Вконтакте Facebook Twitter Лента RSS

Реферат: Особенность химического состава природных вод. Внутренняя структура молекул воды. Физические сво. Большая энциклопедия нефти и газа

Химический состав воды. В природе вода практически всегда содержит большее или меньшее количество растворенных в ней минеральных солей. Степень и минеральный состав воды определяются характером почвы или грунтов, прилегающих к водоносным слоям или поверхностным водоисточникам.

Количество минеральных солей, содержащихся в воде, выражается в мг/л.

Органические вещества. Из них самые важные - вещества животного происхождения, поскольку именно они могут содержать различные патогенные микробы. Косвенным гигиеническим показателем наличия или отсутствия этих веществ в воде служит окисляемость воды.

Окисляемость воды. Это количество кислорода (мг), расходуемого на полное окисление органических веществ, содержащихся в 1 л воды (обозначается - мг/л). Чем меньше в воде органических веществ, тем меньше величина расхода кислорода на полное окисление содержащихся в 1 л воды органических веществ. Например, окисляемость чистых подземных вод, как правило, не бывает более 2-4 мг/л, речных - в пределах 7 мг/л.

Одним из показателей возможного присутствия в воде органических веществ служит количество растворенного в ней кислорода (мг). В чистых водоемах растворено 3-6 мг/л кислорода, а в загрязненных - намного меньше, вплоть до полного отсутствия.

О возможном загрязнении воды органическими веществами животного происхождения свидетельствует наличие аммиака, солей азотистой и азотной кислот. Аммиак - это продукт начальных стадий гниения органических веществ животного происхождения, а соли азотной и азотистой кислот - конечные продукты минерализации органических веществ. Их наличие указывает на давнее загрязнение воды.

Присутствие в воде солей соляной и серной кислот - показатель возможного загрязнения воды экскрементами животных и человека (фекального загрязнения). Обычно в 1 л чистой природной воды содержится не более 20-30 мг хлоридов.

Жесткость воды. Она определяется содержанием в ней солей кальция и магния. Различают воду мягкую, умеренно жесткую и жесткую. Выделяют общую жесткость воды - жесткость сырой воды, устранимую жесткость, уменьшающуюся при кипячении или отстаивании, и неустранимую, не снижающуюся даже после кипячения воды.

В жесткой воде плохо развариваются овощи и мясо, потому что находящиеся в них белки образуют с кальцием и магнием нерастворимые соединения, не усваивающиеся в кишечнике человека.

Такая вода не подходит и для гигиенических процедур: наличие в ней избыточного количества солей препятствует пенообразованию, нерастворимые соединения оседают на волосах и затрудняют процесс мытья.

Жесткость питьевой воды не должна превышать 7 мг/л. Эту характеристику можно измерять и в градусах (1 мг/экв жесткости воды равен 2,8°). Жесткой считается вода, имеющая больше 20°, мягкой - менее 10°.

Соли железа. Вода, содержащая железо, безвредна, но в избыточных количествах оно придает ей горьковатый металлический вкус и желтую или желто-бурую окраску, снижая прозрачность. В питьевой воде допускается до 0,5 мг/л железа (в открытых водоемах) и 1,0 мг/л (в подземных источниках).

Фтор. Содержащийся в питьевой воде, он оказывает значительное влияние на состояние зубов. При его повышенной концентрации возникает флюороз (появление темных пятен на эмали зубов), ведущий к полному их разрушению, а при недостаточном содержании учащается заболеваемость кариесом. В воде должно находиться не более 1,5 мг/л фтора, оптимальное количество - 0,7-1,0 мг/л. Если фтора не хватает, воду искусственно фторируют, т. е. добавляют фтористый натрий.

В естественных (наземных) водоемах идут естественные процессы самоочищения, если человек этому не препятствует:

*Обеззараживание ультрафиолетовыми лучами;

*Осаждение и отстаивание взвешенных частиц;

*Окисление органических веществ за счет O2;

*Минерализация органических остатков за счет бактерий.

Речные воды имеют, как правило, сравнительно невысокую минерализацию и относятся к пресным водам. Формирование химического состава речных вод определяется как естественными, климатическими и почвенно-гидрогеологическими условиями, так и антропогенными факторами.

В гидрохимический состав речных вод входят следующие основные группы:

1. Главнейшие ионы и катионы , определяющие минерализацию речной воды. К числу главных ионов и катионов, содержащихся в речных водах относят HCO 3 - , CO 3 2- , SO 4 2- , CI - , Ca 2+ , Mg 2+ , Na + , K + .

2. Микроэлементы , из числа которых в речных водах присутствуют бром, медь свинец, ртуть, марганец, цинк, в количествах, не превышающих 10-30 мкг/л.

3. Биогенные элементы, в речных водах – это соединения неорганического азота и фосфора.

Химические характеристики стока меняются при смене одной фазы водного режима другой.

В период половодья склоновые воды характеризуются малой минерализацией (50-100мг/л) гидрокарбонатно-кальциевым составом, относительно большим содержанием растворенных в воде органических веществ гумусового происхождения и низкой величиной рН.

На спаде половодья в реки поступают почвенно-грунтовые воды вследствие дренирования водоносных горизонтов почвенно-грунтовой толщи. Они характеризуются довольно значительной минерализацией, преобладанием гидрокарбонатов в составе анионов и небольшим количеством органических веществ.

В период межени, реки питаются за счет грунтовых вод. Поступление грунтовых вод приводит к увеличению минерализации с севера на юг (от 250-600 мг/л до 800-5000 мг/л) и большому разнообразию химического состава, вследствие разнообразия почвенно-геологических условий.

Процессы формирования химического состав природных вод:

Молекулярная диффузия

Диффузия – это миграция химического вещества под действием градиента его концентрации.

Турбулентная диффузия

В естественном потоке продольный перенос при существовании градиент концентрации.

Диффузионно-конвективный перенос

Конвективная диффузия – смешение вод различного состава и различной минерализации.

Процессы, переводящие вещество в раствор

Гидролиз – реакции обменного разложения воды при ее взаимодействии

с минералами.

Растворение – полное разрушение кристаллической решетки минералов.

Выщелачивание – минерал растворяется частично.

Процессы, выводящие вещество из раствора

Осаждение происходит при превышении концентрации молекул вещества их произведения растворимости.

Обменные процессы вещества

Ионный обмен – это процесс поглощения твердым веществом, т.е. адсорбции из воды одних ионов и замены их другими, находящимися

в твердом веществе (глинистые минералы, органическое вещество природных вод).

Окислительно-восстановительные.

Биогеохимические реакции.

Факторы формирования химического состава природных вод:

Горные породы,

Живые организмы,

Деятельность человека,

Водный режим,

Взвешенные вещества,

Донные отложения.

Конец работы -

Эта тема принадлежит разделу:

ОБЩАЯ ГИДРОЛОГИЯ

университет... Виноградова Т А Пряхина Г В Паршина Т В ОБЩАЯ ГИДРОЛОГИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Наука гидрология и ее связь с другими науками
Воды планеты образуют гидросферу – прерывистую водную оболочку, расположенную на поверхности и в толще земной коры, включающую в себя океаны, моря, воды поверхности суши

Методы исследований в гидрологии
Основными методами исследований современной гидрологии являются: 1) полевой, 2) экспериментальный и 3) теоретический. Полевые исследования включают

Вода на земле. Водные ресурсы
Вода пребывает на Земле в самом различном состоянии в зависимости от мест своего сосредоточения. Основная ее масса содержится в трех следующих макроструктурных элементах планеты: В м

Основные свойства воды
Вода – это светлая прозрачная жидкость, бесцветная в малых объемах и приобретающая голубовато-зеленоватую окраску своей толщи. Лед тоже прозрачен, так как коэффициент поглощения им света в видимой

Водные объекты. Круговорот воды в природе. Внутриматериковый влагооборот
В гидрологии выделяют три группы водных объектов: водоемы, водотоки и особые водные объекты. Водоемы – это водные объекты в понижениях земной поверхно

Внутриматериковый влагооборот
Осадки, выпадающие на любой участок земли, складываются из «внешних» и «внутренних» – образованных в результате испарения с конкретного участка. «Внутренние» осадки – это испаривш

Водосбор реки. Морфометрические характеристики водосбора
Водосбор - это часть земной поверхности, а также толщи почвогрунтов, с которых вода стекает в реку, речную систему или озеро, ограниченных водоразделом поверхностным и под

Водный баланс бассейна реки. Элементы водного баланса
Реки питаются за счет жидких осадков (дождевое питание), воды, образованной в результате таяния снега на поверхности водосбора (снеговое питание), таяния высокогорных ледников

Осадки. Перехват осадков растительностью
Осадки являются одной из самых важных составляющих гидрологического цикла. Они образуются путем конденсации водяного пара в атмосфере. В зависимости от метеорологических условий формирован

Испарение
В результате процесса испарения часть поступивших на поверхность земли атмосферных осадков покидает пределы водосбора в виде водяного пара. Испарение происходит с водной поверхност

Речной сток. Факторы формирование стока на водосборе
Стоком в гидрологии называют движение воды по поверхности земли, а также в толще почв и горных пород в процессе ее круговорота в природе. Формирование стока на водосборе – сложный многофак

Основные характеристики стока воды. Фазы водного режима. Гидрограф стока
Расход воды – количество воды, протекающее через живое сечение русла в единицу времени.

Уровень воды. Уровенный режим
Уровень воды – высота поверхности воды над условной плоскостью сравнения, называемой «нулем графика», H, [см], смотри рисунок 5. Уровень воды измеряется на пунктах

Краткосрочные, годовые и многолетние колебания уровней воды
К краткосрочным колебаниям уровня воды относятся: сгонно-нагонные (в устьевых областях), паводки (ливневые), суточные колебания (при суточном регулировании ГЭС – волны попусков и в

Связь поверхностных и подземных вод
В результате процесса фильтрации вода с поверхности проникает в толщу почво-грунтов и формирует подземный сток. В подземных горизонтах вода присутствует в трех агрегатных состояниях: в виде водяног

Река и речная система
Совокупность всех водных объектов в пределах какой-либо территории называется гидрографической сетью данной территории. В пределах гидрографической сети речного бассейна выделяют

Скорость течения воды в руслах рек
Движение воды в руслах рек осуществляется под действием силы тяжести. Скорость течения зависит от уклона, количества воды в русле и шероховатости подстилающей поверхност

Тепловой баланс бассейна реки. Термический и ледовый режим рек
Тепловой баланс бассейна реки. , (18) где

Режим стока наносов. Гидрохимический режим рек
Твердые частицы, образующие речные наносы, поступают в русла рек в результате процессов эрозии поверхности водосбора и речного русла. Интенсивность процесса эрозии поверхности водосбора за

Морские устьевые области
Устьевая область реки – это особый физико-географический объект, расположенный при впадении крупной реки в море, в пределах которого происходят специфические устьевые процессы. Они обусловлены взаи

I. Физические процессы
A. Динамика вод. Динамическое взаимодействие вод реки и приемного водоема, включая формирование сопряжения реки и водоема в виде гидравлического подпора или спада; распластыван

Б. Ледо-термические процессы на устьевом участке реки, в водоемах дельты и на устьевом взморье.
B. Динамика наносов на устьевом участке реки и устьевом взморье. Г. Эрозионно-аккумулятивные (морфологические процессы, включая формирование продо

Основные морфометрические характеристики озера
Длина (L, м) – кратчайшее расстояние между двумя наиболее удаленными друг от друга точками береговой линии озера, измеряемое по его поверхности. В зависимости от формы озера

Водный баланс озера. Режим уровня воды в озерах
Уравнение водного баланса озера в общем виде: , (25) где

Уровенный режим озер
Многолетние колебания воды в озере зависят от климатических факторов. Сезонные колебания определяются в основном притоком воды как русловым, так и распределенным (особенно в период таяния снегового

Тепловой баланс озер и термический режим
Процессы теплообмена воды с атмосферой наиболее интенсивно происходят в самых верхних слоях озера. Перенос тепла вглубь осуществляется как при непосредственном проникновении солнечной энергии в вод

Болота. Типы болот и их режим
Болото –природное образование, представляющее собой переувлажненный участок земной поверхности со слоем торфа и специфическими формами растительности, приспособившимися к условиям

Ледники. Определение. Образование, типы, строение. Движение ледников. Питание ледников. Баланс массы льда. Влияние на сток рек
Масса естественного фирна и льда, сформированная в результате накопления и преобразования твердых атмосферных осадков, расположенная главным образом на суше, существующая длительное время и обладаю

Типы ледников
Выделяют покровные, горно-покровные и горные ледники. Среди покровных ледников выделяют ледниковые щиты и купола, выводные ледники и шельфовые ледники. Они распространены в пол

Строение ледников
Наземный ледник можно разделить на две части, верхнюю – область питания (аккумуляции) и нижнюю – область абляции. Линяя разделяющая эти зоны называется гра

Опасные гидрологические явления
Проблема. Стихийные бедствия существуют лишь в силу того, что человек часто живет и работает в местах, которые являются ареной развития опасных гидрологических явлений, иногда и ка

Прорывные паводки
Большие уклоны и перепады высот, особенно при слабой устойчивости склонов, активности гляциальных явлений и сейсмических воздействиях, иногда приводят к перегораживанию рек естественными плотинами,

Волновые катастрофы
Если вы, поскользнувшись, упадете в свою ванну, то выплеснете по­ловину воды на пол. А что случится, если в водоем обрушится обвал, оползень, сель? Последствия могут быть самыми разными, но все они

Селевые потоки
Проблема. Селевые потоки – одно из самых опасных и распространенных гидрологических явлений в горных странах и вообще в мире больших уклонов. Проблема селей постоянно остаётся проб

Селевые очаги
Селевой очаг – морфологическое образование, способное концентрировать сток, вмещающее ПСМ (потенциальный селевой массив) и имеющее достаточный уклон для развития сдвигового или транспортно-сдвигово

Селевые водосборы и водосборы селевых очагов
Селевой водосбор – краткое наименование бассейна, содержащего стокообразующие поверхности и способные сформировать наносоводный селевой поток. Обычно это водосборы поверхностного стока.

География селей
Многочисленные скальные селевые очаги на южном склоне Рушанского хребта, легко обозреваемые с Памирского тракта, вследствие слабых ливневых возможностей района десятки и сотни лет ждут своего часа.

Оползни, снежные лавины, снеговодные потоки
Оползни.Горный оползень – массив рыхлообломочной породы, сильно насыщенный водой, смещающийся вниз по склону. Образуется, когда сдвигающаяся сила превысит удерживающую или при сейс

Селевые потоки на ледниках
Геналдонские катострофы.При катастрофических подвижках и обвалах ледников иногда наблюдается отрыв части ледниковой массы, сопровождающийся дроблением льда, выбросом внутриледников

Если капельку природной воды нанести на стекло и подождать, пока она испарится, то на месте капли будут видны белые разводы - это кристаллизуются растворимые в воде соли. Содержание солей в природных водах различается в тысячи раз. Например, в литре дождевой воды содержатся единицы, максимум десятки миллиграммов солей. А в литре воды из залива Кара-Богаз-Гол (Каспийское море) - 300 г, почти треть от массы раствора.

Основные (преобладающие) компоненты

В водных растворах подавляющее большинство солей существует в виде ионов. В природных водах преобладают три аниона (гидрокарбонат HCO 3 - , хлорид Cl - исульфат SO 4 2- ) и четыре катиона (кальций Ca 2+ , магний Mg 2+ , натрий Na + и калий K + ) - их называют главными ионами. Хлорид-ионы придают воде солёный вкус, сульфат-ионы, ионы кальция и магния - горький, гидрокарбонат-ионы безвкусны. Они составляют в пресных водах свыше 90-95 %, а в высокоминерализованных - свыше 99 % всех растворенных веществ. Обычно нижним пределом концентрации для главных ионов считают 1 мг/л, поэтому в ряде случаев, например для морских и некоторых подземных вод, к главным компонентам можно отнести также Br - , B 3+ , Sr 3+ и др. Отнесение ионов K + к числу главных является спорным. В подземных и поверхностных водах эти ионы, как правило, занимают второстепенное положение. Только в атмосферных осадках ионы K + могут играть главную роль.

Однако ионная форма главных компонентов свойственна в полной мере лишь маломинерализованным водам. При увеличении концентрации между ионами усиливается взаимодействие, направленное на ассоциацию, т.е. процесс, обратный диссоциации. При этом образуются ассоциированные ионные пары, например MgHCO 3 + , CaHCO 3 + .

Под влиянием климатических и других условий химический состав природных вод изменяется и приобретает характерные черты, иногда специфические для различных видов природных вод (атмосферные осадки, реки, озера, подземные воды).



Атмосферные осадки из всех природных вод наименее минерализованы, но по химическому составу растворенных в них веществ они не менее разнообразны, чем другие природные воды. Источником их состава являются аэрозоли атмосферы. Ионный состав их довольно разнообразен. При колебаниях средней многолетней минерализации атмосферных осадков в европейской части России в пределах 10-20 мг/л и экстремальных значениях для всей территории 3-4 и 50-60 мг/л ионный состав характеризуется пестротой, причем среди анионов большей частью преобладает SO 4 2- или HCO 3 - , а среди катионов в зависимости от степени удаленности от побережья Ca 2+ или Na + . Непосредственно у побережья при ветре, дующем с моря, в результате ветрового механического выноса солей концентрация хлора в осадках бывает повышенной. По мере удаления от побережья относительная концентрация Cl - падает, а SO 4 2- , Ca 2+ и Mg 2+ , наоборот, повышается. Причиной повышения содержания SO 4 2- и Ca 2+ является обогащение атмосферы аэрозолями континентального происхождения. По мере продвижения в глубь континента часть морских аэрозолей вымывается. Наибольшие изменения испытывает концентрация SO 4 2- . Если увеличение содержания Ca 2+ и Na + связано, скорее всего, с минеральной пылью почв и пород, на поверхности которых всегда присутствуют эти соли, то увеличение содержания SO 4 2- обусловлено, с одной стороны, окислением SO 2 и H 2 S, с другой - поднятием сернокислых солей с засоленных поверхностей.



Не поддаются даже приблизительной оценке громадные количества солевых частиц, поднимаемых с почв, соленых озер, поверхности льда, удобрений и, наконец, выбрасываемых химическими и металлургическими производствами, и выбрасываемые в атмосферу в результате другой деятельность людей, а в дальнейшем вымываемые осадками.

Воды большинства рек принадлежат к гидрокарбонатному классу. По составу катионов эта вода имеет почти исключительно преобладание кальция; гидрокарбонатные воды с преобладанием магния и натрия - крайне редкое явление. Из природных вод гидрокарбонатного класса наиболее распространены воды малой минерализации (суммарное содержание солей до 200 мг/л).

Реки с водой, относящейся к сульфатному классу, сравнительно малочисленны. Они распространены преимущественно в степной полосе и частично в полупустынях. В составе катионов природных вод сульфатного класса, так же как и в водах гидрокарбонатного класса, преобладает кальций. Однако ряд рек сульфатного класса имеет преобладание натрия. По минерализации воды сульфатного класса значительно превосходят воды гидрокарбонатного класса. Речные сульфатные воды с малой (общее количество солей до 200 мг/л) и средней (общее количество солей с 200 до 500 мг/л) минерализацией встречаются сравнительно редко. Наиболее характерна для этих рек повышенная (общее количество солей с 500 до 1000 мг/л), а иногда и высокая (общее количество солей более 1000 мг/л) минерализация воды.

Реки, воды которых относятся к хлоридному классу, встречаются почти так же редко, как и реки, в воде которых преобладают сульфаты. К этой территории относятся преимущественно степные районы и полупустыни. Преобладающими катионами природных вод хлоридного класса являются главным образом ионы натрия. Воды хлоридного класса отличаются высокой минерализацией - свыше 1000 мг/л, реже от 500 до 1000 мг/л.

Приведенная характеристика ионного состава речной воды относится к периоду летней межени. До некоторой степени она характеризует состав и в период ледостава. Существенно иная, значительно меньшая минерализация воды наблюдается в период весеннего половодья.

В распределении ионного состава речной воды на территории России наблюдается определенная закономерность. Имеется общая тенденция к увеличению минерализации воды на большей территории европейской части России с севера на юг и с запада на восток. Зональность ионного состава речных вод объясняется не только действием климатических условий настоящего времени, но и в значительной мере климатом прошлого. Степень выщелоченности почв и пород, наличие в них легкорастворимых солей или засоленность почв - это естественный результат многовекового воздействия соответствующих климатических условий. Нарушают зональность химического состава воды рек на территории России различия состава пород и условий их залегания.





Минерализация и химический состав воды озер в отличие от рек меняется в очень широких пределах. Реки с минерализацией воды свыше 100-200 мг/л, в каких бы условиях они ни находились, - очень редкое явление, в то время как минерализация воды озер бывает от очень низкой, в несколько десятков мг/л (т.е. мало отличающейся от дождевом) до очень высокой 3-3,5% (соляные озера с рассолом до предела насыщенного солями). Различие в минерализации отражается и на ионном составе воды озер. В нем наблюдаются закономерности, которые свойственны и химическому составу речной воды. С увеличением минерализации озерной воды происходит относительный рост ионов в ее составе в такой последовательности: HCO 3 - →SO 4 2- →Cl - ; Ca 2+ →Mg 2+ →Na + . При минерализации до 500-1000 мг/л в составе озерной воды преобладают гидрокарбонатные ионы, свыше 0,1% - чаще всего сульфатные, а по достижении 0,3-0,5% в зависимости от литологических особенностей водосборной площади - сульфатные или хлоридные воды. В составе катионов озерных вод преобладающая роль кальция сохраняется лишь до 0,1-0,2%. При дальнейшем росте минерализации эту роль начинают играть ионы натрия. Ионы магния, так же как и во всех других водах, сохраняют при всех минерализациях промежуточное положение. Причина подобного распределения ионного состава заключается в различной растворимости солей. Подавляющая часть пресных озер, так же как и рек, по составу вод гидрокарбонатно-кальциевые.



Состав морской воды характеризуется большим содержанием солей. Если в водах материкового стока чаще всего наблюдается соотношение концентраций: HCO 3 - > SO 4 2- > Cl - и Ca 2+ > Mg 2+ > Na + или Ca 2+ > Na + > Mg 2+ , то для солоноватых и морских вод, начиная с общей минерализации 1 г/кг, соотношения меняются:: Cl - > SO 4 2- > HCO 3 - и Na + > Mg 2+ > Ca 2+ . Изменение соотношений между нонами от речных к морским водам объясняется последовательным достижением предела растворимости слаборастворимых солей по мере повышения минерализации воды. В сумме ионы и соединения главных компонентов составляют по массе 99,99 % массы всех растворенных в океанской воде минеральных веществ.

Между элементами основного солевого состава океанской воды, между каждым из них и их суммой существует практическое постоянство соотношений концентраций. Окончательно его доказал У. Дитмар, выполнивший полный химический анализ (хлориды, сульфаты, кальций, магний, натрий) 77 проб воды, доставленных из всех океанов с различных глубин экспедицией на "Челленджере": в воде открытого океана независимо от абсолютной концентрации количественные соотношения между главными компонентами основного солевого состава всегда постоянны (закон Дитмара). Под влиянием испарения, атмосферных осадков, образования и таяния льдов изменяется лишь общее количество солей, содержащихся в морской воде, но их соотношения в пределах погрешностей определений практически не меняются. Таким образом, если известно точное отношение общего количества солей и концентраций всех основных компонентов в 1 кг воды к концентрации какого-либо одного ингредиента, то лишь по одному определению можно вычислить полный солевой состав океанской воды. В качестве такого "реперного" ингредиента избрана "хлорность", представляющая собой количество граммов ионов хлора, эквивалентное сумме галогенов (кроме фторидов, которые не осаждаются азотнокислым серебром), содержащихся в 1 кг морской воды (определение Серенсена). Постоянство состава океанской воды слегка нарушается под опресняющим влиянием материкового стока в приустьевых участках и во внутренних морях при затрудненном водообмене с океаном. В составе главных компонентов концентрации катионов кальция и магния, а также сумма концентраций анионов слабых кислот (HCO 3 - , CO 3 2- , H 2 BO 3 -) подвержены более чем на 1 % отклонениям от постоянства соотношении в связи с извлечением карбоната кальция из воды в поверхностных слоях и растворением его на глубинах.

Концентрации микроэлементов настолько малы, что в сумме они не превышают 0,01 % массы всех растворенных солей. Из обобщающей сводки В.В. Гордеева и А.П. Лисицына следует, что в наибольших концентрациях встречаются литий (180 мкг/л), рубидий (120 мкг/л), барий (18 мкг/л), в наименьших - золото (0,004 мкг/л), редкоземельные элементы (менее 0,001 мкг/л), радий (10 -7 мкг/л).

Чем более изолированно море от океана, тем заметнее отличается состав его воды от состава воды в океане. Первостепенное значение имеют условия водообмена с океаном, соотношение объема материкового стока с объемом моря, глубина моря и характер химического состава вод впадающих рек.

Подземные воды отличаются исключительным разнообразием химического состава, в том числе и ионного. Состав воды бывает всех классов, групп и типов. Ионный состав подземных вод прежде всего зависит от условий их формирования и залегания.

Стабилизация pH природной воды

Природная вода способна сохранять значение рН более или менее постоянным, даже если в неё извне попадает определённое количество кислоты или основания. Если в литр дистиллированной воды внести каплю концентрированной соляной кислоты, то рН понизится с 7 до 4. А если каплю соляной кислоты добавить в литр речной воды с рН = 7, показатель почти не изменится. Кислоты и основания, попадающие в природную воду, нейтрализуются растворёнными в ней углекислым газом и гидрокарбонат-ионами:

H + + HCO 3 - ↔ H 2 O + CO 2
OH - + CO 2 ↔ HCO 3 -

Гидрокарбонат-ионы нейтрализуют кислоты, попадающие в водоём с атмосферными осадками или образующиеся в результате жизнедеятельности организмов. С концентрацией гидрокарбонат-ионов напрямую связана устойчивость водоёмов к кислотным дождям. Наиболее чувствительны к ним реки и озёра Карелии, Финляндии, Скандинавии, в водах которых этих ионов практически нет.



Органические вещества

Органическим веществом природных вод называют комплекс истинно растворенных и коллоидных веществ органических соединений. По происхождению органические вещества природных вод могут быть разделены на поступающие извне (с водосборной площади) и образующиеся в самом водном объекте. К первой группе относятся главным образом гумусовые вещества, вымываемые водой из почв, торфяников, лесного перегноя и других видов природных образований, включающих остатки растений, и органические вещества, поступающие с промышленными и хозяйственно-бытовыми сточными водами. Из гумусовых веществ для гидрохимии наибольший интерес представляют гуминовые и фульвокислоты. Обе эти кислоты характерны для гумуса (гумусовые кислоты), они не содержатся в живых растительных и животных тканях. Соотношение между ними в разных торфах и почвах неодинаково. В черноземных почвах преобладают гуминовые, а в подзолистых - фульвокислогы.

Общая концентрация органического вещества в природных водах, изменяясь в широких пределах, бывает наибольшей в болотных водах (в которых при большой концентрации гумусовых веществ она иногда достигает 500 мг/л и более) и реках с болотным питанием, причем болотная вода бывает окрашенной в желтый и коричневый цвет до 300° и выше по платиново-кобальтовой шкале цветности (окраску природной воде придают гуминовые кислоты). Высокая концентрация органического вещества иногда встречается в подземных водах, связанных с нефтеносными месторождениями. Еще большая концентрация может быть в природных водах, загрязненных промышленными и хозяйственно-бытовыми сточными водами. Незагрязненные природные воды обычно содержат мало органических веществ. Например, по Б.А. Скопинцеву, в воде океанов концентрация органического вещества составляет только 2,0-5,4 мг/л (в среднем 3,0 мг/л, а в воде рек в среднем 20 мг/л).

В некоторых поверхностных водах, особенно в реках с болотным питанием, вещества гумусового происхождения являются основной частью химического состава воды. После поступления в хорошо аэрируемые реки, а затем озера и моря органические вещества воды подвергаются изменению, и начатый в почвах процесс окисления завершается для большей их части переходом в простые минеральные соединения. Другая, более устойчивая часть остается и накапливается в водных объектах.

В холодных климатических зонах (тундре) очень мало органических остатков, и там водоёмы почти не содержат гуминовых кислот. А в зоне лесов, особенно хвойных, где органических остатков образуется много и они не успевают полностью разложиться, содержание гуминоных кислот составляет несколько десятков миллиграммов на литр. Гуминовые кислоты не только подкисляют воду в водоёме, но ещё и связывают практически все тяжёлые металлы в прочные комплексные соединения.

Газы в природной воде

Если налить в стакан холодную воду из-под крана и поставить в тёплое место, на стенках появятся пузырьки газа. Газы были растворены в холодной воде и выделились при нагревании (поскольку растворимость газов при нагревании уменьшается). Это кислород, азот и углекислый газ. Растворимость газа в воде обычно падает с повышением температуры, что связано с повышением кинетической энергии молекул газа, способствующей преодолению сил притяжения молекул воды. Все природные воды представляют газовые растворы. Наиболее широко распространены в поверхностных водах кислород O 2 и двуокись углерода CO 2 , а в подземных - сероводород H 2 S и метан CH 4 . Иногда CO 2 в значительных количествах может насыщать также воды глубоких горизонтов. Кроме того, во всех природных водах постоянно присутствует азот N 2 .

Кислород (O 2) находится в природной воде в виде растворенных молекул. Кислород, являясь мощным окислителем, играет особую роль в формировании химического состава природных вод. Кислород поступает в воду в результате происходящих в природе процессов фотосинтеза и из атмосферы. Расходуется кислород на окисление органических веществ, а также в процессе дыхания организмов. Концентрация растворенного кислорода в природных водах колеблется в ограниченных пределах (от 0 до 14 мг/л, при интенсивном фотосинтезе, в полдень, возможна и более высокая концентрация). Вследствие зависимости концентрации кислорода в поверхностных водах от целого ряда факторов его концентрация значительно меняется в течение суток, сезона и года. Так как потребление кислорода сравнительно мало зависит от суточных изменений солнечной радиации, а фотосинтез всецело определяется ею, то в течение дня происходит накопление кислорода, а в темное время суток расходование его. Кислород необходим для существования большинства организмов, населяющих водоемы. Как сильный окислитель кислород играет важную санитарно-гигиеническую роль, способствуя быстрой минерализации органических остатков.

Диоксид углерода (CO 2) находится в воде главным образом в виде растворенных молекул газа CO 2 . Однако часть их (около 1 %) вступает во взаимодействие с водой, образуя угольную кислоту:

CO 2 + H 2 O ↔ H 2 CO 3

Обычно же не разделяют CO 2 и H 2 CO 3 и под диоксидом углерода подразумевают их сумму (CO 2 + H 2 CO 3). В природных водах источником диоксида углерода являются прежде всего процессы окисления органических веществ, происходящие с выделением CO 2 как непосредственно в воде, так и в почвах и илах, с которыми соприкасается вода. К ним относятся дыхание водных организмов и различные виды биохимического распада и окисления органических остатков. В некоторых подземных водах важным источником диоксида углерода являются вулканические газы, выделяющие из недр земли, происхождение которых связано с дегазацией мантии и со сложными процессами метаморфизации осадочных пород, протекающими в глубинах под влиянием высокой температуры. Поэтому часто в подземных водах и источниках глубинного происхождения наблюдается высокое содержание диоксида углерода. Поглощение водой диоксида углерода из атмосферы имеет более важное значение для воды морей и океана и менее значимо для вод суши. Уменьшение содержания диоксида углерода прежде всего происходит при фотосинтезе. При очень интенсивном фотосинтезе, когда отмечается полное потребление газообразного CO 2 , последний может быть выделен из ионов HCO 3 - :

HCO 3 - ↔ CO 3 2- + CO 2

Диоксид углерода расходуется также на растворение карбонатов:

CaCO 3 + CO 2 + H 2 O ↔ Ca(HCO 3) 2

Также расходуется на химическое выветривание алюмосиликатов. Уменьшение содержания CO 2 в воде, особенно в поверхностных водах суши, происходит также при выделении его в атмосферу. Вообще CO 2 атмосферы имеет большое значение для CO 2 содержащегося в поверхностных водах, регулируя его содержание там. Между CO 2 атмосферы и CO 2 поверхностных вод существует непрерывный обмен, направленный на установление между ними равновесия, согласно закону Генри-Дальтона. Поскольку парциальное давление диоксида углерода в атмосфере очень невелико (33 Па), то, несмотря на большую растворимость его (при давлении 1013 гПа и температуре 12 °С до 2166 мг/л), равновесие между водой и атмосферой достигается при очень малом содержании CO 2 в воде. При парциальном давлении CO 2 в атмосфере 33 Па растворимость его в воде будет 2166.0,00033=0,715 мг/л (при 12 °С). Обычно же поверхностные воды суши, в которых протекают различные процессы разложения органического вещества и которые связаны с почвами, имеют большее содержание CO 2 и поэтому выделяют его в атмосферу. Лишь при очень сильном фотосинтезе, когда CO 2 практически исчезает, может происходить поглощение CO 2 из атмосферы. Содержание диоксида углерода в природных водах чрезвычайно разнообразно - от нескольких десятых долей до 3000-4000 мг/л. Наименьшая концентрация CO 2 наблюдается в поверхностных водах, особенно минерализованных (моря, соленые озера), наибольшая - в подземных и загрязненных сточных водах. В реках и озерах концентрация CO 2 редко превышает 20-30 мг/л.

Растворенный молекулярный азот (N 2) - наиболее постоянный газ в природных водах. В высшей степени химически устойчивый и биологически трудно усвояемый, азот, будучи занесен в глубинные слои океана или подземные воды, меняется главным образом лишь под влиянием физических условий (температура и давление). Растворенный в поверхностных водах азот имеет преимущественно воздушное происхождение. Наряду с этим в природе широко распространен азот биогенного происхождения, возникающий в результате денитрификации.

Газ метан (CH4) относится к числу наиболее распространенных газов и подземных водах. В газовой фазе подземных вод почти всегда количественно преобладает азот, двуокись углерода или метан. Основным источником образования метана служат дисперсные органические вещества в породах. Метан и тяжелые углеводороды, нередко встречаются в значительных концентрациях в глубинных подземных водах закрытых структур, связанных с нефтеносными месторождениями. В небольшой концентрации метан наблюдается в природных слоях озер, где он выделяется из ила при разложении растительных остатков, а также в океанических донных отложениях в районах высокой биологической продуктивности.

Газ сероводород (H 2 S) является одним из продуктов распада белкового вещества, содержащего в своем составе серу, и поэтому скопление его часто наблюдается в придонных слоях водоемов вследствие гниения различных органических остатков. В нижних частях глубоких озер и морей, где отсутствует водообмен, часто образуется сероводородная зона. При парциальном давлении сероводорода в атмосфере, равном нулю, длительное присутствие его в поверхностных водах невозможно. Кроме того, он окисляется кислородом, растворенным в воде. В реках сероводород наблюдается лишь в придонных слоях, главным образом в зимний период, когда затруднена аэрация водной толщи. Присутствие сероводорода в природных незагрязненных поверхностных водах - сравнительно редкое явление. Гораздо чаще сероводород присутствует в подземных водах, изолированных от поверхности и в сильно загрязненных поверхностных водах, в которых он служит показателем сильного загрязнения и анаэробных условии.

Мезоэлементы

Кроме главных ионов, содержание которых в воде достаточно велико, ряд элементов: азот, фосфор, кремний, алюминий, железо, фтор - присутствуют в ней в концентрациях от 0,1 до 10 мг/л. Они называются мезоэлементами (от греч. "мезос" - "средний", "промежуточный").

Азот в форме нитратов NO 3 - попадает в водоёмы с дождевой водой, а в форме аминокислот, мочевины (NH 2) 2 CO и солей аммония NH 4 + - при разложении органических остатков.

Фосфор существует в воде в форме гидрофосфатов HPO 3 2- и дигидрофосфатов H 2 PO 3 - , образующихся в результате разложения органических остатков.

Кремний является постоянным компонентом химического состава природных вод. Этому способствует в отличие от других компонентов повсеместная распространенность соединений кремния в горных породах, и только малая растворимость последних объясняет малое содержание кремния в воде. Концентрация кремния в природных водах обычно составляет несколько миллиграммов в 1 л. В подземных водах она повышается и часто достигает десятков миллиграммов в 1 л, а в горячих термальных водах - даже сотен. На растворимость кремния, кроме температуры сильно влияет повышение pH раствора. Сравнительно малое содержание кремния в поверхностных водах, уступающее растворимости диоксида кремния (125 мг/л при 26 °С, 170 мг/л при 38 °С), указывает на наличие в воде процессов уменьшающих ее концентрацию. К ним надо отнести потребление кремния водными организмами, многие из которых, например диатомовые водоросли, строят свой скелет из кремния. Кроме того, кремниевая кислота как более слабая вытесняется из раствора угольной кислотой:

Na 4 SiO 4 + 4CO 2 + 4H 2 O = H 4 SiO 4 + 4NaHCO 3

Способствует неустойчивости кремния в растворе и склонность кремниевой кислоты при определенных условиях переходить в гель. В очень мало минерализованных водах кремний составляет существенную, а иногда и преобладающую часть химического состава воды, несмотря на его малое абсолютное содержание. Присутствие кремния в воде является серьезной помехой в технике, так как при продолжительном кипячении воды кремний образует в котлах очень твердую силикатную накипь.

Алюминий поступает в водоёмы в результате действия кислот на глины (каолин):

Al 2 (OH) 4 + 6H + = 2SiO 2 + 5H 2 O + 2Al 3+

Основной источник железа - железосодержащие глины. Органические остатки (ниже обозначаются как "С"), находящиеся в контакте с ними, восстанавливают железо до двухвалентного, которое медленно вымывается в форме гидрокарбоната или солей гуминовых кислот:

2Fe 2 O 3 + "C" + 4H 2 O + 7CO 2 = 4Fe(HCO 3) 2

Когда вода с растворёнными в ней ионами Fe 2+ вступает в контакт с воздухом, железо быстро окисляется, образуя коричневый осадок гидроксида Fe(OH) 3 . Со временем он превращается в болотную руду - бурый железняк (лимонит) FeO(OH). Карельская болотная руда использовалась в XVIII-XIX столетиях для получения железа.

Синеватая плёнка на поверхности воды - это Fe(OH) 3 , образующийся, когда подземные воды, содержавшие ионы Fe 2+ , вступают в контакт с воздухом. Ее часто путают с масляной пленкой, однако различить их очень легко: у пленки гидроксида железа рваные края. Если поверхность воды слегка взволновать, гидроксидная пленка, в отличие от масляной, не будет переливаться.

Микроэлементы

К этой группе относятся элементы, соединения которых встречаются в природных водах в очень малых концентрациях, поэтому их и называют микроэлементами. Их концентрация измеряется микрограммами в 1 л (мкг/л), а часто имеет и более малые значения. Микроэлементы представляют собой самую большую группу элементов химического состава природных вод, в нее входят все элементы периодической системы, не включенные в предыдущие группы рассмотренных компонентов. Условно их можно разделить на пять подгрупп: 1) типичные катионы (Li + , Rb + , Cs + , Be 2+ , Sr 2+ , Ba 2+ и др.); 2) ионы тяжелых металлов (Cu 2+ , Ag + , Au + , Pb 2+ , Fe 2+ , Ni 2+ , Co 2+ и др); 3) амфотерные комплексообразователи (Cr, Mo, V, Mn); 4) типичные анионы (Br - , I - , F -); 5) радиоактивные элементы. Микроэлементы необходимы для нормальной жизнедеятельности растений, животных и человека. Однако при повышенной концентрации многие микроэлементы вредны и даже ядовиты для живых организмов. Поэтому часто они становятся загрязняющими веществами и концентрация их контролируется. Успешное изучение микроэлементов затруднено не только их малым содержанием в природных водах, но и в сильнейшей мере неясностью формы их присутствия в растворе. Последнее не только осложняет выяснение закономерностей их миграции и режима но и создает трудности при химическом анализе. Например, многие тяжелые металлы мигрируют в больших концентрациях именно во взвешенном, а не в растворенном состоянии. Растворенные органические комплексы образуют большинство металлов, прежде всего двух- и трехвалентные металлы с гуминовыми и фульвокислотами. Концентрация закомплексованных металлов определяется прежде всего концентрацией органических кислот. В виде коллоидных соединений присутствуют многие гидроксиды металлов. Возможно, происходит адсорбция органических веществ на поверхности коллоидов, что придает им большую стабильность в растворе.

Факторы влияющие на химический состав воды

Химический состав природной воды определяет предшествующая ему история, т.е. путь, совершенный водой в процессе своего круговорота. Количество растворенных веществ в такой воде будет зависеть, с одной стороны, от состава тех веществ, с которыми она соприкасалась, с другой - от условий, в которых происходили эти взаимодействия. Влиять на химический состав воды могут следующие факторы: горные породы, почвы, живые организмы, деятельность человека, климат, рельеф, водный режим, растительность, гидрогеологические и гидродинамические условия и пр. Рассмотрим лишь некоторые факторы, влияющие на состав воды.

Почвенный раствор и фильтрующиеся через почву атмосферные осадки способны усиливать растворение пород и минералов. Это одно из важнейших свойств почвы, влияющее на формирование состава природных вод, является результатом увеличения концентрации диоксида углерода в почвенном растворе, выделяющегося при дыхании живых организмов и корневой системы в почвах и биохимическом распаде органических остатков. Вследствие этого концентрация CO 2 в почвенном воздухе возрастает от 0,033 %, свойственных атмосферному воздуху, до 1 % и более в почвенном воздухе (в тяжелых глинистых почвах концентрация CO 2 в почвенном воздухе достигает иногда 5-10 %, придавая тем самым раствору сильное агрессивное действие по отношению к породам). Другим фактором, усиливающим агрессивное действие фильтрующейся через почву воды, является органическое вещество - почвенный гумус, образующийся в почвах при трансформации растительных остатков. В составе гумуса в качестве активных реагентов прежде всего следует назвать гуминовые и фульвокислоты и более простые соединения, например органические кислоты (лимонная, щавелевая, уксусная, яблочная и др.), амины и т.п. Почвенный раствор, обогащаясь органическими кислотами и CO 2 , во много раз ускоряет химическое выветривание алюмосиликатов, содержащихся в почвах. Аналогично вода, фильтрующаяся через почву, ускоряет химическое выветривание алюмосиликатов и карбонатных пород, подстилающих почву. Известняк легко образует растворимый (до 1,6 г/л) гидрокарбонат кальция:

CaCO 3 + H 2 O + CO 2 ↔ Ca(HCO 3) 2

Почти на всей европейской части России (кроме Карелии и Мурманской области) известняки, а также доломиты MgCO 3 .CaCO 3 залегают довольно близко к поверхности. Поэтому вода здесь содержит преимущественно гидрокарбонаты кальция и магния. В таких реках, как Волга, Дон, Северная Двина, и основных их притоках гидрокарбонаты кальция и магния составляют от 3/4 до 9/10 всех растворённых солей.

Соли попадают в водоёмы и в результате деятельности человека. Так, хлоридами натрия и кальция зимой посыпают дороги, чтобы растапливать лёд. Весной вместе с талой водой хлориды стекают в реки. Треть хлоридов в реках европейской части России привнесена туда человеком. В реках, на которых стоят крупные города, эта доля гораздо больше.

Рельеф местности косвенно влияет на состав воды, способствуя вымыванию солей из толщи пород. Глубина эрозионного вреза реки облегчает поступление в реку более минерализованных грунтовых вод нижних горизонтов. Этому же способствуют и другие виды депрессий (речные долины, балки, овраги), улучшающие дренирование водосбора.

Климат же, создает общий фон, на котором происходит большинство процессов, влияющих на формирование химическою состава природных вод. Климат прежде всего определяет баланс тепла и влаги, от которого зависит увлажненность местности и объем водного стока, а следовательно, и разбавление или концентрирование природных растворов и возможность растворения веществ или выпадения их в осадок.

Огромное влияние на химический состав воды и его изменение с течением времени оказывают источники питания водного объекта и их соотношение. В период таяния снега вода в реках, озерах и водохранилищах имеет более низкую минерализацию, чем в период, когда большая часть питания осуществляется за счет грунтовых и подземных вод. Это обстоятельство используют при регулировании наполнения водохранилищ и сброса из них воды. Как правило, водохранилища наполняют в период весеннего половодья, когда приточная вода имеет меньшую минерализацию.


Необходимо обеспечение требуемого для содержащихся в аквариуме рыб, беспозвоночных и растений химического состава воды. При этом вы должны учитывать все факторы, необходимые для поддержания в аквариуме здоровой среды.
Для того чтобы самым эффективным образом добиться такого результата, вам необходимо понимание основных характеристик воды - кислотности (pH), жесткости, солености и т. д. Почти всегда проверить их бывает довольно просто с помощью измерительных приборов или цветных индикаторов. Работа с ними несложна даже для неопытных аквариумистов.

Вода (Н 2 O)

«Чистая вода» - это вещество с хорошо известной всем формулой Н 2 O. Это значит, что ее молекула состоит из двух атомов водорода и одного атома кислорода Молекулы воды электрически нейтральны, т.е. не несут ни положительного, ни отрицательного заряда.
С точки зрения аквариумиста интересен тот факт, что молекулы воды способны распадаться на заряженные частицы - ионы. Положительно заряженные ионы называются катионами, отрицательно заряженные - анионами. Молекулы воды распадаются на положительно заряженные ионы водорода (Н +) и отрицательно заряженные гидроксильные группы (ОН —). Это важно, поскольку эта диссоциация воды влияет на ее способность растворять присутствующие в аквариуме минеральные соединения и другие химические вещества. Высокое содержание растворенных в аквариумной воде минеральных веществ часто нежелательно и может быть опасным для здоровья рыб.

Водопроводная и дождевая вода

В водопроводной воде содержится очень много разнообразных веществ, в том числе кальций, магний, натрий и микроэлементы (медь, железо и др.). В ней также может быть довольно много дезинфицирующих добавок - хлора и хлорамина, а также фтористых соединений и веществ, уменьшающих ее жесткость.
Дождевая вода также содержит множество примесей - она растворяет химические вещества, стекая с крыш, проходя по трубам, смешиваясь с пылью. Часто на землю выпадают кислотные дожди - результат загрязнения водяных паров в атмосфере ядовитыми газами, выбрасываемыми промышленными предприятиями и автомобилями. Эти дожди могут растворять содержащиеся в почве соединения кальция, магния и калия. И это еще не все - в воду могут попадать такие токсичные металлы, как ртуть, алюминий, цинк и марганец, причем их количества иногда бывает достаточно, чтобы погубить рыбу в реках, озерах и водохранилищах.

Кислотность воды

Кислотность воды выражается водородным показателем (pH) и определяется содержанием в ней водородных ионов. Значение pH 7 соответствует нейтральной реакции воды, меньше 7 - кислой и выше 7 - щелочной. Кислоты увеличивают содержание в воде ионов водорода и, таким образом, повышают ее кислотность; щелочи уменьшают их содержание и увеличивают щелочность воды. Большинство видов рыб прекрасно живет при значениях pH от 6 до 7,5, но есть виды, которым требуется более кислая или более щелочная вода. Будьте внимательны при определении pH, учитывайте, что pH - это логарифмический показатель. Это значит, что снижение значения pH с 6 до 5 будет означать десятикратное увеличение концентрации водородных ионов, а это - очень существенное изменение химизма воды.
На уровень pH воды в аквариуме влияют общие условия и, в частности, содержание в ней углекислоты. Поэтому вы должны очень внимательно следить за состоянием воды - ведь даже небольшой сдвиг pH может оказаться опасным для обитателей аквариума. Это особенно относится к мягкой, кислой воде, где вообще концентрация водородных ионов выше, чем в жесткой воде. Резкое повышение или понижение pH (так называемые колебания pH) может привести к утрате рыбами способности регулировать содержание солей в организме. Следствием этого может быть тяжелый стресс, нарушение координации движений, а в крайнем случае и нарушение деятельности внутренних органов и гибель.
В густо засаженном аквариуме происходит активное поглощение растениями углекислого газа и нитратов, что приводит к постоянному понижению концентрации водородных ионов и, следовательно, к увеличению значения pH. Это будет происходить до тех пор, пока вы не предпримете меры для увеличения содержания в воде углекислого газа. В аквариумах со скудной растительностью отмечается тенденция к увеличению содержания потенциально опасных нитратов и снижению pH и щелочности.

Углекислый газ (СO 2)

Углекислый газ - один из продуктов обмена большинства живых существ. Растения могут использовать его. В ходе называемого фотосинтезом процесса они поглощают углекислый газ и образуют необходимые для них органические соединения, выделяя жизненно важный для всего живого кислород.

Колебания уровня pH

Ночью, когда вы выключаете в аквариуме свет, фотосинтез прекращается, но растения продолжают дышать, выделяя углекислый газ и поглощая кислород.
Накопление в воде углекислоты приводит к росту концентрации водородных ионов и, следовательно, к увеличению кислотности воды и снижению значения pH. Днем же, когда аквариум освещается, возобновляется фотосинтез и происходят обратные изменения воды. Эти изменения известны под названием колебаний pH.
Снижение содержания углекислого газа в течение дня способствует процессу «биогенной декальцификации», при котором растения пытаются получать углекислоту непосредственно из карбоната кальция (минерального вещества, которым богата жесткая вода).
В итоге на листьях образуется слой извести, который со временем может погубить растение. Для борьбы с этим явлением используются фильтры с дождевальными установками.

Жесткость и щелочность воды

Жесткость воды определяется содержанием в ней растворенных минеральных веществ. Разные соединения обусловливают различные типы жесткости: карбонаты (СО 3 2-), бикарбонаты (НСО 3 —) и гидроксилы (ОН —) определяют так называемую карбонатную жесткость (° КН, или «щелочность»), сульфаты (SO 4 2-), хлориды (Сl —) и нитраты (NO 3 2-) - некарбонатную жесткость (° NKH). Общая жесткость воды (° GH) складывается из ее карбонатной и некарбонатной жесткости,
Подчеркнем, что в данном контексте термин «щелочность» выступает синонимом карбонатной жесткости и не относится к высоким значениям pH.
Из всех перечисленных минеральных веществ наибольшее значение имеют бикарбонаты. Благодаря своей способности связывать или высвобождать водородные ионы они помогают стабилизировать уровень pH аквариумной воды. Способность воды поддерживать постоянное значение pH называется ее буферной емкостью.

Временная и постоянная жесткость

Жесткость воды, определяемую карбонатами и бикарбонатами кальция и магния, называют еще временной: кипячение воды меняет растворимость этих веществ, и они выпадают в виде твердого осадка, вызывая, например, образование накипи на стенках чайника. Таким образом, при подготовке воды для заливки в аквариум временную жесткость можно легко устранить кипячением.
Кипячение, однако, не устраняет постоянную жесткость, обусловленную другими минеральными веществами (особенно сульфатом кальция). Для их удаления воду необходимо подвергнуть деионизации с помощью ионообменных или осмотических фильтров.

Уровни жесткости

Для простоты величину жесткости любого типа выражают в миллиграммах карбоната кальция (СаСO 3) в 1 л воды. В Великобритании жесткость воды выражают в градусах Кларка (1° Кларка = 14,3 мг СаСО 3 в 1 л), хотя чаще просто указывают содержание СаСO 3 в мг/л воды. В США измерение ведут в градусах жесткости (1° жесткости = 1 мг СаСО 3 в 1 л). В последнее время для описания жесткости и щелочности все чаще пользуются миллиэквивалентами (мэкв) (1 мэкв = 50 мг СаСО 3 в 1 л воды). Немецкие градусы жесткости (° dH) определяются по содержанию в воде оксида кальция (а не карбоната кальция); в пересчете 1° dH = 17,9 мг СаСO 3 в 1 л воды.
Уровень жесткости аквариумной воды принято описывать следующими характеристиками:
Очень мягкая - менее 10 мг CaCO 3 в 1 л.
Мягкая - 10-100 мг СаСO 3 в 1 л.
Жесткая - 100-200 мг СаСO 3 в 1 л.
Очень жесткая - больше 200 мг СаСO 3 в 1 л.
Некоторые виды рыб не переносят резких изменений pH, другие страдают в мягкой воде или в воде с низкой щелочностью. В такой непригодной для них воде у рыб могут развиваться поражения чешуи, появляться эрозии на плавниках, может замедляться рост и вообще они будут плохо себя чувствовать.

Микроэлементы

Микроэлементы - это минеральные вещества, содержащиеся в воде в чрезвычайно малых («следовых») количествах. Для аквариумистов особый интерес представляют те из них, которые необходимы для нормальной жизнедеятельности рыб и растений. К числу таких микроэлементов относятся кобальт, йод, железо, медь и селен. Обычно они содержатся в аквариумной воде; кроме того, их добавляют во многие искусственные корма.
Содержание в аквариумной воде микроэлементов можно определить только с помощью сложно устроенных приборов. Многие любители так никогда и не добавляют их в воду и на состояние рыб не жалуются. Однако если у вас в аквариуме мягкая, кислая вода, если вы пользуетесь деминерализованной водой или при ухудшении состояния рыб, может быть, стоит добавить микроэлементы.

Химический состав природных вод очень сложен. В них обнаруживается большинство известных химических элементов, исчисляемых долями граммов или целыми и даже десятками и сотнями граммов на литр воды. Некоторые из обнаруженных в воде элементов присутствуют в виде ионов или молекул, другие образуют сложные соединения, в том числе органические.

Степень и характер минерализации воды в той или иной местности отличается известным постоянством. Общее содержание растворенных в воде нелетучих минеральных и частично органических веществ характеризует величина сухого остатка (главным образом, совокупность хлоридов, сульфатов, карбонатов и бикарбонатов, щелочных и щелочноземельных металлов). Воды, содержащие повышенные количества минеральных солей могут приобретать неприятный соленый или горько-соленый вкус, поэтому уровень сухого остатка питьевых вод ограничивается санитарной практикой в силу его влияния на вкусовые свойства воды на уровне 1000 мг/л. Экспериментальные исследования показали, что оптимальной (по органолептическим свойствам) является питьевая вода, содержащая 200-400 мг солей в 1 литре. Воду с сухим остатком до 1000 мг/л называют пресной, свыше 1000 мг/л - минерализованной.

Изменения обычного уровня минерализации воды, не связанные с естественными причинами (весенние паводки), могут рассматриваться как показатель загрязнения воды посторонними веществами.

Хлориды в воде встречаются преимущественно в виде хлористого натрия и реже в виде других соединений (хлористый магний и др.). В природных водах хлориды появляются в результате вымывания их из земельных пород. Особенно много хлоридов содержится в местах с солончаковой почвой. Хлориды имеют значение как вещества, изменяющие вкус воды и влияющие на физиологические функции организма. Начиная с концентрации 500 мг/л, хлориды вызывают угнетение желудочной секреции, выражающееся в уменьшении кислотности и переваривающей силы желудочного сока. Наряду с этим, ускоряется эвакуация пищи из желудка. При концентрации более 1000 мг/л хлориды приводят к уменьшению диуреза, что может оказаться особенно вредным для людей, страдающих болезнями сердца и почек. В концентрациях более 350 мг/л хлориды придают воде солоноватый привкус.

Хлориды могут попадать в воды с фекалиями, мочой, кухонными отбросами, поэтому для источников местного водоснабжения, вода которых не подвергаются обеззараживанию, хлориды имеют значение как косвенный индикатор бытового загрязнения воды. При этом оценивается не столько концентрация хлоридов, сколько ее изменение во времени и на протяжении водоисточника, т.е. увеличение по сравнению с обычными, характерными для данной местности концентрациями. Совместное присутствие хлоридов и аммиака в сочетании с высокой окисляемостью и неблагоприятными бактериологическими показателями указывает на санитарное неблагополучие данного водоисточника.


Сульфаты в количествах, превышающих 500 мг/л, придают воде горьковато-солоноватый привкус, при концентрации 1000-1500 мг/л и выше угнетают желудочную секрецию, оказывают послабляющее действие на кишечник, вызывают отрицательное отношение людей к вкусовым качествам воды. Сульфаты могут быть показателем загрязнения поверхностных вод животными отбросами, так как составной частью белковых тел является сера, которая при разложении и последующем окислении превращается в соли серной кислоты.

Жесткость воды показывает концентрацию в ней катионов двухвалентных щелочноземельных металлов, прежде всего кальция и магния. Ионы Са(2+) и Мg(2+) могут быть связаны с различными анионами (HCO 3 ,SO 4 ,Cl ,CO 3 ,HNO 3 и др.).

Гидрокарбонаты кальция и магния Са(НСО 3) 2 , Мg(НСО 3) 2 и карбонаты СаСО 3 , МgСО 3 определяют карбонатную жесткость. При нагревании воды нарушается карбонатное равновесие (уменьшается содержание СО 2), вследствие чего гидрокарбонаты переходят в карбонаты.

Растворимость карбонатов кальция и магния значительно меньше, чем гидрокарбонатов, поэтому при кипячении воды жесткость снижается. Жесткость воды, обусловленная гидрокарбонатами кальция и магния, называется карбонатной. Карбонатная жесткость нередко совпадает с устранимой жесткостью, но приравнивать их к друг другу нельзя. При большом количестве в воде гидрокарбоната магния разница между карбонатной и устранимой жесткостью бывает довольно значительной. С величиной устранимой жесткости практически совпадает щелочность воды, которая обусловлена содержанием в ней гидрокарбонатов щелочноземельных металлов (Са, Na, Мg, К,) и других солей слабых кислот. Щелочность воды имеет значение для процесса коагуляции воды при ее очистке. Разность между общей и устранимой жесткостью называется постоянной жесткостью, она связана с количеством кальция и магния, связанным с другими анионами кроме, гидрокарбонатов (Сl, SO 4 , NO 3 и др.).

Жесткость воды является одним из существенных критериев качества питьевой воды. Жесткая вода нежелательна для хозяйственно-бытовых целей: в жесткой воде плохо развариваются овощи, мясо, портится внешний вид, вкус и качество чая, плохо мылится мыло, так как натрий в нем замещается кальцием и магнием воды, в результате чего образуется хлопьевидный осадок кальциевого и магниевого мыла. Жесткая вода может вызвать болезненное раздражение и сухость кожи; в нагревательных приборах в системах горячего водоснабжения жесткая вода образует нерастворимый осадок, затрудняющий их эксплуатацию.

Что касается влияния на здоровье, то высокую жесткость следует рассматривать как один из факторов, способствующих развитию уролитиаза, о чем сказана выше. В течение длительного времени обсуждается вопрос о влиянии жесткости на сердечно-сосудистую систему; имеются данные о более высокой смертности от сердечно-сосудистых заболеваний при использовании мягких питьевых вод. Однако эта гипотеза в ряде стран не нашла подтверждения.

Железо является неотъемлемой частью животного организма и используется для построения дыхательных ферментов (гемоглобина, каталазы и др.). Выделяется из организма железо через кишечник. Организм удовлетворяет свои потребности в железе в основном потребляя его с пищей, поэтому то количество его, которое поступает в организм с питьевой водой, не имеет существенного физиологического значения. Железо Fе(2+), Fе(3+) в разных концентрациях содержится во всех естественных водоисточниках. В больших концентрациях оно появляется в водоемах в результате поступления производственных сточных вод. При распределении воды по стальным (неоцинкованным) трубам содержание железа в ней увеличивается в результате коррозии. Токсическое действие железа на организм неизвестно. При длительном пероральном поступлении в организм даже больших доз (300 мг/кг и более) наблюдались лишь явления гастроэнтерита без признаков интоксикации. Поэтому присутствие железа в воде нежелательно по эстетическим и бытовым соображениям, так оно придает воде мутность, окраску, горьковатый металлический привкус. Кроме того, повышенные концентрации железа в воде способствуют развитию железобактерий, при отмирании которых внутри водопроводных труб накапливается плотный осадок, уменьшающий их диаметр. Установлено, что ухудшение прозрачности и цветности воды происходит под влиянием как закисных, так и окисных соединений железа, поскольку во всех случаях они вызывают образование гидроокиси железа. При уменьшении концентрации железа до 0,3 мг/л прозрачность и цветность воды находятся на уровне стандарта. Металлический привкус воды исчезает при концентрации железа 0,5 мг/л. Данные, полученные методом опроса населения, свидетельствует о том, что при значительно большем содержании железа (более 1,0 мг/л) вода может оказывать раздражающее действие на кожу человека, вызывая зуд и сухость.

Для приведения качества воды в соответствие с требованиями стандарта на водоочистных сооружениях применяются специальные методы улучшения качества воды. Для уменьшения в воде содержания сульфатов, хлоридов и других солей используется опреснение воды с последующим добавлением растворов солей. Опреснение осуществляется методами дистилляции, ионного обмена, электродиализа. В условиях местного водоснабжения используется метод вымораживания природным холодом и искусственным замораживанием.

Для обезжелезивания воды используются следующие методы: аэрация (окисление) и известкование с последующим удалением выпавшей гидроокиси железа путем отстаивания и фильтрации: а также используется коагуляция воды и катионирование.

Для умягчения воды (полного или частичного удаления из воды катионов Са(2+) и Мg(2+) используются реагентные методы, основанные на обработке воды веществами, образующими с ионами кальция и магния практически нерастворимые соединения, выпадающие в осадок (для этого используется добавление гашеной извести в сочетании с содой). Практическое применение получил также метод ионного обмена для умягчения воды с использованием ионообменных смол. Умягчение воды методом ионного обмена может быть осуществлено Nа-катионированием, Н-катионированием, параллельным или последовательным Н-Nа-катионированием.

В санитарно-химическом анализе воды большую роль играет определение солей аммиака, азотистой и азотной кислот (нитритов и нитратов), являющихся косвенным показателем загрязнения воды органическими веществами животного происхождения.

Органические вещества животной природы, поступающие в водоисточники, подвергаются распаду, происходит минерализация их за счет населяющих воду микроорганизмов. Этот процесс протекает более интенсивно в теплое время года и при наличии в воде растворенного кислорода. Минерализация азотсодержащих органических веществ идет в две фазы. В первую фазу, носящую название аммонификации, белки и мочевина распадаются до аммиака и его солей. Распад белков протекает под влиянием анаэробов (B.putrificus, B.sporogenes и др.), факультативных анаэробов (B.micoides и др.), аэробов (B.mesentericus, B.subtilis и др.). Аммонификация мочевины осуществляется уробактериями и др. микробами. Поскольку аммиак является начальным продуктом разложения, то его присутствие говорит о свежем органическом загрязнении водоисточника.

Во второй фазе минерализации - нитрификации - аммиак и его соли окисляются до нитритов (с помощью B.nitrosomonas), а они в свою очередь окисляются до нитратов (с помощью B.nitrobakter). Для превращения аммонийных солей в нитриты требуется некоторое время признаком недавнего загрязнения воды органическими веществами. Нитраты - конечный продукт минерализации органических веществ, следовательно их присутствие является показателем давнего загрязнения водоисточника.

Азотсодержащие вещества позволяют констатировать не только наличие загрязнения воды, но и судить о давности загрязнения. Так, если обнаруженный в воде аммиак при повторных анализах больше не встречается, то можно сделать вывод, что вода была загрязнена случайно и более не загрязняется. Если же вместе с аммиаком в воде обнаруживаются нитриты, то это указывает на то, что имеет место систематическое загрязнение воды с недавнего времени. А если в воде обнаруживается аммиак, нитриты и нитраты, то это указывает на крайнее неблагополучие водоисточника, так как свидетельствует о давнем и постоянном загрязнении водоисточника.

Если же в воде обнаруживаются нитраты, а аммиак и нитриты отсутствуют, то это указывает на то, что завершились процессы минерализации органических веществ, и следовательно, загрязнение ликвидировано.

Следует учитывать, однако, что загрязнение воды органическими веществами животного происхождения не является единственной причиной появления в воде азотсодержащих веществ. В чистых глубоко залегающих водах кислород может совершенно отсутствовать, чем создаются условия для восстановления нитратов минерального происхождения в нитриты и аммиак. В этом случае повышенные концентрации солевого аммиака и нитритов в глубоких межпластовых водах не являются показателем загрязнения. Другие показатели загрязнения воды при этом будут отсутствовать.

В воде открытых водоемов аммонийные соли, нитриты и нитраты могут быть растительного происхождения, являясь продуктами распада органических веществ водной растительности. Азотсодержащие вещества могут попадать в водоисточники с промышленными сточными водами, а также со стоками с территорий, обильно удобряемых азотсодержащими соединениями.

Таким образом, для правильной гигиенической оценки наличия азотсодержащих веществ в воде необходимо установить причину их появления в воде. О загрязнении органическими веществами животного происхождения можно с уверенностью говорить лишь в том случае, если параллельно с минеральными азотсодержащими соединениями в воде обнаруживаются и другие показатели загрязнения: химические (высокая окисляемость) и микробиологическое (низкий коли-титр, высокий коли-индекс). В водопроводной воде, подвергающейся обеззараживанию, аммонийные соли и нитриты как косвенные показатели эпидемиологического неблагополучия воды теряют свое значение. Однако, в обеззараживаемой хлором водопроводной воде нежелательно содержание аммонийных солей более 0,5 мг/л, т.к. из-за образования менее активных веществ - хлораминов, расход хлора для обеззараживания увеличивается в 2-4 раза.

В воде местных источников водоснабжения, согласно предложенным ориентировочным гигиеническим нормам, азота аммонийных солей допускается до 0,1 мг/л, азота нитритов - до 0,002 мг/л. Если эти вещества минерального или растительного происхождения, то они теряют значение как показатели загрязнения и допускается более высокое их содержание в воде.

Самостоятельный интерес представляют нитраты, так как в высоких концентрациях они вызывают метгемоглобинемию. По современной теории нитраты в кишечнике человека восстанавливаются в нитриты под влиянием обитающих в нем бактерий. Всасывание нитритов ведет к образованию метгемоглобина. Таким образом в основе заболевания лежит та или иная степень кислородного голодания, симптомы которого проявляются в первую очередь у детей, особенно грудного возраста, которые болеют преимущественно при искусственном вскармливании (разведение сухих молочных смесей водой, содержащей нитраты) или при употреблении этой воды для питья. Дети старшего возраста и взрослые менее подвержены этому заболеванию, так как у них сильнее выражены компенсаторные механизмы. Концентрация нитратов на уровне 45 мг/л (в пересчете на NO 3) является безопасной и принята в качестве ПДК в питьевой воде. Высокие концентрации нитратов встречаются в основном в подземных водах, являясь следствием постоянного загрязнения воды (особенно грунтовых вод), или минерального происхождения в связи с геохимическими особенностями водовмещающих пород. В воде открытых водоемов концентрация нитратов, как правило, не бывает высокой, так как они потребляются водной растительностью. Исключением могут быть лишь случаи массивного загрязнения водоемов сточными водами, содержащими нитраты.

Нитриты, являясь нестойкими соединениями, не накапливаются в воде в токсических концентрациях, поэтому не имеют значения в качестве метгемоглобинобразующего вещества.

Одной из важнейших причин кариеса зубов считается недостаток фтора в питьевой воде и как следствие - недостаток его в организме. Наблюдается прямая зависимость между содержанием фтора в питьевой воде и заболеваемостью кариесом зубов. Фтор вместе с кальцием и фосфором обеспечивает твердость и крепость костей и зубов.

Действие фтора осуществляется гематогенным путем после всасывания в желудочно-кишечном тракте. С одной стороны фтор стимулирует процессы минерализации зуба, с другой, откладываясь в виде фторапатита, изменяет структуру твердых тканей зуба, усиливая их резистентность к химическим и биологическим кариесогенным факторам, действующим в полости рта.

В поверхностных водоисточниках преобладает концентрация фтор-иона до 0,5 мг/л, а вода этих водоисточников используется для большинства средних и крупных городов. Оптимальной считается концентрация фтора в питьевой воде от 0,7 до 1,2 мг/л. Низкие концентрации фтора увеличивают заболеваемость кариесом. Избыток фтора (выше 1,5 мг/л) приводит к флюорозу, отражается на репродуктивном здоровье, особенно мальчиков. Имеется достоверная зависимость частоты болезней органов дыхания и высоких концентраций фтора.

При содержании фтора ниже 0,5 мг/л питьевую водопроводную воду рекомендуется фторировать, что снижает заболеваемость кариесом зубов на 65-70 %. Следует помнить, что усвоение фтора из воды на 20% лучше, чем из продуктов, это требует осторожного отношения к фторированию воды. При осуществлении фторирования воды, содержание в ней фтора должно быть в пределах 70-80 % от допустимых максимальных уровней применительно к каждому климатическому району. При избыточном содержании фтора в воде должно осуществляться дефторирование.

Кроме типичных для состава природных вод химических элементов и солей в питьевой воде могут присутствовать химические вещества и соединения, попадающие в водоемы с промышленными и сельскохозяйственными стоками, а также остаточные количества веществ, добавляемых в воду при ее обработке на водоочистных сооружениях. Для них установлены ПДК, которые представлены в СанПиНах. Одним из таких элементов является остаточный активный хлор, добавляемый при обеззараживании воды. Для достижения эффекта обеззараживания хлорсодержащие препараты добавляют в количествах, которые через 30 минут контакта воды с хлором (достаточного для уничтожения вегетативных форм микроорганизмов) создадут некоторый избыток его в воде (остаточное количество) в пределах от 0,3 до 0,5 мг/л. Большие количества придадут воде неприятный запах, особенно при наличии в воде фенолов и образование галогенизированных углеводородов, обладающих канцерогенным действием.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции