Вконтакте Facebook Twitter Лента RSS

Структура и функция синапса. Классификации синапсов. Химический синапс, медиатор. Синапс. Классификация синапсов

Мышечную и железистую клетку передается посредством специального структурного образования — синапса.

Синапс — структура, обеспечивающая проведение сигнала от одной к другой. Термин был введен английским физиологом Ч. Шеррингтоном в 1897 г.

Строение синапса

Синапсы состоят из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 1).

Рис. 1. Строение синапса: 1 — микротрубочки; 2 — митохондрии; 3 — синаптические пузырьки с медиатором; 4 — пресинаптическая мембрана; 5 — постсинаптическая мембрана; 6 — рецепторы; 7 -синаптическая щель

Некоторые элементы синапсов могут иметь и другие названия. Например, синаптическая бляшка — это синапс между , концевая пластинка — постсинаптическая мембрана , моторная бляшка — пресинаптическое окончание аксона на мышечном волокне.

Пресинаптическая мембрана покрывает расширенное нервное окончание, которое представляет собой нейросекреторный аппарат. В пресинаптической части находятся пузырьки и митохондрии, обеспечивающие синтез медиатора. Медиаторы депонируются в гранулах (пузырьках).

Постсинаптическая мембрана - утолщенная часть мембраны клетки, с которой контактирует пресинаптическая мембрана. Она имеет ионные каналы и способна к генерации потенциала действия. Кроме того, на ней расположены специальные белковые структуры — рецепторы, воспринимающие действие медиаторов.

Синаптическая щель представляет собой пространство между пресинаптической и постсинаптической мембранами, заполненное жидкостью, близкой по составу к .

Рис. Строение синапса и процессы, осуществляемые в ходе синаптической передачи сигнала

Виды синапсов

Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

По месту положения выделяют нервно-мышечные синапсы, нервно-железистые и нейро-нейрональные; последние, в свою очередь, делятся на аксо-аксональные, аксо-дендритические, аксо-соматические, дендро-соматические, дендро-дендротические.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

Таблица 1. Классификация и виды синапсов

Классификация синапсов и механизм передачи возбуждения

Синапсы классифицируют следующим образом:

  • по местоположению — периферические и центральные;
  • по характеру их действия — возбуждающие и тормозящие;
  • по способу передачи сигналов — химические, электрические, смешанные;
  • по медиатору, с помощью которого осуществляется передача, — холинергические, адренергические, серотонинергические и т.д.

В возбуждение передается с помощью медиаторов (посредников).

Медиаторы — молекулы химических веществ, которые обеспечивают передачу возбуждения в синапсах. Другими словами химические вещества, участвующие в передаче возбуждения или торможения от одной возбудимой клетки к другой.

Свойства медиаторов

  • Синтезируются в нейроне
  • Накапливаются в окончании клетки
  • Выделяются при появлении иона Са2+ в пресинаптическом окончании
  • Оказывают специфическое действие на постсинаптическую мембрану

По химическому строению медиаторы можно подразделить на амины (норадреналин, дофамин, серотонин), аминокислоты (глицин, гамма-аминомасляная кислота) и полипептиды (эндорфины, энкефалины). Ацетилхолин известен в основном как возбуждающий медиатор и содержится в различных отделах ЦНС. Медиатор находится в пузырьках пресинаптического утолщения (синаптической бляшки). Медиатор синтезируется в клетках нейрона и может ресинтезироваться из метаболитов его расщепления в синаптической щели.

При возбуждении терминалей аксона происходит деполяризация мембраны синаптической бляшки, вызывающая поступление ионов кальция из внеклеточной среды внутрь нервного окончания через кальциевые каналы. Ионы кальция стимулируют перемещение синаптических пузырьков к пресинаптической мембране, их слияние с ней и последующий выход медиатора в синаптическую щель. После проникновения в щель медиатор диффундирует к постсинаптической мембране, содержащей на своей поверхности рецепторы. Взаимодействие медиатора с рецепторами вызывает открытие натриевых каналов, что способствует деполяризации постсинаптической мембраны и возникновению возбуждающего постсинаптического потенциала. В нервно-мышечном синапсе этот потенциал называется потенциалом концевой пластинки. Между деполяризованной постсинаптической мембраной и соседними с ней поляризованными участками этой же мембраны возникают местные токи, которые деполяризуют мембрану до критического уровня с последующей генерацией потенциала действия. Потенциал действия распространяется по всем мембранам, например, мышечного волокна и вызывает его сокращение.

Выделившийся в синаптическую щель медиатор связывается с рецепторами постсинаптической мембраны и подвергается расщеплению соответствующим ферментом. Так, холинэстераза разрушает медиатор ацетилхолин. После этого некоторое количество продуктов расщепления медиатора поступает в синаптическую бляшку, где из них снова ресинтезируется ацетилхолин.

В организме имеются не только возбуждающие, но и тормозные синапсы. По механизму передачи возбуждения они сходны с синапсами возбуждающего действия. В тормозных синапсах медиатор (например, гамма-аминомасляная кислота) связывается с рецепторами постсинаптической мембраны и способствует открытию в ней . При этом активизируется проникновение этих ионов внутрь клетки и развивается гиперполяризация постсинаптической мембраны, обусловливающая возникновение тормозного постсинаптического потенциала.

В настоящее время выяснено, что один медиатор может связываться с несколькими различными рецепторами и индуцировать различные реакции.

Химические синапсы

Физиологические свойства химических синапсов

Синапсы с химической передачей возбуждения обладают определенными свойствами:

  • возбуждение проводится в одном направлении, так как медиатор выделяется только из синаптической бляшки и взаимодействует с рецепторами на постсинаптической мембраны;
  • распространение возбуждения через синапсы происходит медленнее, чем по нервному волокну (синаптическая задержка);
  • передача возбуждения осуществляется с помощью специфических медиаторов;
  • в синапсах изменяется ритм возбуждения;
  • синапсы способны утомляться;
  • синапсы обладают высокой чувствительностью к различным химическим веществам и гипоксии.

Одностороннее проведение сигнала. Сигнал передается только от пресинаптической мембраны к постсинаптической. Это вытекает из особенностей строения и свойств синаптических структур.

Замедленная передача сигнала. Обусловлена синаптической задержкой в передаче сигнала с одной клетки на другую. Задержка вызывается временными затратами на процессы выброса медиатора, его диффузии к постсинаптической мембране, связывания с рецепторами постсинаптической мембраны, деполяризации и преобразования постсинаптического потенциала в ПД (потенциал действия). Длительность синаптической задержки колеблется от 0,5 до 2 мс.

Способность к суммации эффекта от приходящих к синапсу сигналов. Такая суммация проявляется, если последующий сигнал приходит к синапсу через короткое время (1- 10 мс) после предыдущего. В таких случаях амплитуда ВПСП возрастает и на постсинаптическом нейроне может генерироваться большая частота ПД.

Трансформация ритма возбуждении. Частота нервных импульсов, приходящих к пресинаптической мембране, обычно не соответствует частоте ПД, генерируемых постсинаптическим нейроном. Исключение составляют синапсы, передающие возбуждение с нервного волокна на скелетную мышцу.

Низкая лабильность и высокая утомляемость синапсов. Синапсы могут проводить 50-100 нервных импульсов в секунду. Это в 5-10 раз меньше, чем максимальная частота ПД, которую могут воспроизводить нервные волокна при их электростимуляции. Если нервные волокна считаются практически неутомляемыми, то в синапсах утомление развивается весьма быстро. Это происходит из-за истощения запасов медиатора, энергетических ресурсов, развития стойкой деполяризации постсинаптической мембраны и т.д.

Высокая чувствительность синапсов к действию биологически активных веществ, лекарственных препаратов и ядов. Например, яд стрихнин блокирует функцию тормозных синапсов ЦНС, связываясь с рецепторами, чувствительными к медиатору глицину. Столбнячный токсин блокирует тормозные синапсы, нарушая выделение медиатора из пресинаптической терминали. В обоих случаях развиваются опасные для жизни организма явления. Примеры действия биологически активных веществ и ядов на передачу сигналов в нервно-мышечных синапсах рассмотрены выше.

Свойства облегчения и депрессии синоптической передачи. Облегчение синаптической передачи имеет место, когда нервные импульсы поступают к синапсу через короткое время (10-50 мс) друг за другом, т.е. достаточно часто. При этом в течение некоторого промежутка времени каждый последующий ПД, приходящий к пресинаптической мембране, вызывает увеличение содержания медиатора в синаптической щели, возрастание амплитуды ВПСП и увеличение эффективности синаптической передачи.

Одним из механизмов облегчения является накопление ионов Са 2 в пресинаптической терминали. Для удаления кальциевым насосом порции кальция, вошедшей в синаптическую терминаль при поступлении ПД, необходимо несколько десятков миллисекунд. Если в это время приходит новый потенциал действия, то новая порция кальция входит в терминаль и ее эффект на высвобождение нейромедиатора складывается с остаточным количеством кальция, которое кальциевый насос не успел удалить из нейроплазмы терминали.

Имеются и другие механизмы развития облегчения. Этот феномен в классических руководствах по физиологии называют также посттетанической потенциацией. Облегчение синаптической передачи имеет значение в функционировании механизмов памяти, для образования условных рефлексов и обучения. Облегчение передачи сигналов лежит в основе развития пластичности синапсов и улучшения их функций при частой активации.

Депрессия (угнетение) передачи сигналов в синапсах развивается при поступлении очень частых (для нервно-мышечного синапса более 100 Гц) нервных импульсов к пресинаптической мембране. В механизмах развития явления депрессии имеют значение истощение запасов медиатора в пресинаптической терминали, снижение чувствительности рецепторов постсинаптической мембраны к медиатору, развитие стойкой деполяризации постсинаптической мембраны, затрудняющих генерацию ПД на мембране постсинаптической клетки.

Электрические синапсы

Кроме синапсов с химической передачей возбуждения в организме есть синапсы с электрической передачей. Эти синапсы имеют очень узкую синаптическую щель и пониженное электрическое сопротивление между двумя мембранами. Благодаря наличию поперечных каналов между мембранами и низкому сопротивлению, электрический импульс легко проходит через мембраны. Электрические синапсы обычно характерны для однотипных клеток.

В результате воздействия раздражителя пресинаптический потенциал действия раздражает постсинаптическую мембрану, где возникает распространяющийся потенциал действия.

Характеризуются большей скоростью проведения возбуждения по сравнению с химическими синапсами и низкой чувствительностью к воздействию химических веществ.

Электрические синапсы бывают с одно- и двусторонней передачей возбуждения.

В организме встречаются и электрические тормозные синапсы. Тормозное влияние развивается за счет действия тока, который вызывает гиперполяризацию постсинаптической мембраны.

В смешанных синапсах может происходить передача возбуждения с помощью как электрических импульсов, так и медиаторов.

1. По виду выделяемого медиатора выделяют химические синапсы двух видов:

а) адренергические (медиатором является адреналин).

б) холинергические (медиатором является ацетилхолин).

2. Электрические синапсы. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце. В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.

3. По эффекту действия:

а) возбуждающие

б) тормозные

4. По месту расположения:

а) аксоаксональные

б) аксосоматические

в) аксодендрические

г) дендродендрические

д) дендросоматические.

Механизм передачи возбуждения в нервно-мышечном синапсе.

ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. В результате этого внутрь окончания поступают ионы кальция. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель. Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана деполяризуется.

Если исходный уровень МПП составлял 85 мВ, то он может снижаться до 10 мВ, т.е. происходит частичная деполяризация, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ. частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).

Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.

Ацетилхолин из пресинаптического окончания выделяется постоянно, но его концентрация невысока, что необходимо для поддержания тонуса мышцы в покое.

Для заблокирования передачи возбуждения через синапс применяют яд кураре, который связывается с рецепторами постсинаптической мембраны и препятствует их взаимодействию с ацетилхолином. Заблокировать проведение возбуждения через синапс может яд бутулин и другие вещества.

На наружной поверхности постсинаптической мембраны содержится фермент ацетилхолинэстераза, который расщепляет ацетилхолин и инактивирует его.

Принципы и особенности передачи возбуждения

в межнейральных синапсах.

Основной принцип передачи возбуждения в межнейральных синапсах такой же как и в нейромышечном синапсе. Однако существуют свои особенности:

1. Многие синапсы являются тормозными.

2. ВПСП при деполяризации одного синапса недостаточно для вызова распространяющегося потенциала действия, т.е. необходимо поступление импульсов к нервной клетке от многих синапсов.

Нервно-мышечный синапс

Классификация синапсов

1. По местоположению и принадлежности соответствующим структурам:

    периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

    центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2. По эффекту действия:

    возбуждающие

    тормозные

3. По способу передачи сигналов:

    Электрические,

    химические,

    смешанные.

4. По медиатору:

    холинергические,

    адренергические,

    серотонинергические,

    глицинергически. и т.д.

Тормозные медиаторы:

– гамма-аминомасляная кислота (ГАМК)

– таурин

– глицин

Возбуждающие медиаторы:

– аспартат

– глутамат

Оба эффекта:

– норадреналин

– дофамин

– серотонин

Механизм передачи возбуждения в синапсе

(на примере нервно-мышечного синапса)

    Выброс медиатора в синаптическую щель

    Диффузия АХ

    Возникновение возбуждения в мышечном волокне.

    Удаление АХ из синаптической щели

Синапс – структурно-функциональное образование, которое обеспечивает переда-

чу возбуждения с нейрона на иннервируемую им клетку (нервную, железистую, мышеч-

ную). Синапсы можно разделить на следующие виды:

1) по способу передачи возбуждения – электрические, химические ;

2) по локализации – центральные, периферические ;

3) по функциональному признаку – возбуждающие, тормозные ;

4) по структурно-функциональным особенностям рецепторов постсинаптической

мембраны – холинергические, адренергические, серотонинергические и др .

2. Строение мионеврального синапса

Мионевральный синапс состоит из:

а) пресинаптической мембраны;

б) постсинаптической мембраны;

в) синаптической щели.

Пресинаптическая мембрана – это электрогенная мембрана пресинаптиче-

ских терминалей (окончаний нервного волокна). В пресинаптических терминалях

образуются и накапливаются в пузырьках (везикулах) медиаторы (трансмиттеры)

ацетилхолин, норадреналин, гистамин, серотонин, гамма-аминомаслянная кислота

и другие.

Постсинаптическая мембрана – это часть мембраны иннервируемой клет-

ки, в которой располагаются хемочувствительные ионные каналы. Кроме того, на

постсинаптической мембране локализованы рецепторы к тому или иному медиато-

ру и ферменты, их разрушаюшие, например, холинорецепторы и холинэстераза.

Синаптическая щель – заполненная межклеточной жидкостью, располага-

ется между пре- и постсинаптической мембранами.

3. Механизм проведения возбуждения через мионевральный синапс

Мионевральный синапс образован аксоном мотонейрона на поперечно-полосатом

мышечном волокне. Возбуждение через мионевральный синапс передается с помощью

ацетилхолина. Под влиянием нервных импульсов пресинаптическая мембрана деполяри-

зуется. Ацетилхолин освобождается из пузырьков и поступает в синаптическую щель.

Освобождение медиатора происходит порциями – квантами. Ацетилхолин диффундирует

через синаптическую щель к постсинаптической мембране. На постсинаптической мем-

бране медиатор взаимодействует с холинорецептором. Вследствие этого повышается ее

проницаемость для ионов натрия и калия и возникает потенциал концевой пластинки

(ПКП) или возбуждающий постсинаптический потенциал (ВПСП). По механизму круго-

вых токов под его влиянием возникает потенциал действия в участках мембраны мышеч-

ного волокна, прилегающих к постсинаптической мембране.

Связь ацетилхолина с холинорецептором непрочная. Медиатор разрушается холи-

нэстеразой. Электрическое состояние постсинаптической мембраны при этом восстанав-

ливается.

4. Физиологические свойства синапсов

Синапсы обладают следующими физиологическими свойствами:


а) одностороннее проведение возбуждения (клапанное свойство) – обусловлено

особенностями строения синапса;

б) синаптическая задержка – связана с тем, что требуется определенное время на

проведение возбуждения через синапс;

в) потенциация (облегчение) проведения последующих нервных импульсов –

происходит потому, что на каждый последующий импульс выделяется больше ме-

г) низкая лабильность – обусловлена особенностями обменных и физико-

химических процессов;

д) относительно легкое возникновение торможения и быстрое развитие утомле-

ния – объясняется низкой лабильностью.

е) десенситизация – снижение чувствительности холинорецептора к ацетилхоли-

Спинной мозг, особенности его строения. Виды нейронов. Функциональное различие передних и задних корешков спинного мозга. Закон Белла-Мажанди. Физиологическое значение спинного мозга. «Законы» рефлекторной деятельности спинного мозга.

В спинном мозге находятся: 1. мотонейроны (эффекторные, двигательные нервные

клетки, из 3%), 2. вставочные нейроны (интернейроны, промежуточные, их 97%).

Мотонейроны делятся на три вида:

1) α – мотонейроны, иннервируют скелетные мышцы;

2) γ – мотонейроны, иннервируют проприорецепторы мышц;

3) нейроны вегетативной нервной системы, аксоны которых иннервируют нерв-

ные клетки, расположенные в вегетативных ганглиях, а через них внутренние

органы, сосуды и железы.

2. Функциональное значение передних и задних корешков спинного мозга

(закон Белла-Мажанди)

Закон Белла-Мажанди: «Все афферентные нервные импульсы поступают в спин-

ной мозг через задние корешки (чувствительные), а все эфферентные нервные импульсы

покидают (выходят) спинной мозг через передние корешки (двигательные)».

3. Функции спинного мозга

Спинной мозг выполняет две функции: 1) рефлекторную , 2) проводниковую .

За счет рефлекторной деятельности спинного мозга осуществляется ряд простых и

сложных безусловных рефлексов. Простые рефлексы имеют двухнейронные рефлектор-

ные дуги, сложные – трех и более нейронные рефлекторные дуги.

Рефлекторную деятельность спинного мозга можно изучить на «спинальных живот-

ных» - животных, у которых удален головной мозг и сохранен спинной мозг.

4. Нервные центры спинного мозга.

В пояснично-крестцовом отделе спинного мозга находятся: 1. центр мочеиспуска-

ния , 2. центр акта дефекации , 3. рефлекторные центры половой деятельности.

В боковых рогах грудного и поясничного отделов спинного мозга располагаются:

1) спинальные сосудодвигательные центры , 2) спинальные центры потоотделения .

В передних рогах спинного мозга располагаются на разных уровнях центры дви-

гательных рефлексов (центры экстеро- и проприоцептивных рефлексов).

5. Проводящие пути спинного мозга

Различают следующие проводщящие пути спинного мозга: 1) восходящие (аффе-

рентные) и 2) нисходящие (эфферентные).

Восходящие пути связывают рецепторы организма (проприо-, тактильные, боле-

вые) с различными отделами головного мозга.

Нисходящие пути спинного мозга: 1) пирамидный , 2) экстрапирамидный . Пира-

мидный путь – от нейронов передней центральной извилины коры головного мозга до

спинного мозга, не прерывается. Экстрапирамидный путь – также начинается от нейро-

нов передней центральной извилины и заканчивается в спинном мозге. Этот путь много-

нейронный, он прерывается в: 1) подкорковых ядрах; 2) промежуточном мозге;

3) среднем мозге; 4) продолговатом мозге.

Регуляция сосудистого тонуса. Местная регуляция (ауторегуляция). Нервная регуляция тонуса сосудов (сосудосуживающие и сосудорасширяющие нервы). Гуморальная регуляция сосудистого тонуса. Показатели артериального давления у детей.

Существуют два вида сосудистого тонуса:

Базальный (миогенный);

Неврогенный.

Базальный тонус.

Если денервировать сосуд и устранить источники гуморальных воздействий, можно выявить базальный тонус сосудов.

Различают:

а) электрогенный компонент - обусловлен спонтанной электрической активностью миоцитов сосудистой стенки. Наибольшая автоматия - у прекапиллярных сфинктеров и артериол;

б) неэлектрогенный компонент (пластический) - обусловлен растяжением мышечной стенки из-за давления на нее крови.

Показано, что автоматия гладкомышечных клеток усиливается под влиянием их растяжения. Возрастает также и их механическая (сократительная) активность (т.е. наблюдается положительная обратная связь: между величиной АД и сосудистым тонусом).

Местная гуморальная регуляция.

1. Сосудорасширяющие:

а) неспецифические метаболиты - непрерывно образуются в тканях, и в месте образования они всегда препятствуют сужению сосудов, а также вызывают их расширение (метаболическая регуляция).

К ним относятся - СО2, угольная кислота, Н+, молочная кислота, закисление (накопление кислых продуктов), снижение напряжения О2 увеличение осмотического давления вследствие накопления низкомолекулярных продуктов, ок сид азота (N0) (продукт инкреции эндотелия сосудов).

б) БАВ (при действии в месте выделения) - образуются специализированными клетками, которые входят в состав сосудистого окружения.

1. Сосудорасширяющие БАВ (в месте выделения) -

ацетилхолин, гистамин, брадикинин, некоторые простагландины, простациклин, секретируемый эндотелием, может опосредовать свой эффект через оксид азота.

2. Сосудосуживающие БАВ (при действии в месте выделения) - образуются специализированными клетками, которые входят в состав сосудистого окружения - катехоламины, серотонин, некоторые простагландины, эндотелии 1-пептид, 21-на аминокислота, продукт инкреции эндотелия сосудов, а также тромбоксан А2, выделяемый тромбоцитами при агрегации.

Роль БАВ в дистантной регуляции сосудистого тонуса.

Наряду с нервными влияниями важную роль в регуляции сосудистого тонуса играют различные БАВ, обладаю- щие дистантным, сосудодвигательным действием:

Гормоны (вазопрессин, адреналин); парагормоны (серотонин, брадикинин, ангиотензин, гистамин, опиатные пептиды), эндорфины и энкефалины.

В основном эти БАВ обладают прямым действием, так как большинство сосудов гладкой мускулатуры имеет специфические рецепторы к этим БАВ.

Одни БАВ вызывают повышение сосудистого тонуса, другие уменьшают его.

Функции эндотелия мелких кровеносных сосудов и их роль в регуляции процессов гемодинамики, гемостаза, иммунитета:

1. Самообеспечение структуры (саморегуляция клеточного роста и восстановления).

2. Образование вазоактивных веществ, а также активация и инактивация БАВ, циркулирующих в крови.

3. Местная регуляция гладкомышечного тонуса: синтез и секреция простагландинов, простациклина, эндотелинов и NO.

4. Передача вазомоторных сигналов от капилляров и артериол более крупным сосудам (креаторные связи).

5. Поддержание антикоагулянтных свойств поверхности (выделение веществ, препятствующих различным видам гемостаза, обеспечение зеркальности поверхности, ее несмачиваемости).

6. Реализация защитных (фагоцитоз) и иммунных (связывание иммунных комплексов) реакций.

7. Образование вазоактивных веществ, а также активация и инактивация БАВ, циркулирующих в крови.

8. Местная регуляция гладкомышечного тонуса: синтез и секреция простагландинов, простациклина, эндотелинов и NO.

9. Передача вазомоторных сигналов от капилляров и артериол более крупным сосудам (креаторные связи).

10. Поддержание антикоагулянтных свойств поверхности (выделение веществ, препятствующих различным видам гемостаза, обеспечение зеркальности поверхности, ее несмачиваемости).

11. Реализация защитных (фагоцитоз) и иммунных (связывание иммунных комплексов) реакций.

Неврогенный тонус обусловлен деятельностью сосудодвигательного центра (СДЦ) в продолговатом мозге, на дне IV желудочка (В.Ф. Овсянников, 1871 г., открыт методом перерезки ствола мозга на различных уровнях), представлен двумя отделами (прессорный и депрессорный).

Тоже результат активности маленьких нервных клеток. Но это необыкновенно нужная и сложная работа была бы невозможна без синапсов, которые обеспечивают взаимодействие нейронов и связывают их в единые нейронные сети.

Если перевести слово «синапс» с греческого, то получится «связь». Это и есть место связи, соединения двух нейронов. Казалось бы, что тут такого особенного в обычном соединении? Но именно синапсы делают возможным прохождение импульса по цепи нервных клеток и играют важную роль во всех .

Место синапсов в нервной системе

Одна из главных задач нейронов – сохранение и обработка, поступающей из внешнего мира информации. От органов чувств, мышц, связок и т. д. слабые электрические сигналы по нервным волокнам попадают в головной мозг, там они распространяются по нейронным цепям, создавая очаги возбуждения и связи между отдельными нейронами, центрами и отделами головного мозга. Так вкратце происходят все процессы в нашей психике: от простейших безусловных рефлексов, до сложнейшей мыслительной деятельности.

Распространение нервных импульсов происходит благодаря имеющимся у нейронов отросткам. Короткие и сильно разветвленные дендриты специализируются на приеме сигналов от других нейронов. У одной нервной клетки может быть до 1500 дендритов. А вот передающее нервное волокно – аксон – одно, но оно длинное и может достигать 1,5 метров. Соединяясь с отростками дендритов, аксон передает сигнал от одного нейрона к другому.

Но проблема в том, что напрямую импульс чаще всего пройти не может, так как между «ветвями» дендрита одной нервной клетки и аксоном другой есть щель – пространство, заполненное межклеточным веществом.

Происходит следующее: в процессе движения импульса в месте соединения нервных волокон возникает биохимическая реакция, образуется белковая молекула – нейротрансмиттер или медиатор (посредник) – и закупоривает щель, создавая своеобразный мостик для прохождения сигнала.

Так возникает то, что еще в 1897 году английский физиолог Ч. Шеррингтон назвал синапсом.

Структура синапса

Если учесть, что размер нервной клетки редко превышает 100 мкм, то место соединения передающего и принимающего волокон двух нейронов вообще микроскопическое. И тем не менее, синапс имеет сложное строение, включающее в себя три основных отдела:

  • Нервное окончание «ветвей» дендрита, которое представляет собой микроскопическое утолщение, называемое пресинаптической мембраной. Это очень важная часть синапса, отвечающая за синтез белковых молекул.
  • Аналогичное утолщение на отростках аксона. Оно имеет специальные рецепторы, позволяющие принимать сигналы от медиаторов. Это постсинаптическая мембрана.
  • Синаптическая щель, в которой образуется медиатор – проводящая импульс белковая молекула. Эта часть синапса одновременно и препятствует прохождению сигнала, и является причиной возникновения молекул белков, которые не только играют роль «мостиков», но и участвуют в работе нервной системы и организма в целом.

Функции этих белковых соединений разнообразны, так как нейроны вырабатывают разные виды медиаторов, и их химический состав оказывает различное влияние на процессы в нервной системе. Причем влияние это настолько сильное, что оно во многом управляет психическими реакциями, а недостаток даже одного из белков может привести к серьезным заболеваниям, таким как болезнь Паркинсона или Альцгеймера.

Сейчас обнаружено и изучено более 60 видов нейротрансмиттеров с разными свойствами. Вот примеры некоторых из них:

  • Норадреналин – гормон . Он обладает возбуждающим действием, повышает активность всех систем организма и добавляет чувство ярости в наше эмоциональное состояние.
  • Серотонин. Его функции многообразны: от обеспечения процесса пищеварения до влияния на уровень сексуального влечения.
  • Глутамат необходим для запоминания и сохранения информации, но его переизбыток токсичен и может вызвать гибель нервных клеток.
  • Дофамин – гормон счастья, источник позитивных , дарующий состояние блаженства. И одновременно этот белок, как и многие другие, обеспечивает эффективность познавательных процессов. А его недостаток может вызвать состояние и привести к слабоумию.

Это далеко не все белки, которые вырабатывают нейроны, но даже такой пример позволяет оценить значение нейротрансмиттеров и роль синапсов в организации нормальной деятельности головного . Разрушение нервных связей в результате болезни или травмы может привести и к серьезным нарушениям психических функций.

Виды синапсов

Синапсы обеспечивают связи не только между нейронами головного мозга, но и с нервными клетками органов чувств, рецепторами, расположенными во внутренних органах, мышцах и связках. Поэтому существует большое разнообразие синапсов в зависимости от специализации нейронов, от характера их воздействия, от того белкового соединения, которое вырабатывается при прохождении импульса.

В нашей нервной системе существует два основных процесса, определяющих ее деятельность. Это возбуждение и торможение. В соответствии с ними и синапсы делятся на два вида:

  • возбуждающие проводят сигналы, которые распространяют реакцию возбуждения нервных клеток;
  • тормозящие обеспечивают прохождение нервного импульса, который передает нейронам «команду» торможения.

По месту расположения синапсы различаются:

  • на центральные, расположенные в головном мозге;
  • периферические, обеспечивающие связи нейронов за пределами мозга – в периферической нервной системе.

Передача импульсов через синаптическую щель тоже может проводиться разными способами, в соответствии с этим выделяют три вида синапсов:

  • Химические синапсы расположены в коре головного мозга. Они проводят сигнал с помощью нейротрасмиттеров, которые образуются в результате биохимической реакции.
  • Электрические – та часть синапсов, которые способны передавать электрический сигнал без посредников-медиаторов. Например, это касается нейронов, расположенных в зрительном рецепторе. В этом случае химическая реакция не происходит, и обмен сигналами осуществляется быстрее.
  • Электрохимические синапсы сочетают в себе особенности обеих этих групп.

Также существует классификация синапсов по видам трансмиттеров. Например, если производится норадреналин, но синапсы эти называются адренергические, а если ацетилхолин, то – холинергические. Учитывая, что белков, вырабатываемых нейронами, несколько десятков видов, мы имеем очень объемную классификацию, которая здесь вряд ли уместна.

Синапсы и нейронные сети

Синапсы, устанавливая связи между проводящими нервными волокнами, обеспечивают возникновение и поддержание в рабочем состоянии нейронных цепей. Соединяясь и переплетаясь, они образуют сложные нейронные сети, по которым с огромной скоростью проносятся электрические импульсы.

По последним научным данным, только в коре головного мозга функционирует около 100 млрд нейронов. Каждый из них способен иметь до 10 000 синапсов, то есть связей с другими нервными клетками. И они могут обмениваться сигналами со скоростью 100 м/сек. Представляете, какой объем информации циркулирует в нашей нервной системе?

Результаты недавних исследований американских нейрофизиологов позволяют утверждать, что потенциальный объем памяти головного мозга человека измеряется петабайтами. 1 петабайт – 10 15 байт или 1 миллион гигабайт. И это сопоставимо с объемом информации, циркулирующей во всемирном интернет-пространстве. Поэтому когда не слишком радивый студент говорит, что у него распухла голова от полученных знаний и ничего больше туда впихнуть он не может, то стоит в этом усомниться.

Энциклопедичный YouTube

    1 / 5

    Межнейронные химические синапсы

    Синапсы. Физиология человека - 3

    Электрические свойства нейронов - Вячеслав Дубынин

    Синапс.Научный фильм [Приволжское бюро детекции лжи]

    Мозг: работа синапсов - Вячеслав Дубынин

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Классификации синапсов

По механизму передачи нервного импульса

  • химический - это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор , присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
  • электрический (эфапс) - место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований - коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы - пресинаптический потенциал действия создает ток , который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

По местоположению и принадлежности структурам

  • периферические
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендрит ами, в том числе
      • аксо-шипиковые - с дендритными шипиками , выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

По нейромедиатору

  • аминергические, содержащие биогенные амины (например, серотонин , дофамин);
    • в том числе адренергические, содержащие адреналин или норадреналин ;
  • холинергические , содержащие ацетилхолин ;
  • пуринергические, содержащие пурины ;
  • пептидергические, содержащие пептиды .

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия

  • возбуждающие
  • тормозные .

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение.

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные . Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы .

К специальным формам синапсов относятся шипиковые аппараты , в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы .

В синаптическом расширении имеются мелкие везикулы , так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент , разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы , ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами , которые открываются при связывании с ними нейромедиатора , что приводит к изменению мембранного потенциала . Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза . Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии .

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс .

Так называемый «принцип Дейла » (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль .
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.
© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции