывает из атомов полупроводника электроны, которые, оставаясь внутри полупроводника, увеличивают его электропроводность (уменьшают сопротивление).

Фотоэлементы, основанные на внутреннем фотоэффекте, называются полупроводниковыми фотоэлементамиили фотосопротивлениями. Для их изготовления используют селен, сернистый свинец, сернистый кадмий и некоторые другие полупроводники. Фоточувствительность полупроводниковых фотоэлементов в сотни раз превышает фоточувствительность вакуумных фотоэлементов. Некоторые фотоэлементы обладают отчетливо выраженной спектральной чувствительностью. У селенового фотоэлемента спектральная чувствительность близка к спектральной чувствительности человеческого глаза (см рис. 304, § 118).

Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента. Поэтому полупроводниковые

фотоэлементы непригодны для регистрации быстропеременных световых потоков.

На внутреннем фотоэффекте основана еще одна разновидность фотоэлемента - полупроводниковый фотоэлемент с запирающий слоем или вентильный фотоэлемент. Схема этого фотоэлемента дана на рис. 371.

Металлическая пластинка и нанесенный на нее тонкий слой полупроводника соединены внешней электрической цепью, содержащей гальванометр Как было показано (см. § 90), в зоне контакта полупроводника с металлом образуется запирающий слой Б, обладающий вентильной проводимостью: он пропускает электроны только в направлении от полупроводника к металлу. При освещении полупроводникового слоя в нем, благодаря внутреннему фотоэффекту, появляются свободные электроны. Проходя (в процессе хаотического движения) через запирающий слой в металл и не имея возможности перемещаться в обратном направлении, эти электроны образуют в металле избыточный отрицательный заряд. Полупроводник, лишенный части «своих» электронов, приобретает положительный заряд. Разность потенциалов (порядка 0,1 В), возникающая между полупроводником и металлом, создает ток в цепи фотоэлемента.

Таким образом, вентильный фотоэлемент представляет собой генератор тока, непосредственно преобразующий световую энергию в электрическую.

В качестве полупроводников в вентильном фотоэлементе используют селен, закись меди, сернистый таллий, германий, кремний. Фоточувствительность вентильных фотоэлементов составляет

Коэффициент полезного действия современных кремниевых фотоэлементов (освещаемых солнечным светом) достигает по теоретическим расчетам, его можно повысить до 22%.

Поскольку фототок пропорционален световому потоку, фотоэлементы используются в качестве фотометрических приборов. К таким приборам относятся, например, люксметр (измеритель освещенности) и фотоэлектрический экспонометр.

Фотоэлемент позволяет преобразовывать колебания светового потока в соответствующие колебания фототока, что находит широкое применение в технике звукового кино, телевидения и т. п.

Исключительно велико значение фотоэлементов для телемеханизации и автоматизации производственных процессов. В сочетании с электронным усилителем и реле фотоэлемент является неотъемлемой частью автоматических устройств, которые, реагируя на световые сигналы, управляют работой различных промышленных и сельскохозяйственных установок и транспортных механизмов.

Весьма перспективным является практическое использование вентильных фотоэлементов в качестве генераторов электроэнергии. Батареи кремниевых фотоэлементов, получившие название солнечных батарей, успешно применяются на советских космических спутниках и кораблях для питания радиоаппаратуры. Для этого общая площадь фотоэлементов должна быть достаточно большой. Например, на космическом корабле «Союз-3» площадь поверхности солнечных батарей составляла около

Когда коэффициент полезного действия солнечных батарей будет повышен до 20-22%, они, несомненно, приобретут первостепенное значение среди источников, вырабатывающих электроэнергию для производственных и бытовых нужд.

Внешний фотоэффект

Внешним фотоэлектрическим эффектом (фотоэффектом) называется процесс испускания электронов веществом при поглощении им квантов электромагнитного излучения (фотонов). Внешний фотоэффект был открыт в 1887 г. Г.Герцем, который обнаружил, что искровой разряд между двумя металлическими шариками происходит значительно интенсивнее, если один из шариков освещать ультрафиолетовыми лучами. После открытия электрона измерение удельного заряда вылетающих из металла под действием излучения частиц позволило установить, что частицы являются электронами.

Детальное экспериментальное исследование закономерностей внешнего фотоэффекта для металлов было выполнено в 1888 – 1889 гг. А.Г.Столетовым на установке с фотоэлементом, схема которой приведена на рисунке. Фотоэлемент в виде вакуумной двухэлектродной лампы имеет металлический катод К , который при освещении его через кварцевое окошко видимым светом или ультрафиолетовым излучением испускает электроны. Вылетевшие из катода фотоэлектроны, достигая анода А , обеспечивают протекание в цепи электрического тока, который фиксируется гальванометром или миллиамперметром. Специальная схема подключения источника позволяет изменять полярность напряжения, подаваемого на фотоэлемент.

На следующем рисунке представлена зависимость фототока от напряжения между катодом и анодом (вольт-амперные характеристики) при падении на катод монохроматического света с длиной волны при неизменном световом потоке для двух значений светового потока ( > ). Из вольт-амперной характеристики видно, что при некотором положительном напряжении фототок достигает насыщения – все электроны, испущенные катодом, достигают анода. Ток насыщения определяется числом электронов, испускаемых катодом в единицу времени под действием света. Из рисунка видно, что число электронов, вылетающих из катода при данной частоте падающего света зависит от светового потока ( > ) так как ( > ). При напряжении фототок не исчезает, это свидетельствует о том, что электроны покидают катод со скоростью, отличной от нуля, т.е. обладают кинетической энергией, достаточной для достижения анода. При отрицательном напряжении испущенный катодом электрон попадает в тормозящее электрическое поле, преодолеть которое он может, лишь имея определенный запас кинетической энергии. Электрон с малой кинетической энергией, вылетев из катода, не может преодолеть тормозящее поле и попасть на анод. Такой электрон возвращается на катод, не давая вклада в фототок. Поэтому, плавный спад фототока в области отрицательных напряжений указывает на то, что вылетающие из катода фотоэлектроны имеют разные значения кинетической энергии. При некотором отрицательном напряжении , величину которого называют задерживающим напряжением (потенциалом), фототок становится равным нулю. При таком напряжении ни одному из электронов не удается преодолеть задерживающее поле и долететь до анода. Соответствующее тормозящее электрическое поле при этом задерживает все вылетающие из катода электроны, включая электроны с максимальной кинетической энергией.

Измерив задерживающее напряжение, можно определить эту максимальную энергию или максимальную скорость фотоэлектронов из соотношения

, (6.41.1)

где – масса электрона, – заряд электрона, – максимальная скорость вылетевших электронов.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов (следовательно и ) линейно возрастает с увеличением частоты света ν и не зависит от светового потока (см. рисунок, приведенный ниже).

2. Для каждого вещества существует так называемая красная граница фотоэффекта , то есть наименьшая частота , при которой еще возможен внешний фотоэффект.

3. При неизменном спектральном составе падающего на катод света число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально световому потоку :

Это утверждение носит название закона Столетова.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Попытки объяснить закономерности фотоэффекта с использованием классической волновой теории, в которой излучение рассматривалось как электромагнитные волны, приводили к выводам, противоположным наблюдаемым в эксперименте. Действительно, объясняя вырывание электронов из металла силовым воздействием на них со стороны электрического поля волны, такая теория неизбежно приходила к выводу о том, что максимальная кинетическая энергия фотоэлектронов должна определяться световым потоком, падающим на катод. Наличие красной границы у фотоэффекта также противоречило выводам волновой теории.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе развития гипотезы М. Планка о том, что электромагнитное излучение испускается в виде отдельных порций – квантов, энергия которых зависит от частоты. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру: свет не только испускается, но и распространяется и взаимодействует с веществом в виде отдельных порций.

Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Если электрон находится на самой поверхности, Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

(6.41.3)

Таким образом, энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии По закону сохранения энергии

(6.41.4)

Выражение (6.41.4) называется формулой (уравнением) Эйнштейна для внешнего фотоэффекта. С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Если энергия падающих фотонов < , то фотоэффект не наблюдается. Отсюда частота и длина волны красной границы фотоэффекта определяются слеющими формулами:



(6.41.5)

Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Важной количественной характеристикой фотоэффекта является квантовый выход, определяющий число вылетевших электронов, приходящихся на один падающий на металл фотон. Вблизи красной границы для большинства металлов квантовый выход составляет порядка 10 -4 электрон/фотон. Малость квантового выхода обусловлена тем, что энергию, достаточную для выхода из металла сохраняют только те электроны, которые получили энергию от фотонов на глубине от поверхности, не превышающей 0,1 мкм. Кроме того, поверхность металлов сильно отражает излучение. С увеличением энергии фотонов, то есть с уменьшением длины волны излучения квантовый выход увеличивается, составляя 0,01 – 0,05 электрон/фотон для энергии фотонов порядка одного электрон-вольта. Для рентгеновского излучения с энергией фотонов эВ уже практически на каждые десять падающих на поверхность фотонов приходится один вылетевший из металла электрон.

Называется совокупность методов измерения температуры тел, основанных на законах теплового излучения. Приборы, применяемые для этого, называются пирометрами.

Эти методы очень удобны для измерения температур различных объектов, где сложно или вообще невозможно применить традиционные контактные датчики. Это относится в первую очередь к измерению высоких температур.

В оптической пирометрии различают следующие температуры тела: радиационную (когда измерение проводится в широком интервале длин волн), цветовую (когда в узком интервале - интервале видимого света), яркостную (на одной длине волны).

1. Радиационная температура Т р - это температура абсолютно чёрного тела, при которой его энергетическая светимость R равна энергетической светимости R m данного тела в широком диапазоне длин волн.

Если же измерить мощность, излучаемую некоторым телом с единицы поверхности в достаточно широком интервале волн и ее величинусопоставить с энергетической светимостью абсолютно черного тела, то можно, используя формулу (11), вычислить температуру этого тела, как

Определенная таким способом температура T p будет достаточно точно соответствовать истинной температуре T только в том случае, если исследуемое тело - абсолютно черное.

Для серого тела закон Стефана-Больцмана может быть записан в виде

R m (T) = α T σT 4 ; где α T < 1.

Подставляя данное выражение в формулу (1) получаем

Для серого тела значение радиационной температуры оказывается заниженным (T p < T ), т.е. истинная температура серого тела всегда выше радиационной.

2. Цветовая температура Т ц - это температура абсолютно чёрного тела, при которой относительные распределения спектральной плотности энергетической светимости этого тела и рассматриваемого тела максимально близки в видимой области спектра.

Обычно для определения цветовой температуры выбирают длины волн λ 1 = 655 нм (красный цвет), λ 2 = 470 нм (зелено-голубой цвет). Спектральная плотность энергетической светимости серых тел (или тел близких к ним по свойствам) с точностью до постоянного коэффициента (коэффициента монохроматического поглощения) пропорциональна спектральная плотность энергетической светимости абсолютно черного тела. Следовательно, распределение энергии в спектре серого тела такое же, как и в спектре абсолютно черного тела при той же температуре.

Для определения температуры серого тела достаточно измерить мощность I (λ,Т) , излучаемую единицей поверхности тела в достаточно узком спектральном интервале (пропорциональную r (λ,Т) ), для двух различных волн. Отношение I (λ,Т) для двух длин волн равно отношению зависимостей f (λ,Т) для этих волн, вид которых дается формулой (2) предыдущего параграфа:


(2)

Из данного равенства можно математическим путем получить температуру Т . Полученная таким образом температура называется цветовой. Цветовая температура тела, определенная по формуле (2), будет соответствовать истинной.

Цветовую температуру серого тела, совпадающую с истинной, можно также найти из закона смещения Вина.

3. Яркостная температура (Т я) некоторого тела называется температура абсолютно чёрного тела, при которой его спектральная плотность энергетической светимости f (λ,T), для какой либо определённой длины волны, равна спектральной плотности, энергетической светимости r (λ,Т) данного тела для той же длины волны.

Так как для нечерного тела спектральная плотность энергетической светимости при определенной температуре будет всегда ниже чем у абсолютно черного тела, то истинная температура тела будет всегда выше яркостной.

В качестве яркостного пирометра используется пирометр с исчезающей нитью . Принцип определения температуры основан на визуальномсравнении яркости раскаленной нити лампы пирометра с яркостью изображения исследуемого объекта. Равенство яркостей, наблюдаемое через монохроматический светофильтр (обычно измерения проводят на длине волны λ = 660 нм), определяется по исчезновению изображения нити пирометрической лампы на фоне изображения раскаленного объекта. Накал нити лампы пирометра регулируется реостатом, а температура нити определяется по градуировочному графику, или таблице.

Пусть мы в результате измерений получили равенство яркостей нити пирометра и исследуемого объекта и по графику определилитемпературу нити пирометра Т 1 . Тогда,на основании формулы (3) можно записать:

f (λ,T 1) α 1 (λ,T 1) = f (λ ,T 2) α 2 (λ, T 2) ,

где α 1 (λ,T 1) и α 2 (λ,T 2) коэффициенты монохроматического поглощения материала нити пирометра и исследуемого объекта соответственно. T 1 и T 2 - температуры нити пирометра и объекта. Как видноиз данной формулы, равенство температур объекта и нити пирометра будут наблюдаться только тогда, когда будут, равны их коэффициенты монохроматического поглощения в наблюдаемой области спектра α 1 (λ,T 1) = α 2 (λ,T 2) . Если α 1 (λ,T 1) > α 2 (λ,T 2) , мы получим заниженное значение температуры объекта, при обратном соотношении - завышенное значение температуры.

Внешним фотоэффектом называется явление испускания электронов веществом под действием электромагнитного излучения. Внутренним фотоэффектом называется явление появление свободных электронов в веществе (полупроводниках) под действием электромагнитного излучения Связанные (или валентные) электроны становятся свободными (в пределах вещества). В результате уменьшается сопротивление вещества.

Законы внешнего фотоэффекта :

1. При неизменном спектральном составе излучения сила тока насыщения (или число фотоэлектронов, испускаемых катодом за единицу времени) прямо пропорциональна падающему на фотокатод потоку излучения (интенсивности излучения).

2. Для данного фотокатода максимальная начальная скорость фотоэлектронов, а, следовательно, их максимальная кинетическая энергия определяется частотой излучения и не зависит от его интенсивности.

3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота излучения ν 0 , при которой еще возможен внешний фотоэффект. Отметим, что значение ν 0 зависит от материала фотокатода и состояния его поверхности.

Объяснение внешнего фотоэффекта с точки зрения волновой теории света противоречило экспериментальным данным. Согласно волновой теории под действием поля электромагнитной волны в металле возникают вынужденные колебания электронов в атоме с амплитудой тем большей, чем больше амплитуда вектора напряженности электрического поля волны E o (и, следовательно, интенсивность света I~E o 2).

В результате этого электроны могут покидать металл и выходить из него, т.е. может наблюдаться внешний фотоэффект. Тем выше должна быть и скорость вылетевших электронов, т.е. кинетическая энергия фотоэлектронов должна зависеть от интенсивности излучения, что противоречит опытным данным. По этой теории излучение любой частоты, но достаточно большой интенсивности должно вырывать электроны из металла, т.е. красной границы фотоэффекта не должно быть.

А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе квантовой теории М. Планка . Согласно Эйнштейну, свет (излучение) частотой ν не только испускается, как это предполагал М. Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых

E o = hν , (1)

где h = 6,626176*10 -34 Дж × с - постоянная Планка,

Позднее кванты излучения получили название фотонов . По Эйнштейну, каждый квант поглощается только одним электроном. Если энергия кванта больше чем работа выхода электрона из металла, т.е. hν >= А вых, то электрон может покинуть поверхность металла. Остаток энергии кванта идет на создание кинетической энергии электрона, покинувшего вещество. Если электрон освобождается излучением не у самой поверхности, а на некоторой глубине, то часть полученной энергии может быть потеряна вследствие случайных столкновений электрона в веществе, и его кинетическая энергия окажется меньшей. Следовательно, энергия падающего на вещество кванта излучения расходуется на совершение электроном работы выхода и сообщение вылетевшему фотоэлектрону кинетической энергии.

Закон сохранения энергии для такого процесса будет выражаться равенством

(2)

Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта .

Из уравнения Эйнштейна непосредственно следует, что максимальная кинетическая энергия или скорость фотоэлектрона зависит от частоты излучения. С уменьшением частоты излучения кинетическая энергия уменьшается и при некоторой частоте может стать равной нулю. Уравнение Эйнштейна в этом случае будет иметь вид

h ν 0 = А вых.

Частота ν 0 , соответствующая этому соотношению будет иметь минимальное значение и является красной границей фотоэффекта. Из последнего ясно, что красная граница фотоэффекта определяется работой выхода электрона и зависит от химической природы вещества и состояния его поверхности. Длина волны, соответствующая красной границе фотоэффекта, может быть рассчитана по формуле . При hν < А вых фотоэффект прекращается. Число высвобождаемых вследствие фотоэффекта электронов должно быть пропорционально числу падающих на поверхность вещества квантов излучения, а, следовательно, потоку излучения Ф.

С изобретением лазеров были получены большие мощности излучения, в этом случае один электрон может поглотить два и более (N) фотонов (N = 2…7). Такое явление называется многофотонным (нелинейным) фотоэффектом. Уравнение Эйнштейна для многофотонного фотоэффекта имеет вид

В этом случае красная граница фотоэффекта может смещаться в сторону более длинных волн.

Характер зависимости фототока I от разности потенциалов между анодом и катодом U (вольт - амперная характеристика или ВАХ) при постоянном потоке излучения на фотокатод монохроматического излучения приведен на Рис. 1.

Существование фототока при напряжении U = 0 объясняется тем, что фотоэлектроны, испускаемые катодом, имеют некоторую начальную скорость и, соответственно, кинетическую энергию, а, следовательно, могут достигать анода без внешнего электрического поля. По мере увеличения значения U (в случае положительного потенциала на аноде) фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода.

Пологий характер этого участка вольтамперной характеристики свидетельствует о том, что электроны вылетают из катода с различными скоростями. Максимальное значение фототока, называемое током насыщения I нас , достигается при таком значении U, при котором все электроны, испускаемые катодом, попадают на анод. Значение I нас. определяется числом фотоэлектронов, испускаемых катодом за 1 с и зависит от величины потока излучения, падающего на фотокатод.

Если анод имеет отрицательный потенциал, то образующееся электрическое поле тормозит движение фотоэлектронов. Это приводит к уменьшению числа электронов, достигающих анода, а, следовательно, и уменьшению фототока. Минимальное значение напряжения отрицательной полярности, при котором ни один из электронов, даже обладающий при вылете из катода максимальной скоростью, не может достигнуть анода, т.е. фототок становится равным нулю, называется задерживающим напряжением U o .

Значение задерживающего напряжения связано с начальной максимальной кинетической энергией электронов соотношением

С учетом этого, что уравнение Эйнштейна можно записать в также в виде

hν = А вых + eU 0 .

Если менять величину падающего на катод потока излучения при одном и том же спектральном составе, вольтамперные характеристики будут иметь вид, приведенный на Рис. 2.

Если при неизменной величине потока излучения менять его спектральный состав, т.е. частоту излучения, то вольтамперные характеристики будут меняться, как показано на Рис.3.

U 0 0 U U 03 U 02 U 01 0 U

F 3 > F 2 > F 1 n = const n 3 > n 2 > n 1 F = const

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции