Вконтакте Facebook Twitter Лента RSS

Адресно-аналоговые системы – раннее обнаружение пожара. Средства обнаружения пожара «сверхраннее» или своевременное обнаружение

В Российской Федерации ежедневно происходит около 700 пожаров, на которых погибает более 50 человек. Поэтому сохранение жизни людей остается одной из важнейших задач всех систем безопасности. В последнее время все больше обсуждается тема раннего обнаружения пожара.

Разработчики современной противопожарной техники соревнуются в повышении чувствительности пожарных извещателей к основным признакам пожара: теплу, оптическому излучению от пламени и концентрации дыма. В этом направлении проводится огромная работа, но все пожарные извещатели срабатывают, когда хотя бы небольшой пожар уже возник. И мало кто обсуждает тему обнаружения возможных признаков пожара. Однако приборы, которые могут регистрировать не пожар, а лишь угрозу или вероятность появления пожара, уже разработаны. Это – газовые пожарные извещатели.

Сравнительный анализ

Известно, что пожар может возникнуть как от внезапной аварийной ситуации (взрыв, короткое замыкание), так и при постепенном накоплении опасных факторов: скоплении горючих газов, паров, перегрева вещества выше точки воспламенения, тления изоляции проводов электрокабелей от перегрузки, гниения и разогрева зерна и т.п.

На рис. 1 представлен график типичной реакции газового пожарного извещателя на пожар, начинающийся с горящей сигареты, упавшей на матрас. Из графика видно, что газовый извещатель реагирует на монооксид углерода через 60 мин. после попадания горящей сигареты на матрас, в этом же случае фотоэлектрический дымовой извещатель реагирует через 190 мин., ионизационный дымовой – через 210 мин., что значительно увеличивает время для принятия решения об эвакуации людей и ликвидации очага пожара.

Если фиксировать комплекс параметров, который может привести к началу пожара, то можно (не дожидаясь появления пламени, дыма) изменить обстановку и избежать пожара (аварии). При раннем получении сигнала от газового пожарного извещателя обслуживающий персонал успеет предпринять меры к ослаблению или устранению фактора угрозы. Например, это может быть проветривание помещения от горючих паров и газов, при перегреве изоляции – выключение питания кабеля и переход на использование резервной линии, при коротком замыкании на электронной плате вычислительных и управляемых машин – тушение локального пожара и удаление неисправного блока. Таким образом, именно человек принимает окончательное решение: вызывать пожарную охрану или устранять аварию своими силами.

Виды газовых извещателей

Все газовые пожарные извещатели различаются по типу сенсора:
- металлооксидные,
- термохимические,
- полупроводниковые.

Металлооксидные сенсоры

Изготавливаются металлооксидные сенсоры на основе толстопленочной микроэлектронной технологии. В качестве подложки используется поликристаллическая окись алюминия, на которую с двух сторон наносятся нагреватель и металлооксидный газочувствительный слой (рис. 2). Чувствительный элемент помещен в корпус, защищенный проницаемой для газа оболочкой, удовлетворяющей всем требованиям взрывопожаробезопасности.



Металлооксидные сенсоры предназначены для определения концентраций горючих газов (метан, пропан, бутан, водород и т.д.) в воздухе в интервале концентраций от тысячных до единиц процентов и токсичных газов (СО, арсин, фосфин, сероводород и т.д.) на уровне предельно допустимых концентраций, а также для одновременного и селективного определения концентраций кислорода и водорода в инертных газах, например в ракетной технике. Кроме того, они имеют рекордно низкую для своего класса электрическую мощность, необходимую для нагрева (менее 150 мВт), и могут применяться в сигнализаторах утечки газов и системах противопожарной сигнализации как стационарных, так и носимых.

Термохимические газосигнализаторы

Среди методов, применяемых для определения концентрации в атмосферном воздухе горючих газов или паров горючих жидкостей, используется термохимический метод. Его сущность заключается в измерении теплового эффекта (дополнительного повышения температуры) от реакции окисления горючих газов и паров на каталитически активном элементе датчика и дальнейшем преобразовании полученного сигнала. Датчик сигнализатора, используя этот тепловой эффект, формирует электрический сигнал, пропорциональный концентрации горючих газов и паров с различными коэффициентами пропорциональности для различных веществ.

При горении различных газов и паров термохимический датчик выдает сигналы, разные по величине. Одинаковым уровням (в % НКПР) различных газов и паров в воздушных смесях соответствуют неравные выходные сигналы датчика.

Термохимический датчик не избирателен. Его сигнал характеризует уровень взрывоопасности, определяемый суммарным содержанием горючих газов и паров в воздушной смеси.

В случае контроля совокупности компонентов, в которой содержание отдельных, заранее известных горючих компонентов колеблется от нуля до какой-то концентрации может привести к погрешности контроля. Такая погрешность существует и при нормальных условиях. Этот фактор необходимо учитывать для задания границ диапазона сигнальных концентраций и допуском на их изменение – пределом допускаемой основной абсолютной погрешности срабатывания. Пределы измерения сигнализатора – это наименьшее и наибольшее значение концентрации определяемого компонента, в рамках которых сигнализатор осуществляет измерение с погрешностью, не превышающей заданную.

Описание измерительной схемы

Измерительная схема термохимического преобразователя представляет собой мостовую схему (см. рис. 2). Чувствительный В1 и компенсирующий В2 элементы, расположенные в датчике, включены в мостовую схему. Вторая ветвь моста – резисторы R3–R5 находятся в блоке сигнализации соответствующего канала. Мост балансируется резистором R5.

При каталитическом горении воздушной смеси горючих газов и паров на чувствительном элементе В1 происходит выделение тепла, увеличение температуры и, следовательно, увеличение сопротивления чувствительного элемента. На компенсирующем элементе В2 горения не происходит. Сопротивление компенсирующего элемента изменяется при его старении, изменении тока питания, температуры, скорости движения контролируемой смеси и т.п. Эти же факторы действуют и на чувствительный элемент, что значительно уменьшает вызванный ими разбаланс моста (дрейф нуля) и погрешность контроля.

При стабильном питании моста, стабильной температуре и скорости контролируемой смеси разбаланс моста со значительной степенью точности является результатом изменения сопротивления чувствительного элемента.

В каждом канале устройство питания моста датчика обеспечивает регулированием тока постоянную оптимальную температуру элементов. В качестве датчика температуры, как правило, используется сам же чувствительный элемент В1. Сигнал разбаланса моста снимается с диагонали моста ab.

Полупроводниковые газовые сенсоры

Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Этот принцип позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам (извещателям), в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода от 0,00001% объемного), селективность, быстродействие и дешевизну полупроводниковых газовых сенсоров следует рассматривать как основное их преимущество перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обуславливает низкую стоимость изделий при массовом производстве и высокие технические характеристики.

Полупроводниковые газочувствительные сенсоры – это высокотехнологичные элементы с низким энергопотреблением (от 20 до 200 мВт), высокой чувствительностью и увеличенным быстродействием до долей секунд. Металлооксидные и термохимические сенсоры являются слишком дорогостоящими для такого использования. Внедрение в производство газовых пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволяет намного снизить стоимость газовых извещателей, что немаловажно для массового применения.

Нормативные требования

Нормативные документы на газовые пожарные извещатели еще не разработаны в полной мере. Имеющиеся ведомственные требования РД БТ 39-0147171-003-88 распространяются на объекты нефтяной и газовой промышленности. В НПБ 88-01 по размещению газовых пожарных извещателей сказано, что их следует устанавливать в помещениях на потолке, стенах и других строительных конструкциях зданий и сооружений в соответствии с инструкцией по эксплуатации и рекомендациями специализированных организаций.

Однако в любом случае, для того чтобы точно рассчитать количество газовых извещателей и правильно произвести их установку на объекте, предварительно необходимо знать:
- параметр, по которому контролируется безопасность (тип газа, который выделяется и свидетельствует об опасности, например CO, CH4, H2 и т.д.);
- объем помещения;
- назначение помещения;
- наличие систем вентиляции, подпора воздуха и т.д.

Резюме

Газовые пожарные извещатели – это приборы следующего поколения, и поэтому они еще требуют от отечественных и зарубежных компаний, занимающихся противопожарными системами, новых научно-исследовательских изысканий по разработке теории газовыделения и распространения газов в помещениях разных по назначению и эксплуатации, а также проведению практических экспериментов для разработки рекомендаций по рациональному размещению таких извещателей.

В настоящее время, большинство методов обнаружения лесных пожаров связаны с личным присутствием спасателей: патрулированием, наблюдением с вышек и вертолётов, а также с применением космических данных. Все применяемые меры, безусловно, эффективны в отсутствие аномальной жары. Но, в период засухи, когда пожары охватывают одновременно огромные территории в самых разных уголках страны, остро встаёт вопрос о более совершенных системах наблюдения и раннего предупреждения лесных пожаров.

Система «Forest fire detection»

Инновационные разработки в этом направлении позволили создать совершенно уникальную систему «Forest fire detection». В отличие от всех ныне существующих способов борьбы с пожарами, эта система работает автоматизировано, практически без человеческого участия, оповещая оператора на самых ранних стадиях обнаружения огня.

«Forest fire detection» представляет собой масштабную систему датчиков, позволяющих:

  • Вести непрерывное видеонаблюдение.
  • Обнаруживать на ранних стадиях дым.
  • Автоматически оповещать спасательные службы.
  • Прогнозировать масштабы развития очага возгорания.
  • Рассчитывать количество сил, направленных на ликвидацию пожара.

Оборудование оснащено автономной системой питания и имеет высокую степень защиты от различных погодных условий и форс-мажорных обстоятельств. А это значит, что система не выйдет из строя во время грозы и позволит обнаружить очаги, пораженные молнией.

Как приобрести систему

Компания «Ксорекс-Сервис» , представляющая технологию «Forest fire detection» на белорусском рынке, зарекомендовала себя как надёжный партнёр в сфере IT-технологий. Всё оборудование, продвигаемое компанией, проходит обязательную сертификацию и отличается отменным качеством.

Работа над каждым заказом ведётся в индивидуальном порядке:

  1. На начальном этапе высококвалифицированные специалисты проведут оценку местности, учтут все особенности рельефа, наличие инфраструктуры, и даже погодные условия предоставляемой территории.
  2. На втором этапе будут осуществлены все работы по установке и настройке оборудования, с учётом всех индивидуальных особенностей, выявленных ранее.
  3. После подготовки, специалисты компании обучат работе с системой персонал вашей организации и обеспечат постоянную поддержку со своей стороны. Таковы гарантии сервисного обслуживания!

Привлекательно и то, что вы сами, воочию, можете убедиться в эффективности «Forest fire detection» опробовав нашу систему . Вас обязательно порадует команда профессионалов и стоимость обслуживания системы. А своевременное прогнозирование страшного стихийного бедствия поможет избежать множества необратимых последствий лесных пожаров.

(световые, тепловые, дымовые) способны только на сообщение: «Горим! Пора тушить очаг возгорания!» Но другого и быть не может, поскольку работа их датчиков основана на таких физических принципах, как детектирование света, тепловыделения или задымленности. Получить сообщение «Внимание! Здесь возможно возгорание!» можно только установив постоянный контроль над газодинамическим составом воздушной среды помещений. Такой контроль позволит принять адекватные меры по предупреждению пожара и его ликвидации в зародыше. Этим и интересен разработанный специалистами НПП «Гамма» способ раннего обнаружения пожара с использованием полупроводниковых химических сенсоров, который был отмечен дипломами и золотыми медалями на международных выставках «Брюссель-Эврика 2000» и «Женева 2001».

Так, достоверный способ предупреждения пожара на ранней стадии, предшествующей возгоранию,— это контроль химического состава воздуха, который резко изменяется из-за термического разложения перегретых или начинающих тлеть горючих материалов. На этой стадии еще эффективны превентивные меры. Например, в случае перегрева электроприборов (утюга или электрокамина) они могут быть вовремя автоматически отключены по сигналу с газового датчика.

Состав выделяющихся при горении газов

Ряд газов, выделяющихся на начальной стадии горения (тления), определяются составом именно тех материалов, которые участвуют в этом процессе. Однако в большинстве случаев можно уверенно выделить и основные характерные газовые компоненты. Подобные исследования проводились в Институте пожарной безопасности (г.Балашиха Московской обл.) с использованием стандартной камеры объемом 60 м 3 для имитации пожара. Состав выделяющихся при горении газов определялся при помощи хроматографии. Эксперименты дали следующие результаты.

Водород (Н 2) — основной компонент выделяемых газов на стадии тления в результате пиролиза материалов, используемых в строительстве, таких как древесина, текстиль, синтетические материалы. На начальной стадии пожара, в процессе тления, концентрация водорода составляет 0,001-0,002%. В дальнейшем происходит рост содержания ароматических углеводородов на фоне присутствия недоокисленного углерода — оксида углерода (СО) — 0,002-0,008%. При появлении пламени растет концентрация диоксида углерода (СО 2) до уровня 0,1%, что соответствует сгоранию 40-50 г древесины или бумаги в закрытом помещении объемом 60 м 3 и эквивалентно 10 выкуренным сигаретам. Такой уровень СО2 достигается также в результате присутствия в помещении двух человек в течение 1 ч.

Эксперименты показали, что порог обнаружения системы раннего предупреждения пожара в атмосферном воздухе при нормальных условиях должен находиться для большинства газов, в том числе водорода и оксида углерода, на уровне 0,002%. Желательно, чтобы быстродействие системы было не хуже 10 с. Такой вывод можно рассматривать как основополагающий для разработок целого ряда предупреждающих пожарных газовых сигнализаторов.

Существующие средства газоанализа экологической направленности (в том числе на электрохимических, термокаталитических и других сенсорах) слишком дороги для такого использования. Внедрение в производство пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволит резко снизить стоимость газовых сенсоров.

Полупроводниковые газовые датчики

Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Это обстоятельство позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам, в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода — от 0,000001%!), селективность, быстродействие и дешевизну полупроводниковых газовых датчиков следует рассматривать как основные их преимущества перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обусловливает низкую стоимость изделий при массовом производстве и высокие технические и энергосберегающие характеристики.

Для того, чтобы физико-химические процессы протекали на поверхности чувствительного слоя достаточно быстро, обеспечивая быстродействие на уровне нескольких секунд, сенсор периодически разогревается до температуры 450-500°С, что активизирует его поверхность. В качестве чувствительных полупроводниковых слоев обычно используют мелкодисперсные оксиды металлов (SnO 2 , ZnO, In 2 O 3 и др.) с легирующими добавками Pl, Pd и др. Благодаря структурной пористости формируемых материалов, достигаемой с помощью некоторых технологических приемов, их удельная поверхность — около 30 м 2 /г. Нагревателем служит резистивный слой, выполненный из инертных материалов (Pl, RuO 2 , Au и др.) и электрически изолированный от полупроводникового слоя.

При кажущейся простоте такие методы формирования сконцентрировали в себе все последние достижения материаловедения и микроэлектронной технологии. Это обусловило высокую конкурентоспособность сенсора, который может работать несколько лет, периодически находясь в «стрессовом» состоянии при разогреве до 500°С, сохраняет при этом высокие эксплутационные характеристики, чувствительность, стабильность, селективность и потребляет низкую мощность (в среднем несколько десятков милливатт). Промышленное производство полупроводниковых сенсоров широко развито во всем мире, но основная доля мирового рынка приходится на японские компании. Признанный лидер в этой области — фирма Figaro с годовым объемом производства сенсоров около 5 млн. шт. и масштабным производством приборов на их основе, включая элементную базу и схемотехнические решения с программируемыми устройствами.

Однако ряд особенностей производства полупроводниковых сенсоров затрудняют его совместимость с традиционной кремниевой технологией в рамках замкнутого цикла. Объясняется это тем, что сенсоры — не столь массовое изделие, как микросхемы, и имеют больший разброс параметров из-за специфики условий работы (зачастую в агрессивной среде). Их производство требует очень специфичного ноу-хау в области физической химии, материаловедения и т.д. Поэтому успех здесь сопутствует крупным специализированным фирмам (например, Microchemical Instrument — европейский филиал Motorola), которые не спешат делиться своими разработками в области высоких технологий. К сожалению, в России и СНГ эта отрасль никогда не была хорошо развита, несмотря на достаточное число исследовательских групп — РНЦ «Курчатовский институт», МГУ, ЛГУ, Воронежский государственный университет, ИОНХ РАН, НИФХИ им. Карпова, Саратовский университет, Новгородский университет и т. д.

Отечественные разработки полупроводниковых сенсоров

Наиболее развитая технология производства полупроводниковых сенсоров предложена в РНЦ «Курчатовский институт». Здесь разработаны малогабаритные полупроводниковые сенсоры для анализа химического состава газов и жидкостей. Они изготавливаются по микроэлектронной технологии и сочетают в себе достоинства микроэлектронных устройств — низкую стоимость при массовом производстве, миниатюрность, низкую потребляемую мощность — с возможностью измерения концентрации газов и жидкостей в широких пределах и с достаточно высокой точностью. Разработанные приборы делятся на две группы: металлооксидные и структурные полупроводниковые сенсоры.

Металлооксидные сенсоры. Изготавливаются по толстопленочной технологии. В качестве подложки в них использован поликристаллический оксид алюминия, на который с двух сторон нанесены нагреватель и металлооксидный газочувствительный слой. Чувствительный элемент помещен в газопроницаемый корпус, удовлетворяющий требованиям взрывопожаробезопасности.

Сенсоры способны определять концентрацию горючих газов (метана, пропана, бутана, водорода и т.д.) в воздухе в интервале от 0,001% до единиц процентов, а также токсичных газов (угарного газа, арсина, фосфина, сероводорода и т.д.) на уровне предельно допустимой концентрации (ПДК). Они могут быть также использованы для одновременного и селективного определения концентрации кислорода и водорода в инертных газах, например для ракетной техники. Для нагрева эти приборы требуют рекордно низкую для своего класса электрическую мощность — менее 150 мВт. Металлооксидные сенсоры предназначены для применения в сигнализаторах утечки газов и системах пожарной сигнализации (как стационарных, так и карманных).

Структурные полупроводниковые сенсоры. Это сенсоры на основе кремниевых структур металл-диэлектрик-полупроводник (МДП), металл-твердый электролит-полупроводник и диоды Шотки.

МДП-структуры с затвором из палладия или платины используются для определения концентрации водорода в воздухе или инертных газах. Порог обнаружения водорода — порядка 0,00001%. Сенсоры успешно применялись для определения концентрации водорода в теплоносителе ядерных реакторов с целью поддержания их безопасности. Структуры с твердым электролитом (трифторид лантана, проводящий по ионам фтора) предназначены для определения концентрации фтора и фторидов (прежде всего фтористого водорода) в воздухе. Работают при комнатной температуре, позволяют определять концентрацию фтора и фтористого водорода на уровне 0,000003%, что составляет примерно 0,1 ПДК. Измерение утечек фтористого водорода особенно важно для определения экологической обстановки в регионах с крупным производством алюминия, полимеров, ядерного топлива.

Подобные структуры, выполненные на основе карбида кремния и работающие при температуре около 500 °С, могут использоваться для измерения концентрации фреонов.

Индикатор оксида углерода и водорода СО-12

Отмеченный на международных выставках способ раннего обнаружения пожара обеспечивает одновременный контроль относительных концентраций в воздухе двух или более газов, таких как ароматические углеводороды, водород, оксид и диоксид углерода. Полученные значения сравниваются с заданными, и в случае их совпадения формируется сигнал тревоги. Контроль и сравнение относительных концентраций газовых компонент проводятся с заданной периодичностью. Возможность ложных срабатываний измерительного устройства при повышении концентрации одного из газов исключена, если нет возгорания.

В качестве измерительного устройства предложен индикатор СО-12, предназначенный для обнаружения в воздушной атмосфере газообразного оксида углерода и водорода в диапазоне их концентраций от 0,001 до 0,01%. Прибор представляет собой девятиуровневый пропорциональный индикатор в виде линейки светодиодов трех цветов — зеленого (диапазон малых концентраций), желтого (средний уровень) и красного (высокий уровень). Каждому диапазону соответствуют три светодиода. При загорании красных светодиодов включается звуковой сигнал, предостерегающий людей об опасности отравления.

Принцип работы индикатора основан на регистрации изменения сопротивления (R) полупроводникового газочувствительного сенсора, температура которого стабилизируется на уровне 120 °С в процессе измерений.

При этом нагревательный элемент включен в обратную связь операционного усилителя — терморегулятора — и периодически, каждые 6 с, отжигается в течение 0,5 с при температуре 450 °С. Далее следует изотермическая релаксация сопротивления R при взаимодействии с угарным газом. Измерение R осуществляется перед следующим отжигом (рис. 3, точка C, далее следует отжиг — О). Процессом измерения и выводом на индикатор данных управляет программируемое устройство.

Его основные технические характеристики:

Индикатор можно эффективно использовать в качестве пожарного сигнального устройства как в жилых помещениях, так и на промышленных объектах. Дачные домики, коттеджи, бани, сауны, гаражи и котельные, предприятия с производством, основанном на использовании открытого огня и термообработки, предприятия горнодобывающей, металлургической и нефтегазоперерабатывающей промышленности и, наконец, автомобильный транспорт — вот далеко не полный список объектов, где индикатор СО-12 может быть полезен.

Подобные пожарные извещатели раннего обнаружения, объединенные в единую сеть и контролирующие газовыделение при тлении материалов перед их возгоранием, при размещении на промышленных объектах позволяют предупредить аварийные ситуации не только на наземных объектах пожарной охраны, но и в подземных сооружениях, угольных разрезах, где в результате перегрева оборудования, транспортирующего уголь, может произойти возгорание угольной пыли. Каждый датчик, имеющий световой и звуковой сигналы оповещения, способен не только информировать о степени загазованности территории, но и предупредить об опасности персонал, находящийся в непосредственной близости к экстремальному месту. Стационарные пожарные датчики, установленные в жилых помещениях, могут предотвратить взрыв бытового газа, отравление угарным газом и возникновение пожара из-за неисправности бытовой техники или грубого нарушения условий ее эксплуатации путем автоматического отключения от сети.

Электроника №4, 2001

УДК 614.842.4

СОВРЕМЕННЫЕ СИСТЕМЫ РАННЕГО ОБНАРУЖЕНИЯ ПОЖАРА

М. В. Савин, В. Л. Здор

Всероссийский научно-исследовательский институт противопожарной обороны МЧС России

Дается краткая характеристика различных типов пожарных извещателей, их положительных качеств и недостатков. Подробно рассматриваются устройство и преимущества аспи-рационных пожарных извещателей.

Одним из самых важных элементов системы пожарной сигнализации являются пожарные из-вещатели. Они подразделяются в зависимости от того типа физического фактора пожара, на который реагируют, и, соответственно, классифицируются на тепловые, дымовые, газовые, извещатели пламени, комбинированные. Кроме того, в зависимости от конфигурации измерительной зоны различают пожарные извещатели точечные, многоточечные и линейные. Точечный пожарный извещатель реагирует на фактор пожара, контролируемый вблизи его компактного чувствительного элемента. Многоточечный пожарный извещатель характеризует дискретное расположение точечных чувствительных элементов в измерительной линии. Линейный пожарный извещатель-это извещатель, геометрическая форма зоны контроля которого имеет протяженный участок, то есть контроль окружающей среды проводится на протяжении некоторой линии. У каждого типа пожарных извещателей есть свои преимущества и недостатки. Совокупность этих свойств и определяет область их применения. Но все же для всех этих извещателей характерен один общий недостаток - это так называемое "пассивное" сканирование защищаемой площади. Ведь они фактически ждут, пока факторы, сопровождающие пожар (дым, повышенная температура), сами окажутся в поле обнаружения извещателя. В частности, дымовой пожарный извещатель только тогда выдаст тревожное извещение, когда дым попадет в камеру извещателя, что существенно зависит от наличия воздушных потоков в защищаемом помещении.

В настоящее время на нашем рынке стали активно внедряться аспирационные пожарные извещате-ли. Они представляют собой собственно извеща-тель, состоящий из чувствительного элемента и схемы обработки сигналов, который может быть расположен как внутри, так и вне защищаемого помещения, и систему заборных трубопроводов, по которым транспортируются пробы воздуха из за-

щищаемого помещения к чувствительному элементу аспирационного пожарного извещателя.

Аспирационные пожарные извещатели имеют несколько основных преимуществ перед традиционными системами обнаружения дыма. В первую очередь, обеспечение доставки проб воздуха к чувствительному элементу независимо от наличия принудительных и естественных воздушных потоков в защищаемом помещении.

Аспирационные пожарные извещатели обеспечивают так называемое кумулятивное обнаружение. Когда дым распространяется и рассеивается по всему помещению, его концентрация уменьшается и становится все труднее обнаружить его традиционными средствами. Кумулятивное обнаружение относится к способности забирать воздух из многих точек в пределах защищаемой зоны в один изве-щатель. Аспирационные пожарные извещатели непрерывно отбирают небольшие количества проб воздуха по всей защищаемой зоне и переносят их к чувствительному элементу аспирационного пожарного извещателя.

Одной из сервисных функций современных ас-пирационных пожарных извещателей является способность непрерывно следить за общим фоном запыленности воздуха, прогнозируя и подстраивая свою работу в соответствии с реалиями защищаемого объекта. Это еще одно из возможных применений данного изделия - мониторинг чистоты воздуха в помещении. Кроме этого, большинство извещателей постоянно анализируют возможные неисправности в своей работе (загрязнение в трубках, засорение дымовсасывающих отверстий и т.д.).

По существу аспирационные пожарные извеща-тели - это интеллектуальные пожарные микростанции. Они так же, как и обычные системы пожарной сигнализации, имеют в своем составе стационарное и периферийное оборудование. В качестве периферийного оборудования выступают как система заборных трубопроводов с дымовсасы-вающими капиллярными трубками, так и различ-

ПОЖАРОВЗРЫВОБЕЗОПАСНОСТЬ 6"2003

ные модули (рис. 1), предназначенные для выполнения таких функций, как обеспечение визуальной индикации состояния аспирационного извещателя в отдельных зонах, настройка, проверка и сервисное обслуживание, а также программирование какого-либо отдельного извещателя и всей сети в целом.

В качестве чувствительного элемента аспира-ционных пожарных извещателей могут использоваться как обычные пожарные извещатели (дымовые или газовые) (рис. 2), так и интеллектуальные системы обнаружения дыма по методу сканирующей лазерной технологии (рис. 3).

Разберем принцип действия аспирационных пожарных извещателей на примере извещателей серии VESDA фирмы "Vision Fire & Security". Воздух из защищаемого помещения непрерывно всасывается в извещатель при помощи высокоэффективного вентилятора (аспиратора) через систему заборных трубопроводов (рис. 4). Проба этого воздуха пропускается через фильтры. Сначала удаляется пыль и загрязнение до того, как проба поступает в оптическую камеру обнаружения дыма. Затем, на второй ступени очистки (если она имеется), обеспечивается дополнительная подача порции чистого

воздуха для предотвращения загрязнения оптических поверхностей и обеспечения стабильности калибровки и длительного срока службы аспирационного извещателя. После фильтра проба воздуха поступает в измерительную камеру, в которой происходит распознавание наличия дыма. Затем сигнал обрабатывается и индицируется посредством линейного шкального индикатора, пороговых индикаторов сигнала тревоги или графического дисплея (в зависимости от модификации извещателя). Далее аспирационные извещатели через реле или интерфейс могут передавать эту информацию на приборы приемно-контрольный пожарный, пожарный управления, на пульт централизованного наблюдения или другие внешние устройства.

Возникающие загорания проходят обычно четыре стадии: тление, видимый дым, пламя и пожар. На рис. 5 показано, как протекает развитие загорания во времени. Обратите внимание на то, что продолжительность первой стадии - тления - обеспечивает больше времени для обнаружения потенциального пожара и, соответственно, борьбы с его распространением, прежде чем он причинит значительный ущерб и разрушения. Традиционные дымовые пожарные извещатели зачастую обнаруживают дым, когда пожар уже начался, что приводит к

t-я стадия: 2-я стадия:

Тлеющий пожар Видимый

1 Традиционные

3-я стадия Пламя

4-я стадия! Пожар I

VESDA Пожар 2 (Включается система пожаротушения)

значительному материальному ущербу. Ряд аспира-ционных пожарных извещателей благодаря своим особенностям позволяет обнаружить пожар на стадии тления и распознать процесс его распространения.

Область применения аспирационных пожарных извещателей достаточно широка:

На складах;

В универсамах широкого профиля, которые содержат различные объемы товарно-материальных запасов: от сырьевых производственных материалов и оптовых товаров до розничных предметов потребления и готовой продукции;

В узлах электронной обработки данных, таких как центры обработки данных Internet, управления сетью и подобные системы, которые представляют значительную опасность пожара из-за их большой потребности в электроэнергии и плотности электронных схем;

На участках с чистыми производственными помещениями, например такими, как установки по производству полупроводников, научно-исследовательские и опытно-конструкторские организации, фармацевтические производственные мощности, представляющие значительную опасность пожара из-за постоянного снабжения воспламеняющимися материалами;

В энергетической промышленности, которая использует для выработки электроэнергии различные типы топлива.

Аспирационные пожарные извещатели с системой фильтрации воздуха имеют низкую вероят-

ность подачи ложных сигналов тревоги, что позволяет уменьшить значительный материальный ущерб, который мог бы возникнуть при ложном пуске систем пожаротушения, остановке технологического процесса и т.п.

В то же время аспирационные пожарные извещатели можно использовать в зданиях и помещениях с повышенными требованиями к эстетике - это современные офисы, зрительные, репетиционные, лекционные, читальные и конференц-залы, комнаты заседаний, кулуарные, фойе, холлы, коридоры, гардеробные, а также исторические здания, соборы, музеи, выставки, галереи искусств, книгохранилища, архивы.

Аспирационные пожарные извещатели возможно использовать:

В экстремальных условиях: при низких температурах, механических перегрузках и жестких условиях эксплуатации, так как система заборного трубопровода и непосредственно чувствительный элемент извещателя могут быть установлены в разных помещениях;

Они могут работать как самостоятельно в качестве индивидуальных средств, так и в составе автоматических систем сбора и обработки информации об обстановке и передачи сигналов на внешние устройства различным способом (по проводам, радиоканалу и др.);

В качестве эффективных средств формирования стартового сигнала для запуска систем пожаротушения благодаря наличию нескольких уровней сигналов тревоги и настраиваемому диапазону чувствительности. При этом для осуществления алгоритма пуска средств пожаротушения предполагается наличие двух отдельных точек детектирования, которые необходимы для срабатывания системы, то есть наличие двух отдельных аспирационных пожарных извещателей. Таким образом, дымовые пожарные извещатели

аспирационного типа являются серьезным дополнением в комплексе мер по обеспечению безопасности помещений наряду с традиционными пожарными извещателями, ни в коем случае не уменьшая значимости и возможностей последних.

ПOЖAPOBЗPЫBOБEЗOПACHOCTЬ 6"2003

Компания-производитель "Vision Fire & Security" "Securiton-Hekatron" "ESSER"

Характеристика Наименование аспирационного пожарного извещателя

VESDA Laser VESDA Laser PLUS SCANNER VESDA Laser COMPACT RAS ASD 515-1 RAS ASD XL ARS 70 LRS-S 700

Питание, В 18...30 18.30 18.30 20.28 18.38 24.30 18.30

Температура эксплуатации, °С -20...+60 -20...+60 -20...+60 0...+60 0...+52 0...+50 -10.+60

Чувствительность, % 0,005.20 0,005.20 0,005.20 Определяется пожарным извещателем 0,005.1 Определяется пожарным извещателем 0,005.20

Технология определения дыма Лазерная Лазерная Лазерная Оптический дымовой пожарный изве-щатель Лазерная Оптический дымовой пожарный изве-щатель Лазерная

Максимальная длина трубы в луче, м 200 200 50 60 60 80 200

Диаметр трубы, мм 25 25 25 25/40 25/40 25 25

Диаметр отверстия, мм 2.6 2.6 2.6 3.4 3.4 2.6 2.6

Максимальная защищаемая площадь, м2 2000 2000 500 800 800 1200 1600

Количество фильтров, шт. 2 2 2 Нет Нет 1 2

Количество уровней пожарной опасности, шт. 4 4 2 1 4 1 4

Габариты, мм 350 х 225 х 125 350 х 225 х 125 225 х 225 х 85 285 х 360 х 126 317 х 225 х 105 285 х 360 х 126 225 х 225 х 95

Вес, кг 4,0 4,0 1,9 2,7 3,4 2,7 3,5

Работа в сети VESDANet (99 устройств) VESDANet (99 устройств) VESDANet (99 устройств) Нет LaserNet (127 устройств) Нет VESDANet (99 устройств)

Режим автокомпенсации AutoLearntm программируется AutoLearntm программируется AutoLearntm программируется Нет Есть Нет Программируется

На российском рынке в настоящее время сертифицированы аспирационные пожарные извещате-ли следующих ведущих западных компаний:

"Vision Fire & Security" (Австралия) - извеща-тели пожарные дымовые аспирационные серии VESDA Laser PLUS (рис. 6), VESDA Laser SCANNER (рис. 7), VESDA Laser COMPACT (рис. 8);

"Schrack Seconet AG" (Австрия) - извещатели пожарные дымовые аспирационные RAS ASD

515-1 (FG030140), производство "Securiton-Hekatron", Германия (рис. 9);

"Fittich AG" (Швейцария) - извещатели пожарные дымовые аспирационные RAS ASD 515-1, производство "Securiton-Hekatron", Германия;

"MINIMAX GmbH" (Германия) - извещатели пожарные аспирационные АМХ 4002.

В таблице представлены сравнительные характеристики некоторых типов аспирационных пожарных извещателей.

Данная система предназначена для обнаружения начальной стадии пожара, передачи извещения о месте и времени его возникновения и при необходимости включения автоматических систем пожаротушения и дымоудаления.

Эффективной системой оповещения пожарной опасности является применение систем сигнализации.

Система пожарной сигнализации должна:

* - быстро выявить место возникновения пожара;

* - надёжно передавать сигнал о пожаре на приёмно-контрольное устройство;

* - преобразовывать сигнал о пожаре в форму, удобную для восприятия персоналом охраняемого объекта;

* - оставаться невосприимчивой к влиянию внешних факторов, отличающихся от факторов пожара;

* - быстро выявлять и передавать извещение о неисправностях, препятствующих нормальному функционированию системы.

Средствами противопожарной автоматики оборудуют производственные здания категорий А, Б и В, а также объекты государственной важности.

Система пожарной сигнализации состоит из пожарных извещателей и преобразователей, преобразующих факторы появления пожара (тепло, свет, дым) в электрический сигнал; прёмно- контрольной станции, передающей сигнал и включающей световую и звуковую сигнализацию; а также автоматические установки пожаротушения и дымоудаления.

Обнаружение пожаров на ранней стадии облегчает их тушение, что во многом зависит от чувствительности датчиков.

Автоматические системы пожаротушения

Автоматические системы пожаротушения предназначены для тушения или локализации пожара. Одновременно они должны выполнять и функции автоматической пожарной сигнализации.

Установки автоматического пожаротушения должны отвечать следующим требованиям:

* - время срабатывания должно быть меньше предельно допустимого времени свободного развития пожара;

* - иметь продолжительность действия в режиме тушения, необходимую для ликвидации пожара;

* - иметь необходимую интенсивность подачи (концентрацию) огнетушащих веществ;

* - надёжность функционирования.

В помещениях категорий А, Б, В применяются стационарные установки пожаротушения, которые подразделяются на аэрозольные (галоидоуглеводородные), жидкостные, водяные (спринклерные и дренчерные), паровые, порошковые.

Наибольшее распространение в настоящее время приобрели спринклерные установки для тушения пожаров распылённой водой. Для этого под потолком монтируется сеть разветвлённых трубопроводов, на которых размещают сприклеры из расчёта орошения одним спринклером от 9 до 12м 2 площади пола. В одной секции водяной системы должно быть не менее 800 спринклеров. Площадь пола, защищаемая одним спринклером типа СН-2, должна быть не более 9м 2 в помещениях с повышенной пожарной опасностью (при количестве горючих материалов более 200кг на 1м 2 ; в остальных случаях - не более 12м 2 . Выходное отверстие в спринклерной головке закрыто легкоплавким замком (72°С, 93°С, 141°С, 182°С), при расплавлении которого вода разбрызгивается, ударяясь о дефлектор. Интенсивность орошения площади составляет 0,1л/с м 2

Спринклерные сети должны находиться под давлением, способным подать 10л/с. Если при пожаре вскрылся хотя бы один спринклер, то подаётся сигнал. Контрольно-сигнальные клапаны располагаются на заметных и доступных местах, причём к одному контрольно-сигнальному клапану подключают не более 800 спринклеров.

В пожароопасных помещениях рекомендуется подавать воду сразу по всей площади помещения. В этих случаях применяют установки группового действия (дренчерные). Дренчерные - это спринклеры без плавких замков с открытыми отверстиями для воды и других составов. В обычное время выход воды в сеть закрыт клапаном группового действия. Интенсивность подачи воды 0,1л/с м 2 и для помещений повышенной пожарной опасности (при количестве сгораемых материалов 200кг на 1м 2 и более) - 0,3л/с м 2 .

Расстояние между дренчерами не должно превышать 3м, а между дренчерами и стенами или перегородками - 1,5м. Площадь пола, защищаемая одним дренчером, должна быть не более 9м 2 . В течение первого часа тушения пожара должно подаваться не менее 30л/с

Установки позволяют осуществлять автоматическое измерение контролируемых параметров, распознавание сигналов при наличии взрывопожароопасной ситуации, преобразование и усиление этих сигналов, и выдачу команд на включение исполнительных приспособлений защиты.

Сущностью процесса прекращения взрыва является торможение химических реакций путём подачи в зону горения огнетушащих составов. Возможность прекращения взрыва обусловлена наличием некоторого промежутка времени от момента возникновения условий взрыва до его развития. Этот промежуток времени, условно названный периодом индукции (ф инд), зависит от физико-химических свойств горючей смеси, а также от объёма и конфигурации защищаемого аппарата.

Для большинства горючих углеводородных смесей ф инд составляет порядка 20% от общего времени взрыва.

Для того чтобы автоматическая система противовзрывной защиты отвечала своему назначению, должно выполняться следующее условие: Т АСПВ < ф инд, то есть, время срабатывания защиты должно опережать время индуктивного периода.

Условия безопасного применения электрооборудования регламентируется ПУЭ. Электрооборудование подразделяют на взрывозащищённое, пригодное для пожароопасных зон, и нормального выполнения. Во взрывоопасных зонах позволяется применять только взрывозащищённое электрооборудование, дифференцированное по уровням и видам взрывозащиты, категориям (характеризующиеся безопасным зазором, то есть максимальным диаметром отверстия, через которое пламя данной горючей смеси не способно пройти), группам (которые характеризуются Т с данной горючей смеси).

Во взрывоопасных помещениях и зонах внешних установок применяют специальное электроосветительное оборудование, выполненное в противовзрывном варианте.

Дымовые люки

Дымовые люки предназначены для обеспечения незадымляемости смежных помещений и уменьшения концентрации дыма в нижней зоне помещения, в котором возник пожар. Открыванием дымовых люков создаются более благоприятные условия для эвакуации людей из горящего здания, облегчается работа пожарных подразделений по тушению пожара.

Для удаления дыма в случае пожара в подвальном помещении нормы предусматривают устройство окон размером не менее 0,9 х 1,2м на каждые 1000м 2 площади подвального помещения. Дымовой люк обычно перекрывается клапаном.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции