Вконтакте Facebook Twitter Лента RSS

Регулирование и автоматизация систем вентиляции кондиционирования. Автоматизация систем отопления, вентиляции и кондиционирования воздуха. Автоматизация работы группы приточных систем

Автоматические устройства контроля за работой вентиляционной системы предназначены для поддержания комфортных условий в производственных и жилых помещениях.

Современные системы – это комплекс автоматического управления микроклиматом помещения. Для поддержки слаженной работы всех механизмов и устройств, разработчики устанавливают сложную аппаратуру с различными датчиками и реле. Только такое обустройство щита автоматики позволяет корректировать действие всей системы вентиляции.

Автоматизация систем вентиляции монтируется для решения проблем при использовании вентиляционного оборудования и механизмов.

Основные задачи, выполняемые автоматикой вентиляции

При возникновении некоторых неисправностей, происходит срабатывание автоматического управления вытяжки, обеспечивается высокая безопасность:

  1. Решение задач по управлению и мониторингу нормальной работы схемы. Должен устанавливаться сигнализатор аварии, опасных режимах эксплуатации оборудования. Новые разработки позволяют управлять работой схемы удаленно. Оператор наблюдает за функционированием устройства, может вносить коррективы, устанавливать оптимальные режимы.
  2. Произведение индивидуального анализа и мониторинга работы каждого отдельного механизма и общей деятельности схемы вентиляции. Датчики устройства доставляют информацию, автоматика производит исследование ситуации и вносит корректировки в работу вентиляционного оборудования. В случае аварии, подается сигнал на кнопку пуска для выключения оборудования.
  3. Осуществляет защиту клапанов и водяного контура нагрева от низких температур, не позволяет опускаться температуре до критического уровня.
  4. Обеспечивает возможность управления процессом вентилирования помещения, переключая режимы эксплуатации оборудования. При перепадах нагрузки, температуры в помещении – система управления способна понижать скорость вращения вентиляторов, полностью выключать оборудование и поддерживать комфортные условия в обслуживаемом помещении.
  5. В случае короткого замыкания и других аварийных ситуаций, производит блокировку механизмов, для исключения пожара и поражения людей током.

Важно. В организации безопасной работы вентиляционной системы автоматика выполняет главную роль – позволяет проводить управление процессом без участия человека, экономя при этом значительные средства.

Сложность выполняемой работы зависит от укомплектованности щита автоматического устройства.

Оборудование для системы автоматического управления вентиляцией

Выпускается ряд типов приборов, устройств и датчиков для создания автоматики управления вентиляцией. Для управления отдельным процессом, предназначены механизмы контроля. Но устройства не только контролируют весь процесс, но и управляют эксплуатацией одного участка схемы.

Поэтому, в состав автоматики входят десятки различных реле, датчиков и других приборов.

Важно. Как правило, для обслуживания вентиляции используются электронные приборы. Но для контроля над температурой нагрева или охлаждения воздуха устанавливают механический узел обвязки.

В состав автоматического устройства управления системой вентиляции, обязательно входят следующие приборы:

  • регулятор температуры воздушных масс;
  • прибор регулировки величины оборотов вентилятора;
  • в узле обвязки устанавливается датчик нагрева воды и воздуха;
  • привод управления запорным клапаном.

Но данные приборы производят локальное регулирование работы системы или делают замеры. Контроль и определение общего уровня безопасности, всего цикла работы вентиляционной системы, осуществляется с помощью шкафа центрального управления устройства вентиляции.

Сложность системы можно понять, ознакомившись с полным списком оборудования данного устройства. Количество определенных датчиков или реле может быть значительным, а некоторые приборы представлены в единственном числе. Рассмотрим устройство некоторых щитов автоматического управления.

Устройство вентиляционной щитовой для системы с установкой электрического калорифера

Для обустройства данной щитовой используются следующие составляющие автоматики:

  • регулятор установки температурного режима (одним из лучших вариантов будет использование шведских деталей компании Regin);
  • группа управления вентиляторами приточной, вытяжной системы. Лучшим вариантом является установка приборов, осуществляющих ступенчатую или плавную регулировку;
  • индикаторы использования вентиляционной установки;
  • группа приборов для поддержания номинальной температуры в помещении;
  • выключение подачи электричества на калорифер, при отключении приточных вентиляторов;
  • группа приборов для отключения, индикации загрязнения воздушных фильтров;
  • устройство защитного отключения при перегреве системы;
  • система автоматического выключения при пиковых токах короткого замыкания, значительных перегрузках.

Щитовая для обслуживания автоматики с водяными калориферами

Автоматика приточной вентиляции призвана обеспечивать безопасность при эксплуатации приборов подогрева воздуха, вентиляции помещения. Основной прибор щита – это контроллер AQUA шведского производства. Остальные составляющие устанавливают для решения следующих вопросов:

  • производят управление вентиляторными устройствами;
  • поддерживают заданную температуру воздушных масс;
  • переключают режимы эксплуатации;
  • управляют приводами клапанов с возвратными пружинами, обеспечивающими закрытие воздухозаборными клапанами, в случае выключения вентиляторных установок, коротком замыкании фазы на корпус;
  • управляют работой насоса циркуляции воды в калорифере, устанавливаемом в узле обвязки;
  • осуществляют контролирование за температурой воды в обратной магистрали при разных режимах работы, при выключении калорифера;
  • выключают подачу энергии при загрязнении воздушного фильтра.

Автоматизация вентиляции позволяет решать сложные задачи в любых условиях и при различных режимах эксплуатации оборудования. Каждая схема вентилирования воздуха монтируется с автоматической системой управления процессом.

В заключение, отметим основные моменты, на которые следует обращать пристальное внимание при покупке приборов оснащения щита автоматического управления устройством вентилирования зданий.

Основной критерий выбора – это надежность комплектующих. Обязательно попросите у менеджера сертификат качества данных приборов, а также гарантии компании изготовителя щитов вентиляции и каждой отдельной детали. Обращайте внимание на наличие производственной базы для выполнения ремонта, гарантийного сервисного обслуживания вентиляционного оборудования, схемы автоматического управления процессом.

Каждый прибор должен иметь паспорт, инструкцию, схему подключения. Сегодня на рынке вентиляционного оборудования, различные производители предлагают разнообразный ассортимент комплектующих и схем устройств щитов вентиляции. Сделав правильный выбор, качественно выполнив монтаж автоматических шкафов, вы получаете надежное, безопасное оборудование, на достаточно долгое время.

Автоматическое управление вентиляционными системами оптимизирует их работу. Особенное значение автоматика для вентиляции имеет при возведении больших зданий. Здесь вентиляционные конструкции расположены на больших площадях, и проконтролировать в ручном режиме работу всего оборудования проблематично. Важно правильно настроить автоматическую систему. Это будет гарантией её качественной работы и облегчит управление приборами.

  • Показать всё

    Основные задачи автоматики

    Конструкция современных систем вентиляции устроена достаточно сложно. Она состоит из множества приборов, каждый из которых имеет своё назначение в обеспечении функционирования системы. Чтобы работа приборов была качественной, её нужно контролировать, добиваясь согласования действий всех агрегатов. Для этого и создана автоматика . Она значительно облегчает работу с системой и обеспечивает слаженную работу приборов без непосредственного участия человека.

    Контроль над работой механизмов осуществляется установленными на них специальными датчиками. Это позволяет оператору управлять системой удалённо с единого центра, не контактируя с каждым прибором непосредственно.

    Автоматизация систем вентиляции и кондиционирования

    Комплекс датчиков собирает информацию с вентиляционных механизмов и передаёт её на монитор центра управления. Здесь она анализируется специалистом, после чего в случае серьёзных неполадок производится коррекция рабочего процесса.

    Если необходимо, система самостоятельно может осуществлять подключение дополнительных агрегатов и контрольных приборов для оптимизации рабочего режима. Это может понадобиться при изменениях погоды, что может привести к повышенной нагрузке на механизмы, из-за чего последние могут выйти из строя.

    При аварийной ситуации автоматика сама отключит приборы от электропитания.

    Автоматика системы вентиляции оптимизирует работу комплекса, уменьшает количество обслуживающего персонала до 1-2 человек. Благодаря этому снижаются расходы на оплату труда дополнительных работников.

    Режим работы

    Центром управления приточной вентиляции является щитовая. Щит обеспечивает три режима её функциональности:

    • ручной;
    • автоматический автономный;
    • автоматический.

    Первый вариант подразумевает ручной контроль над системой. Осуществляется он оператором, дежурящим в щитовой.

    Во втором случае запуск и остановка вентиляции, а также передача функциональных данных осуществляется независимо от показаний, собранных от смежных инженерных систем. Сведения о работе получает диспетчер.

    В полностью автоматическом режимевентиляция включена в общее автоматизированное управление, которое синхронизирует все функции, отвечающие за жизнеобеспечение здания, его системную автоматизацию диспетчеризацию.

    Узлы системы

    Устанавливать подобные системы непросто, поэтому настройкой центра автоматики должны заниматься только опытные специалисты. Автоматическая вентиляция разделяется на узлы управления:

    • сенсорными датчиками;
    • регуляторами;
    • исполнительной механикой.

    Сенсорные датчики

    Первая группа приборов занимается сбором информации об окружающей среде - температуре, давлении, уровне влажности и т. п. , а также о состоянии вентиляционных агрегатов. Собранные датчиками данные поступают в центр управления для анализа.

    Информация собирается прессостатами, термостатами и гигростатами. Эти элементы контроля устанавливаются в узловых точках системы и при достижении заданных программой рабочих параметров приборов или окружающей среды соединяют или разъединяют контакты, запуская или останавливая механизмы. Таким образом, поддерживается оптимальный режим температуры и влажности воздуха внутри канала или помещения.

    Параметры контролируются датчиками, фиксирующими влажность, температуру, давление и уровень углекислого газа.

    Регуляторы оборотов и частотные преобразователи

    Вторая группа приборов обрабатывает полученные сведения. Сравнивая показания сенсоров между собой и с заложенными в программе управления нормами, они корректируют работу системы отключением или подключением соответствующих функций, что обеспечивают исполнительные механизмы.

    Корректировка рабочих функций происходит с помощью регуляторов оборотов и частотных преобразователей. Регуляторы оборотов устанавливаются для обслуживания вентиляторов и могут контролировать как один, так и целую их группу. При установке этого узла контроля нужно помнить, что сила тока, проходящая через корректирующий агрегат, не должна в сумме быть больше допустимой для него. Поэтому, выбирая регулятор, нужно обязательно учитывать, на какую максимальную силу тока он спроектирован.


    С помощью частотных преобразователей проводятся безопасные запуски двигателей, мощность которых при этом не ограничена. Но самая важная функция преобразователей - регулировка скорости вращения двигателя с помощью изменяющихся частот напряжения питания. Это обеспечивает плавную регулировку скоростного режима, не влияя на механические характеристики. Процесс такой регулировки вызывает минимальную потерю мощности.

    Такие преимущества частотных преобразователей, несмотря на их высокую стоимость, делают их всё более популярными.

Автоматизация систем вентиляции устанавливается для того, чтобы оборудованием можно было управлять без непосредственного участия человека, в автоматическом режиме. Расходы на автоматизацию вентиляции оправданны в том случае, если в здании имеется сложная разветвленная сеть вентиляционного оборудования. Подобные системы характерны для производственных корпусов, офисных и торговых центров, промышленных теплиц и других объектов, на которых поддерживаются строго определенные параметры качества воздуха.

Внедрение систем автоматики и диспетчеризации дает еще одно важное преимущество – возможность экономии электроэнергии. Таким образом, затраты на монтаж автоматики вентиляции окупаются по мере эксплуатации системы.

Применение и задачи автоматического управления

Основная задача, решаемая при установке автоматического управления системой вентиляции – это обеспечить оптимальный микроклимат во всех помещениях здания без вмешательства человека. Автоматика вентиляции контролирует показатели воздуха и интенсивность воздухообмена, подстраивая режим работы оборудования под заданные значения.

Автоматизация систем вентиляции выполняет следующие функции:

  1. контроль и обеспечение установленных характеристик микроклимата (температуры, влажности, количество подаваемого воздуха);
  2. учет различных факторов (времени года, времени суток, температуры окружающей среды и т.д.);
  3. диагностика оборудования;
  1. обеспечение работы системы в заданном режиме;
  2. аварийное отключение системы в форс-мажорных ситуациях;
  3. дистанционное управление вентиляционным оборудованием.

Преимущества автоматических систем управления

Автоматизация вентиляционных систем позволяет добиться существенных преимуществ:

  • автоматизировать работу климатического оборудования, свести к минимуму участие человека в управлении оборудованием;
  • совместить несколько типов вентиляции в одном здании. Особенно актуально для производственных корпусов, оздоровительных, развлекательных центров и других объектов, в которых находится ряд помещений разного назначения;
  • обеспечить наиболее комфортный микроклимат в здании. Климатические показатели изменяются в зависимости от условий (погоды, времени суток, количества присутствующих людей и других факторов);
  • обеспечить экономию ресурсов;

  • повысить безопасность. В частности, при угрозе пожара автоматическое отключение оборудования позволяет минимизировать распространение огня.

Система автоматического регулирования в вентиляции и кондиционировании представляет собой сложный дорогостоящий комплекс. Помимо расходов на установку оборудования, автоматика требует более квалифицированного обслуживания, что увеличивает эксплуатационные затраты. Предварительный экономический расчет позволяет принять грамотное, взвешенное решение о необходимости автоматизации вентиляции.

Типы и элементы автоматики

Все автоматические системы вентиляции условно делятся на три типа:

  1. система автоматики центрального кондиционирования воздуха предназначена для управления комплексом оборудования, предназначенного для поддержания оптимальных климатических показателей в помещении. Как правило, такие системы устанавливаются на крупных объектах – в промышленных зданиях, офисных, торговых, развлекательных центрах, на складах, в гостиницах и т.д. Сложнейшие современные системы теплоснабжения, кондиционирования и вентиляции состоят из множества элементов и узлов, работа которых может контролироваться только в автоматическом режиме;
  2. система автоматики модульных систем вентиляции . Модульные вентиляционные системы состоят из отдельных блоков, которые поставляются в готовом виде и собираются в единый комплекс. Это воздуховоды, вентиляторы, фильтры, решетки и другие элементы. В систему автоматики таких комплексов входят датчики, контроллеры и исполнительные механизмы;
  3. система автоматики систем пожарной вентиляции предназначена для обнаружения возгорания и предупреждения распространения пожара. Противопожарная автоматика работает по заданному алгоритму и позволяет зафиксировать возгорание, ограничить распространение пламени, оповестить людей, активизировать сигнализацию, противодымную защиту и оборудование пожаротушения.

В общем виде работу автоматизации и диспетчеризации систем кондиционирования и вентиляции можно описать следующим образом. Датчики, установленные в помещениях, замеряют климатические показатели и передают их на контроллер. Контроллер сверяет эти данные с параметрами, заданными в его программе, и отправляет сигнал исполнительным устройствам, после чего срабатывают соответствующие участки системы. Кроме того контроллер фиксирует изменения в работе самого климатического оборудования и извещает о необходимости профилактического ремонта.

Элементы автоматического управления вентиляцией объединяются на щитах автоматики. Таким образом, при необходимости специалист может контролировать работу системы из единого пункта управления.

Проектирование и монтаж систем автоматизации

Проектирование

Поскольку современные системы автоматизации вентиляции и кондиционирования отличаются высокой сложностью, особое внимание уделяется проектированию этих комплексов.

Разработкой проекта должны заниматься квалифицированные инженеры. Вентиляционная система и система автоматизированного управления составляют единый проект.

Монтаж

Монтаж автоматизированных систем осуществляется специализированными компаниями. Необходимым условием является соблюдение стандартов СНиП и ГОСТ. По окончании установки проводятся обязательные пуско-наладочные работы. Их цель – оценить состояние и работоспособность всего климатического оборудования, датчиков, замерить основные показатели функционирования системы.

Важные факторы

В процессе проектирования учитываются следующие факторы:

  • размеры и назначение, количество и функции помещений;
  • тип вентиляционной системы;
  • требования к качеству воздуха;
  • возможность и необходимость применения дополнительного климатического оборудования (осушителей, увлажнителей, ионизаторов воздуха и т.д.);
  • планируемый бюджет.

Специалисты компании «ЭКОХАУС» имеют большой опыт устройства автоматических систем вентиляции. По вашему запросу мы рассчитаем стоимость автоматики для вашего объекта, проконсультируем по вопросам, связанным с установкой климатического оборудования.

Расчет стоимости

Онлайн заявка на расчет стоимости проекта системы автоматизации вентиляции позволяет нам подобрать для Вас самый подходящий вариант. Мы детально ознакомимся с предъявленными Вами эксплуатационными требованиями и сообщим цену работ, которую Вы сможете сравнить с предложениями других компаний. Также стоимость проекта автоматизации можно узнать по телефону

Параметры влияющие на расчет стоимости систем автоматизации вентиляции

  1. Размеры помещения. Стоимость системы автоматизации зависит от размеров и назначения, количества и функционального назначения помещений.
  2. Требования к качеству воздуха. От типа и назначения, условий эксплуатации и специфических требований зависит необходимость применения дополнительного климатического оборудования (осушителей, увлажнителей, ионизаторов воздуха и т.д.).
  3. Технология устройства. Стоимость оборудования, также как и затраты на соблюдение технологии различны, но мы гарантируем подобрать их по цене оптимальной качеству.

Журнал «Мир климата» продолжает публикацию фрагментов новой учебной программы ДПО Учебно-консультационного центра «УНИВЕРСИТЕТ КЛИМАТА» под названием «Автоматизация систем отопления, вентиляции и кондиционирования воздуха».

Ранее мы подробно описали работу с приложениями современной среды разработки CAREL c.Suite. Теперь расскажем о разработке пользовательских интерфейсов диспетчеризации в среде c.Web

Разработка пользовательских интерфейсов диспетчеризации в среде c.Web

Средства диспетчеризации

Номенклатура продукции компании CAREL включает различные средства диспетчеризации как локального, так и глобального уровня.

Свободнопрограммируемые контроллеры семейства c.pCO

Контроллеры семейства c.pCO, оснащенные встроенным портом Ethernet, предоставляют возможность непосредственной диспетчеризации через Интернет за счет встроенного веб-сервера.

Пользовательский интерфейс сервера может быть как стандартным, предоставляемым компанией CAREL бесплатно, так и разработанным в соответствии с требованиями конкретного заказчика.

Стандартного пользовательского интерфейса достаточно для мониторинга работы установки, управления ею и анализа поведения оборудования во времени за счет встроенной функции ведения журнала (лога) значений выбранных параметров с последующим просмотром их в виде графиков.




Такое решение оптимально для объектов с небольшим количеством оборудования, где бюджет не позволяет установить выделенный сервер системы диспетчеризации.


Сервер диспетчеризации уровня объекта BOSS

Все контроллеры семейства c.pCO, независимо от модификации, имеют как минимум один встроенный порт RS485, который может быть использован для интеграции контроллера в шину диспетчеризации по протоколам ModBus или BACnet.

Сбор, хранение, отображение информации от полевых контроллеров и уведомление персонала объекта о требующих внимания ситуациях должны осуществляться сервером системы диспетчеризации BOSS .

Особенностями и достоинствами сервера системы диспетчеризации BOSS являются:

  • доступ через любой веб-браузер с ПК, планшета или смартфона;
  • встроенная точка доступа Wi-Fi позволяет удаленно работать с BOSS как с мобильного устройства так с персонального компьютера;
  • при необходимости возможно подключение монитора через разъемы Display Port или VGA , а также клавиатуры и мыши через порты USB;
  • автоматическое масштабирование страниц сервера под разрешение экрана устройства, с которого происходит доступ;
  • интегрированная поддержка протоколов Modbus (Master и Slave) и BACnet (Client и Server) по шинам MS/TP (RS485) и TCP/IP;
  • максимально упрощенная процедура развертывания системы диспетчеризации на основе BOSS за счет визуализации данных с помощью шаблонных страниц.


Решение с использованием BOSS ориентировано на объекты, где необходима интеграция в единый интерфейс диспетчеризации десятков - сотен контроллеров как производства CAREL , так и сторонних, поддерживающих наиболее распространенные в настоящее время коммуникационные протоколы ModBus и BACnet.

Облачный сервис диспетчеризации tERA



Облачный сервис диспетчеризации tERA, использующий возможности Интернета для взаимодействия с полевыми контроллерами, расположенными в различных местах, - универсальное решение для объектов любого масштаба, а также для сетей объектов.

Достоинства tERA:

  • отсутствие необходимости размещения какого-либо серверного оборудования на местах;
  • доступ к интернет-порталу tERA возможен с любого устройства, подключенного в глобальной сети;
  • не требуется специальная настройка сетевого оборудования на объекте, где установлены системы автоматизации, которые предполагается контролировать;
  • детализация информации по оборудованию и возможности управления зависят от типа пользователя, устанавливаемого локальным администратором;
  • автоматическое создание отчетов как по расписанию, так и при наступлении определенных событий, требующих вмешательства обслуживающего персонала;
  • поддержка обновления программного обеспечения полевых контроллеров;
  • встроенный инструментарий анализа поведения оборудования путем сравнения параметров во времени и между различными объектами;
  • пользовательский интерфейс может быть как минималистичным, состоящим только из таблиц и графиков, так и оформленным с учетом пожеланий конкретного заказчика.



Применение сервиса tERA особенно актуально для сетей объектов малого и среднего масштаба, где нецелесообразно применение физических серверов диспетчеризации из-за малого количества оборудования на каждом из объектов, а количество самих объектов велико, что делает затруднительным прямое подключение к каждому из них.

Также сервис tERA является оптимальной платформой для сервисных организаций, предлагающих своим клиентам услуги периодического сервисного обслуживания и ремонта оборудования.


Средства разработки пользовательских интерфейсов

Все инструменты диспетчеризации предполагают возможность создания пользовательского интерфейса, оформленного в соответствии с требованиями заказчика.

Важной составляющей пользовательского интерфейса оператора является графическое оформление, от удобства, наглядности и эргономичности которого зависит эффективность работы диспетчера.

Кроме того, к современным средствам визуализации информации в системах BMS предъявляются требования по обеспечению кроссплатформенности и поддержки мобильных устройств.

Всем перечисленным требованиям соответствует среда разработки пользовательских интерфейсов CAREL c.Web, имеющая следующие основные характеристики:

поддержка современных кроссплатформенных технологий визуализации - используется стандартный код HTML и SVG графика, поддерживаемая всеми современными платформами - в отличие от FLASH и ряда других технологий;

процесс разработки максимально оптимизирован для использования библиотечных элементов с минимально необходимым объемом программирования. В то же время опытному разработчику предоставляются широкие возможности настройки;

предусмотрена поддержка мобильных устройств с точки зрения удобства для оператора при работе с экранами малого размера;

защита интеллектуальной собственности - учтены интересы разработчиков - в целевое устройство загружается откомпилированный HTML-код, в то время как исходный проект остается у автора;

c.Web является единым унифицированным инструментом разработки пользовательских интерфейсов для средств диспетчеризации различного уровня производства CAREL вплоть до возможности переноса проектов из одной системы в другую с сохранением функциональных возможностей и минимальными доработками.

c.Web

Запуск c.Web и создание проекта



Для запуска c.Web следует выбрать соответствующий ярлык в панели задач и запустить его от имени администратора:

После этого меню приобретет вид:



Следует выбрать Project Console, что приведет к появлению соответствующего окна:



Если предполагается работать с уже выбранным проектом, то следует нажать кнопку Builder. Если требуется изменить текущий проект, следует нажать красную кнопку остановки сервера.




В открывшемся окне следует указать имя нового проекта и папку, в которой он будет находиться:



Следует отметить, что если в указанной папке окажутся файлы ранее созданного проекта, то при запуске редактора они будут открыты как новый проект. Таким путем можно разрабатывать новые проекты на основе ранее созданных.




а затем - кнопку Builder для запуска собственно редактора c.Web.

Если сервер ранее не был сконфигурирован, появится окно параметров, в котором необходимо назначить имя сервера, его адрес и тип.



В нашем случае тип должен быть Carel, а имя и IP-адрес целевого контроллера мы указываем, исходя из собственных предпочтений.



На закладке Advanced необходимо указать пути к папкам, содержащим таблицы параметров контроллера, доступных для диспетчеризации, и к папкам, куда редактор поместит готовый проект.



При наличии связи с контроллером по локальной сети удобно загружать готовый проект непосредственно в котроллер с помощью встроенного FTP-сервера, поэтому в качестве целевых папок указываем соответствующие папки в контроллере.



Для заполнения поля Config Source необходимо создать файл конфигурации переменных контроллера, что можно сделать, только имея исходный проект.

Для этого следует вернуться к проекту приложения контроллера и открыть его в среде разработки c.Suite, в программе c.design.




Устанавливаем галочку Enable c.Web - это необходимо для корректной работы проекта пользовательского интерфейса после загрузки в контроллер:



Экспортируем переменные проекта в формате, соответствующем редактору c.Web:



Откроется окно, в котором следует указать папку, куда мы намерены сохранить конфигурационный файл.



После выполнения указанных действий появится сообщение вида:



Поскольку мы внесли изменения в проект приложения контроллера, его необходимо перезагрузить:


Теперь мы можем вернуться к настройке редактора c.Web, указав в поле Config Source путь к папке, куда был сохранен файл конфигурации переменных из c.design:



В итоге указанное окно примет вид:



Установка галочки Cleanup dataroot приведет к очистке папки, куда в контроллер будут загружаться файлы проекта, поэтому, если в процессе работы туда будут помещаться какие-либо дополнительные файлы, не входящие в проект c.Web, они будут удалены. В ряде случаев это нежелательно, поэтому данную галочку лучше не устанавливать.



На вкладке Layout выберем подходящий формат страниц с учетом разрешения экрана, на котором, вероятнее всего, будет отображаться создаваемый пользовательский интерфейс:



После нажатия OK откроется основное окно редактора:


Получение точек данных и привязка к объектам

Первое, что необходимо сделать - загрузить информацию о точках данных, которые мы планируем использовать в нашем проекте. Для этого следует щелкнуть правой кнопкой мыши по имени проекта и выбрать Acquire Datapoints:



При успешном выполнении процедуры появится окно вида:



Прочитанные переменные можно увидеть в разделе OBJECTS дерева проекта:


Собственно пользовательский интерфейс начнем создавать на странице Main. Перенесем объект Circular Meter из библиотеки на страницу проекта:



Свойства выбранного объекта отображаются в соответствующем окне редактора. Для привязки переменной к объекту для отображения значения переменной необходимо использовать свойство Base.



Привяжем к имеющемуся объекту переменную, содержащую значение текущей температуры:



И поменяем ряд других параметров, определяющих внешний вид и поведение объекта:


Загрузка в контроллер

Чтобы убедиться, что механизм импорта переменных сработал правильно, загрузим полученный проект с одним объектом в целевой контроллер.

Для этого необходимо щелкнуть правой кнопкой по имени проекта и выбрать Distribute:



По ее окончании, открыв браузер и указав IP-адрес контроллера, мы сможем убедиться, что загрузка прошла успешно и данные корректно отображаются в веб-интерфейсе контроллера:



Для изменения заголовков страниц веб-интерфейса следует модифицировать соответствующую строку в коде объекта index.htm, находящегося в разделе Library - ATVISE - Resources:



Добавим на нашу страницу объект, позволяющий не только просматривать, но и изменять значения переменных в контроллере.

Таким объектом может быть, например, Read/Write Variable - он особенно удобен для использования на сенсорных экранах, так как содержит крупные кнопки уменьшения и увеличения значения, а также движок регулятора.

Поместим указанный объект на страницу, привяжем к переменной уставки температуры и модифицируем вид объекта в соответствии с своими предпочтениями:



После загрузки обновленного проекта в контроллер появится возможность изменять заданное значение через веб-интерфейс:



Добавим переключатель для изменения состояния дискретной переменной и привяжем его к включению и выключению установки:


Динамическая индикация тревоги

Добавим индикацию тревоги. Для этого нарисуем круг с помощью инструмента Add circle.



Для ряда графических объектов в c.Web имеется набор готовых шаблонов, в частности это касается кругов: выделив круг и выбрав в меню Templates, можно применить формат шаблона к выбранному объекту.



Сделаем круг красным с градиентной заливкой.



Для изменения состояния индикатора тревоги в зависимости от ситуации воспользуемся механизмом Add Simple Dynamic, встроенным в c.Web.



В пункте EVENT укажем значение переменной состояния тревоги, а в пункте ACTION - сопоставим состоянию наличия тревоги мигание выбранного объекта и состояние его невидимости при отсутствии тревоги.


Фактически механизм Simple Dynamics представляет собой мастер, который простыми визуальными средствами позволяет создавать определенные последовательности действий, требующих программирования. Simple Dynamics позволяет упростить этот процесс, однако на выходе возникает скрипт, который может быть использован как основа и в дальнейшем вручную модифицирован разработчиком.

Для отображения и редактирования скрипта следует нажать кнопку Script на панели c.Web:



Полученный скрипт можно проанализировать и дополнить.



Для более развернутого уведомления оператора о наличии тревоги к визуальному уведомлению - мигающему красному индикатору целесообразно добавить акустический сигнал.

Для этого добавим в папку Resources файл, содержащий сигнал тревоги:



Кроме того, добавим еще один индикатор - зеленый, который должен светиться, когда тревога отсутствует:



Размеры зеленого индикатора зададим такими же, как и красного, а для точного расположения обоих индикаторов друг над другом воспользуемся инструментами выравнивания:



Доработаем скрипт следующим образом:



Дополнительные сведения о доступных командах и синтаксисе скриптов доступны во встроенной справке.

Добавим еще один регулятор, который привяжем к переменной, определяющей порог срабатывания тревоги.



И добавим подписи к элементам индикации и управления:



Для повышения эстетичности создаваемого веб-интерфейса добавим градиентный фон, воспользовавшись инструментом Add Rectangle в панели управления c.Web.



Зададим параметры прямоугольника и расположим его под уже имеющимися объектами:



После загрузки в контроллер веб-интерфейс будет иметь вид:


Встраивание готовых страниц

Дальнейшее расширение функциональных возможностей веб-интерфейса возможно с использованием готовых шаблонов, доступных для скачивания из раздела c.Web портала ksa.carel.com:



В частности, доступны готовые страницы с отображением встроенного дисплея контроллера WebpGD, графиков логов и тревог.

Для применения указанных шаблонов соответствующие файлы необходимо загрузить в файловую систему контроллера по FTP . Для этого можно использовать программу FileZilla:


Заранее скачанные папки следует подготовить для копирования в папку HTTP контроллера.



Если до этого момента в контроллер уже был загружен веб-интерфейс, данная папка не будет пустой, и папки шаблонов следует добавить к уже имеющимся файлам:


По завершении процесса передачи данных папка HTTP контроллера будет иметь вид:


Чтобы воспользоваться шаблонами предлагается добавить на главную страницу пользовательского интерфейса меню с тремя пунктами: WebpGD, Тренды и Тревоги.



Также добавим новую страницу, назвав ее WebpGD.



В меню File выберем пункт Settings для настройки параметров новой страницы:


Установим размеры страницы 900 на 500 пикселей, после чего воспользуемся инструментом Add Foreign Object:


Нарисуем прямоугольник размером 460 на 800 пикселей - это зона, где будет отображаться экран контроллера и кнопки управления.

Щелкнув по данной зоне, получим окно редактирования скрипта объекта, куда добавим команду обращения к ранее загруженной шаблонной странице: