Вконтакте Facebook Twitter Лента RSS

По агрегатному состоянию сточные воды являются примером. Вода в трех агрегатных состояниях. Применение свойств водяного пара

В природе вода содержится в трех состояниях:

  • твердое состояние (снег, град, лед);
  • жидкое состояние (вода, туман, роса и дождь);
  • газообразное состояние (пар).

С раннего детства, еще в школе изучают разные агрегатные состояния воды: туман, дождевые осадки, град, снег, лёд и тп. Существует , которые в школе изучают подробно. Они каждый день встречаются нам в жизни и влияют на жизнедеятельность. – это состояние воды при определенном температурном режиме и давлении, которое характеризуется в пределе некоторого интервала.

К основным понятиям состояния воды следует внести уточнения, что состояние тумана и облачное состояние не относится к газообразованию. Они появляются при конденсации . Это уникальное свойство воды которое может находиться в трех разных агрегатных состояниях. Три состояния воды жизненно важны для планеты, они образуют гидрологический цикл, обеспечивают процесс круговорота воды в природе. В школе показывают различные опыты по испарению и . В любом уголочке природы вода считается источником жизни. Есть и четвертое состояние, не менее важное – Дерягинская вода (Российский вариант), или как её принято называть в данный момент — Нанотрубочная вода (Американский вариант).

Твердое состояние воды

В сохраняется форма и объем. При пониженной температуре вещество замерзает и превращается в твердое тело. Если высокое давление, то температура затвердевания требуется выше. Твердое тело бывает кристаллическим и аморфным. В кристалле положение атома строго упорядоченно. Формы кристаллов естественные и напоминают многогранник. В аморфном теле точки расположены хаотично и колеблются, в них сохраняется только ближний порядок.

Жидкое состояние воды

В жидком состоянии вода сохраняет свой объем, но ее форма не сохраняется. Под этим понимает, что жидкость занимает лишь часть объема, может протекать по всей поверхности. Изучая в школе вопросы жидкого состояния, следует понимать, что это промежуточное состояние между твердой средой и газовой средой. Жидкости делятся на чистые и состояния смеси. Некоторые смеси очень важны для жизни, например кровь или морская вода. Жидкости могут выполнять функцию растворителя.

Состояние газа

В форма и объем не сохраняются. По-другому газообразное состояние, изучение которого происходит еще в школе, называется водяным паром. Опыты показывают наглядно, что пар невидим, он растворим в воздухе, и показывает относительную влажность. Растворимость зависит от температуры и давления. Насыщенный пар и точка росы – это показатель предельной концентрации. Пар и туман это разные агрегатные состояния.

Четвертое агрегатное состояние — плазма

Изучение плазмы и современные опыты стали рассматриваться чуть в более позднем сроке. Плазмой называется полностью или частично ионизированный газ, она возникает в состоянии равновесия при высокой температуре. В условиях земли образуется газовый разряд. Свойства плазмы определяют его газообразное состояние, за исключением того, что огромную роль во всем этом играет электродинамика. Среди агрегатных состояний плазма самое распространенное во Вселенной. Изучение звезд и межпланетного пространства показало, что вещества находятся в состоянии плазмы.

Как меняются агрегатные состояния?

Изменение процесса перехода из одного состояния в другое:

— жидкость — пар (парообразование и кипение);

— пар — жидкость (конденсация);

— жидкость — лед (кристаллизация);

— лед – жидкость (плавление);

— лед – пар (сублимация);

— пар – лед, образование инея (десублимация).

Вода названа интересным природным земным минералом. Вопросы эти сложные и изучение требуется постоянное. Агрегатное состояние в школе подтверждают проведенные опыты и если возникают вопросы, то опыты наглядно дают разобраться в рассказанном на уроке материале. При испарении жидкость переходит в , процесс способен начаться уже с нуля градусов. При повышении температуры увеличивается . Интенсивность этого подтверждают опыты кипения при 100 градусах. Вопросы испарения находят ответ в испарении с поверхностей озер, рек и даже с суши. При охлаждении получается процесс обратного превращения, когда из газа образуется жидкость. Этот процесс называется конденсацией, когда из водяного пара, находящегося в воздухе образуются мелкие капельки облака.

Ярким примером является ртутный градусник, в котором ртуть представлена в жидком состоянии, при температуре -39 градусов ртуть становится твердым телом. Изменить состояние твердого тела можно, но это потребует дополнительных усилий, например при сгибании гвоздя. Зачастую школьники задают вопросы, о том, как же придают форму твердому телу. Этим занимаются на заводах и в специализированных цехах на специальном оборудовании. Абсолютно любое вещество может существовать в трех состояниях, в том числе и вода, это зависит от физических условий. При переходе воды из одного состояния в другое изменяется молекулярное расположение и движение, состав молекулы не меняется. Экспериментальные задания помогут понаблюдать за такими интересными состояниями.

Тема урока: «Три состояния воды в природе»

5 класс география.

Учитель географии и биологии

Бурнакского филиала

МБОУ Пичаевской СОШ им.В.П. Беляева

Глущенко Оксана Павловна

Цель урока : сформировать понятие «гидросфера»; показать роль гидросферы в природе.

Эпиграф урока:

«Вода! Ты не просто необходима для жизни,

ты и есть сама жизнь».

Организация учащихся на урок.

II. Изучение нового материала.

О роли воды в природе ярко и точно сказал академик И.В. Петряков: «…Разве вода – это только та бесцветная жидкость, что налита в стакан? Покрывающий почти всю нашу планету, всю чудесную Землю Океан, в котором миллионы лет назад зародилась жизнь, - это вода. Тучи, облака, туман – это тоже вода…

Безгранично разнообразие жизни. Она всюду на нашей планете. Но жизнь есть только там, где есть вода. Нет живого существа, если нет воды».

Вода - самый удивительный минерал на Земле. Удивительный потому, что она создает условия для развития и роста многообразных форм жизни.

Вода не заменима. Нет такого вещества во вселенной, которое могло бы заменить этот удивительный минерал. С каждым годом человечество использует все больше пресной воды. Чтобы вырасти 1кг. растительной пищи, необходимо около 2 тыс. литров воды; в Москве расход воды в среднем на человека составляет 500литров в сутки.

Воды на Земле очень много. Большая часть нашей планеты – 71% покрыты водной оболочкой – гидросферой. Суша, словно паутиной, во всех направлениях прорезана сотнями тысяч рек, ручьев. Кроме того, на суше значительное количество воды содержится в озерах и водохранилищах, созданных человеком; в болотах и ледниках, под землей; небольшой процент воды содержится в атмосфере. Таким образом, вода в природе встречается в трех состояниях: жидком, твердом, газообразном.

1. Вода в жидком состоянии.

Летом вы неоднократно отмечали, что земля уже нагрелась, а вода еще долго остается холодной. Входя в воду, вы ощущаете, что ее температура неодинаковая: верхние слои значительно теплее, чем нижние. Перемешивание верхних и нижних слоев производит ветер, вызывающий волнение на поверхности, - чем глубже, тем она холоднее. Почему же вода имеет различную температуру?

Чтобы ответить на этот вопрос, проведем следующий опыт.

Возьмем пробирку, положим в нее кусочек льда. Чтобы он не всплывал, придавим его сверху маленьким кусочком металла. Затем зальем в пробирку воды. Держим пробирку прищепкой для белья и, немного наклонив, нагреваем ту ее часть, где нет льда. Одновременно наблюдаем, что происходит со льдом. Он долго сохраняет твердое состояние.

Почему же лед не тает? Вода кипит, а лед не тает. Поставленный опыт позволяет сделать вывод : вода – плохой проводник тепла . Так как вода плохой проводник тепла, то лед долгое время находится в твердом состоянии.

У воды есть и другое замечательное свойство: нагретая солнечными лучами, она способна долгое время сохранять полученное тепло. Вода как бы накапливает его в себе и удерживает. Она медленно нагревается и медленно остывает. Летом вода в приморских районах, нагреваясь медленнее, чем суша, охлаждает окружающий воздух, отдавая тепло воздуху и смягчая мороз (приложение №1: вода – самое необыкновенное вещество на Земле) .

2. Вода в твердом состоянии.

Когда температура опускается ниже 0 ºС, вода замерзает и переходит в твердое состояние – лед.

У воды есть важное свойство – текучесть. Оказывается, и лед при определенных условиях может течь. На Земле существуют огромные ледяные реки, медленно стекающие с высоких гор. Их называют ледниками.

Почему же ледники движутся, ведь они, как правило, находятся на твердой горной поверхности? Оказывается, под огромной тяжестью лед поверхности земли начинает подтаивать и превращается в жидкость. Образовавшаяся вода облегчает скольжение, она выступает в роли смазки.

3. Туман и пар.

Мы уже говорили, что вода может находиться в газообразном состоянии и что зимой надо льдом можно наблюдать водяной пар. В действительности водяной ли это пар?

Белое облако, которое образуется по ночам и рано утром в низинах и над водоемами; белый дымок, который вырывается из носика чайника, или белые видимые клубы над сосудом, где закипает вода, - все это не водяной пар, а туман (приложение №2: туман – мельчайшие капельки воды, образующиеся в воздухе) .

Нет никакой разницы между туманом и облаком в небе. Туманы чаще бывают осенью, когда воздух охлаждается быстрее, чем земля или вода. При соприкосновении прохладного воздуха с теплым и образуется туман.

Чем отличается туман от водяного пара? Водяной пар видеть невозможно, как нельзя видеть воздух. Можно доказать, что именно он, невидимый и прозрачный, существует в атмосфере. Если подержать небольшое зеркало 10 – 20 мин на улице, а потом внести в теплую комнату, то через несколько минут оно покроется капельками воды.

Количество водяных паров, которое может содержаться в воздухе, зависит от его температуры, чем температура воздуха выше, тем больше водяного пара в нем.

Вода в жидком, твердом и газообразном состоянии образует на Земле оболочку – гидросферу.

Воды гидросферы подразделяются на:

Гидросфера

Воды мирового океана

Воды суши

Воды в атмосфере

Большая часть всей воды планеты 98% находится в океанах и морях. На воды суши приходится 2% воды. Эти 2% пресных вод и использует наше человечество для всех своих нужд.

2% воды – это не так много. Такого количества хватило бы человечеству всего на несколько лет. А между тем, вода в наших реках, озерах не бывает год от года. Кто же сделал наши пресные водоемы неиссякаемыми? Оказывается, солнце. Ибо под действием солнца происходит круговорот воды в природе.

Хоть в это поверить не очень легко,

Но Волги вода есть в реке Лимпопо.

И, путешествуя облаком пара,

Воды из Волги текут в Ниагару.

Волги вода и в Байкале, и в Ниле.

И в Танганьике, и в нашей квартире.

Значит, должны понимать это все мы:

Реки – часть водной единой системы.

Но, чтоб не быть с географией в споре,

Волга впадает в Каспийское море.

И. Якимов

(приложение №3: схема Мирового круговорота воды)

III. Закрепление материала.

Учащиеся в тетради выполняют схему «Мировой круговорот воды в природе».

П
риложение №1.

Вода – самое необыкновенное вещество на Земле.

П

риложение №2.

Туман – мельчайшие капельки воды, образующиеся в воздухе.



Приложение №3.

Схема Мирового круговорота воды.

Пептиды, или короткие белки, содержатся во многих продуктах питания — мясе, рыбе, некоторых растениях. Когда мы съедаем кусок мяса, белок расщепляется в процессе пищеварения на короткие пептиды; они всасываются в желудок, тонкий кишечник, попадают в кровь, клетку, затем в ДНК и регулируют активность генов.

Перечисленные препараты желательно периодически применять всем людям после 40 лет для профилактики 1-2 раза в год, после 50 лет — 2-3 раза в год. Остальные препараты — по необходимости.

Как принимать пептиды

Поскольку восстановление функциональной способности клеток происходит постепенно и зависит от уровня существующего их поражения, эффект может наступить как через 1-2 недели после начала приема пептидов, так и через 1-2 месяца. Рекомендуется проведение курса в течение 1-3 месяцев. Важно учитывать, что трехмесячный прием натуральных пептидных биорегуляторов имеет пролонгированное действие, т.е. работает в организме еще порядка 2-3-х месяцев. Полученный эффект удерживается в течение полугода, а каждый следующий курс приема обладает эффектом потенцирования, т.е. эффектом усиления уже полученного.

Поскольку каждый пептидный биорегулятор имеет направленность действия на определенный орган и не влияет никак на другие органы и ткани, одновременный прием препаратов разного действия не только не противопоказан, но зачастую рекомендован (до 6-7 препаратов одновременно).
Пептиды совместимы с любыми лекарственными препаратами и биологическими добавками. На фоне приема пептидов дозы одновременно принимаемых лекарственных препаратов целесообразно постепенно снижать, что положительным образом скажется на организме больного.

Короткие регуляторные пептиды не подвергаются трансформации в желудочно-кишечном тракте, поэтому они могут спокойно, легко и просто применяться в капсулированном виде практически всеми желающими.

Пептиды в ЖКТ распадаются до ди- и три-пептидов. Дальнейший распад до аминокислот происходит в кишечнике. Это означает, что пептиды можно принимать даже без капсулы. Это очень важно, когда человек по каким-то причинам не может глотать капсулы. Это же касается и сильно ослабленных людей или детей, когда дозировку необходимо уменьшить.
Пептидные биорегуляторы можно принимать как в профилактических, так и в терапевтических целях.

  • Для профилактики нарушения функций различных органов и систем обычно рекомендуется по 2 капсулы 1 раз в день утром натощак в течение 30 дней, 2 раза в год.
  • В лечебных целях, для коррекции нарушения функций различных органов и систем с целью повышения эффективности комплексного лечения заболеваний рекомендуется по 2 капсулы 2-3 раза в день в течение 30 дней.
  • Пептидные биорегуляторы представлены в капсулированном виде (натуральные пептиды Цитомаксы и синтезированнные пептиды Цитогены) и в жидком виде.

    Эффективность натуральных (ПК) в 2-2,5 раза ниже, чем капсулированных. Поэтому их прием в лечебных целях должен быть более продолжительным (до полугода). Жидкие пептидные комплексы наносятся на внутреннюю поверхность предплечья в проекции хода вен или на запястье и растираются до полного впитывания. Через 7-15 минут происходит связывание пептидов с дендритными клетками, которые осуществляют их дальнейший транспорт до лимфоузлов, где пептиды делают «пересадку» и отправляются с током крови к нужным органам и тканям. Хотя пептиды — это белковые вещества, их молекулярная масса гораздо меньше, чем у белков, поэтому они легко проникают через кожу. Еще больше улучшает проникновение пептидных препаратов их липофилизация, то есть соединение с жировой основой, именно поэтому практически все пептидные комплексы наружного применения имеют в своем составе жирные кислоты.

    Не такдавно появилась первая в мировой практике серия пептидных препаратов для сублингвального применения

    Принципиально новый способ применения и наличие в составе каждого из препаратов целого ряда пептидов обеспечивают им максимально быстрое и эффективное действие. Данный препарат, попадая в подъязычное пространство с густой сетью капилляров, способен проникать прямо в кровоток, минуя всасывание через слизистую пищеварительного тракта и метаболическую первичную дезактивацию печени. С учетом непосредственного попадания в системный кровоток, скорость наступления эффекта в несколько раз превышает скорость при приеме препарата перорально.

    Линия Revilab SL — это комплексные синтезированные препараты, имеющие в своем составе 3-4 компонента очень коротких цепочек (по 2-3 аминокислоты). По концентрации пептидов — это среднее между капсулированными пептидами и ПК в растворе. По быстроте действия — занимает лидирующую позицию, т.к. всасывается и попадает к цели очень быстро.
    Данную линию пептидов имеет смысл вводить в курс на начальном этапе, а затем переходить на натуральные пептиды.

    Еще одна инновационная серия — линия мультикомпонентных пептидных препаратов. Линия включает в себя 9 препаратов, каждый из которых содержит целый ряд коротких пептидов, а также антиоксиданты и строительный материал для клеток. Идеальный вариант для тех, кто не любит принимать много препаратов, а предпочитает получить все в одной капсуле.

    Действие данных биорегуляторов нового поколения направлено на замедление процессов старения, поддержание нормального уровня обменных процессов, профилактику и коррекцию различных состояний; реабилитацию после тяжелых заболеваний, травм и операций.

    Пептиды в косметологии

    Пептиды можно включать не только в лекарства, но и в другие продукты. Например, российскими учеными разработана великолепная клеточная косметика с натуральными и синтезированными пептидами, которая оказывает воздействие на глубокие слои кожи.

    Внешнее старение кожи зависит от многих факторов: образа жизни, стрессов, солнечного света, механических раздражителей, климатических колебаний, увлечений диетами и т.д. С возрастом кожа обезвоживается, теряет эластичность, становится шероховатой, на ней появляется сеть морщин и глубоких бороздок. Всем нам известно, что процесс естественного старения закономерен и необратим. Противостоять ему невозможно, но его можно замедлить благодаря революционным ингредиентам косметологии — низкомолекулярным пептидам.

    Уникальность пептидов состоит в том, что они свободно проходят через роговой слой в дерму до уровня живых клеток и капилляров. Восстановление кожи идет глубоко изнутри и, как результат, — кожа долгое время сохраняет свою свежесть. К пептидной косметике не происходит привыкания — даже если перестать ею пользоваться, кожа просто физиологически будет стареть.

    Косметические гиганты создают все новые и новые «чудодейственные» средства. Мы доверчиво покупаем, используем, но чуда не происходит. Мы слепо верим надписям на банках, не подозревая, что зачастую это всего лишь маркетинговый прием.

    Например, большинство косметических компаний вовсю производят и рекламируют кремы от морщин с коллагеном в качестве основного ингредиента. Между тем, ученые пришли к выводу, что молекулы коллагена настолько велики, что просто не могут проникнуть в кожу. Они оседают на поверхности эпидермиса, а потом смываются водой. То есть, покупая кремы с коллагеном, мы буквально выкидываем деньги в трубу.

    В качестве еще одного популярного активного ингредиента антиэйдж-косметики используется ресвератрол. Он действительно является мощным антиоксидантом и иммуностимулятором, но только в виде микроинъекций. Если втирать его в кожу, чуда не произойдет. Опытным путем было доказано, что на выработку коллагена кремы с ресвератролом практически не влияют.

    НПЦРИЗ (ныне Peptides) в соавторстве с учеными Санкт-Петербургского института биорегуляции и геронтологии разработал уникальную пептидную серию клеточной косметики (на основе натуральных пептидов) и серию (на основе синтезированных пептидов).

    В их основу заложена группа пептидных комплексов с различными точками приложения, оказывающих мощное и видимое омолаживающее действие на кожу. В результате применения происходит стимуляция регенерации клеток кожи, кровообращения и микроциркуляции, а также синтеза коллаген-эластинового каркаса кожи. Все это проявляется в лифтинге, а также улучшении текстуры, цвета и влажности кожи.

    В настоящее время разработано 16 видов кремов, в т.ч. омолаживающие и для проблемной кожи (с пептидами тимуса), для лица против морщин и для тела против растяжек и рубцов (с пептидами костно-хрящевой ткани), против сосудистых звездочек (с пептидами сосудов), антицеллюлитный (с пептидами печени), для век от отеков и темных кругов (с пептидами поджелудочной железы, сосудов, костно-хрящевой ткани и тимуса), против варикоза (с пептидами сосудов и костно-хрящевой ткани) и др. Все кремы, помимо пептидных комплексов, содержат и другие мощные активные ингредиенты. Важно, что кремы не содержат химических компонентов (консервантов и пр.).

    Эффективность действия пептидов доказана в многочисленных экспериментальных и клинических исследованиях. Конечно, чтобы выглядеть прекрасно, одних кремов мало. Нужно омолаживать свой организм и изнутри, применяя время от времени различные комплексы пептидных биорегуляторов и микронутриентов.

    Линейка косметических средств с пептидами, помимо кремов, включает в себя также шампунь, маску и бальзам для волос, декоративную косметику, тоники, сыворотки для кожи лица, шеи и области декольте и пр.

    Следует учитывать также, что на внешний вид существенно влияет потребляемый сахар.
    Из-за процесса под названием «гликация» сахар разрушительно действует на кожу. Избыток сахара увеличивает скорость деградации коллагена, что приводит к морщинам.

    Гликацию относят к основным теориям старения, наряду с окислительной и фотостарением.
    Гликация – взаимодействие сахаров с белками, в первую очередь коллагена, с образованием поперечных сшивок – это естественный для нашего организма, постоянный необратимый процесс в нашем теле и коже, приводящий к отвердению соединительной ткани.
    Продукты гликации – частицы A.G.E. (Advanced Glycation Endproducts) – оседают в клетках, накапливаются в нашем теле и приводят ко множеству негативных эффектов.
    В результате гликации кожа теряет тонус и становится тусклой, она обвисает и выглядит старой. Это напрямую связано с образом жизни: снизьте потребление сахара и мучного (что полезно и для нормального веса) и каждый день ухаживайте за кожей!

    Для противостояния гликации, торможения деградации белков и возрастных изменений кожи компания разработала антивозрастной препарат с мощным дегликирующим и антиоксидантным эффектом. Действие данного средства основано на стимулировании процесса дегликации, воздействующего на глубинные процессы старения кожи и способствующего разглаживанию морщин и повышению ее упругости. Препарат включает в себя мощный комплекс для борьбы с гликацией — экстракт розмарина, карнозин, таурин, астаксантин и альфа-липоевую кислоту.

    Пептиды — панацея от старости?

    По словам создателя пептидных препаратов В.Хавинсона, старение во многом зависит от образа жизни: «Никакие препараты не спасут, если человек не обладает набором знаний и правильным поведением — это соблюдение биоритмов, правильное питание, физкультура и прием тех или иных биорегуляторов». Что касается генетической предрасположенности к старению, то от генов, по его словам, мы зависим лишь на 25 процентов.

    Ученый утверждает, что пептидные комплексы обладают огромным восстановительным потенциалом. Но возводить их в ранг панацейности, приписывать пептидам несуществующие свойства (скорее всего по коммерческим соображениям) категорически неправильно!

    Заботиться о своем здоровье сегодня — означает дать себе шанс жить завтра. Мы сами должны улучшать свой образ жизни — заниматься спортом, отказываться от вредных привычек, лучше питаться. И конечно же, по мере возможности применять пептидные биорегуляторы, способствующие сохранению здоровья и увеличению продолжительности жизни.

    Пептидные биорегуляторы, разработанные российскими учеными несколько десятков лет назад, стали доступны широкому потребителю только в 2010 году. Постепенно о них узнает все больше людей во всем мире. Секрет сохранения здоровья и моложавости многих известных политиков, артистов, ученых кроется в применении пептидов. Вот только некоторые из них:
    Министр энергетики ОАЭ Шейх Саид,
    Президент Белоруссии Лукашенко,
    Бывший Президент Казахстана Назарбаев,
    Король Таиланда,
    летчик-космонавт Г.М. Гречко и его жена Л.К.Гречко,
    артисты: В.Леонтьев, Е.Степаненко и Е.Петросян, Л. Измайлов, Т.Повалий, И.Корнелюк, И.Винер (тренер по художественной гимнастике) и многие-многие другие...
    Пептидные биорегуляторы применяют спортсмены 2-х олимпийских сборных России — по художественной гимнастике и гребле. Применение препаратов позволяет увеличить стрессоустойчивость наших гимнасток и способствует успехам сборной на международных чемпионатах.

    Если в молодости мы можем себе позволить делать профилактику здоровья периодически, когда нам хочется, то с возрастом, к сожалению, такой роскоши у нас нет. И если Вы не хотите завтра быть в таком состоянии, что Ваши близкие измучаются с Вами и будут ждать Вашей кончины с нетерпением, если Вы не хотите умереть среди чужих людей, потому что ничего не помните и все вокруг кажутся Вам чужими на самом деле, Вы должны с сегодняшнего дня принять меры и заботиться даже не столько о себе, сколько о своих близких.

    В Библии написано: «Ищите и обрящете». Возможно, Вы нашли свой способ оздоровления и омоложения.

    Все в наших руках, и только мы сами можем о себе позаботиться. Никто за нас этого не сделает!






    Вода на Земле может существовать в трёх основных состояниях - жидком, газообразном и твёрдом и приобретать различные формы, которые могут одновременно соседствовать друг с другом. Водяной пар и облака в небе, морская вода и айсберги, горные ледники и горные реки, водоносные слои в земле. Вода способна растворять в себе много веществ, приобретая тот или иной вкус. Из-за важности воды, «как источника жизни», её нередко подразделяют на типы по различным принципам.

    Итак, вода бывает морская, пресная, речная, озерная, колодезная, водопроводная, сырая, кипяченая, родниковая, дождевая, талая, болотная, минеральная, горячая, теплая, холодная, приятная, бодрящая, газированная (с сиропом или без). Наконец, просто вкусная или невкусная!

    Художник воду описывает такой, какой ее видит, в красках: голубая вода горных озер, зеленоватая вода прудов и болот, свинцово-серые волны моря… Поэт и вовсе сравнивает воду с живым существом, обладающим характером. «Вода благоволила литься» - эти слова принадлежат поэту Леониду Мартынову. Сколько в одной строчке восхищения водой!

    Как с научной и практической точки зрения можно классифицировать природную воду?

    Прежде всего, по содержанию солей. Cуществует морская вода (соленая) и вода пресная. Соленость определяется в граммах солей на литр воды и составляет для пресной воды до 1 г/л, для воды солоноватой - от 1 до 24,7 г/л и для соленой - более 24,7 г/л. Но и морская вода по степени солености бывает разная. Вода Черного моря гораздо солонее воды моря Балтийского. А самой соленой считается вода Мертвого моря. Соленость воды зависит от количества рек, впадающих в морской бассейн, от степени его соединения с Мировым океаном и от климата данной местности (режима испарения). Вода некоторых соленых озер, в том числе находящихся на юге России, а также на территории бывшего СССР (Казахстан, Туркмения), достигает такой концентрации, что больше напоминает соляной раствор.

    Вода отличается также по нахождению в Природе и происхождению. Воды бывают поверхностные (реки, озера, моря и пр.) и подземные, в том числе грунтовые, артезианские.

    Воду различают и по степени очистки: природная вода, водопроводная, кипяченая, дистиллированная (полученная из охлажденных паров).

    Кроме того, вода может быть даже ископаемой (заключенная внутри горных пород и минералов, образовавшихся миллионы лет назад). Она и сама может быть полезным ископаемым! Об этом вам скажут геологи. А вот химики обязательно добавят, что кроме обычной, легкой, воды в Природе существует и тяжелая вода (тритиевая и дейтериевая), которую называют радиоактивной.

    Известно, что в природе вода может находиться в трех различных состояниях, таких как: газообразное, жидкое или твердое.

    Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка-это мельчайшие кристаллики льда, а дождь-это всего лишь жидкая вода.

    Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как «влажный», это означает, что в воздухе содержится большое количество водяных паров.

    Лед – твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

    Для того, чтобы доказать, что вода переходит из одного состояния в другое я провёл несколько экспериментов.

    Эксперимент 1.

    Переход воды из жидкого состояния в твердое. (Приложение 1)

    Эксперимент 2.

    Переход воды из жидкого состояния в газообразное, из газообразного в жидкое и из твердого в жидкое. (Приложение 1).

    Переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия называется конденсацией.

    Также происходит и в природе. С поверхности океанов, морей, рек и суши вода превращается в пар и поднимается в вверх. Там он охлаждается и превращается в капельки воды, из которых образуются облака.

    Из облаков вода выпадает на землю и пополняет реки, а реки несут её в океан.

    ⇐ Предыдущая12345Следующая ⇒

    Не нашли то, что искали? Воспользуйтесь поиском:

    Читайте также:

    Состояние воды в природе

    Вода — одно из самых распространенных на Земле соединений. Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет Солнечной системы и их спутников. Количество воды на поверхности земли оценивается в 1,39 ?

    1018т. Общий объем воды на Земле составляет около 1 500 000 000 км 3 . Если эту воду равномерно распределить по поверхности Земли, то толщина ее слоя составила бы почти 4 км.

    Вода входит в состав многих минералов и горных пород, присутствует в почве и во всех организмах. Так, например, тело взрослого человека на 65% состоит из воды. Вода входит в состав всех его органов и тканей: в сердце, легких, почках её около 80%, в крови — 83%, в костях — 30%, в зубной эмали — 0,3%, в биологических жидкостях организма (слюне, желудочном соке, моче и т.д.) — 95-99%.

    Тело рыб содержит 80% воды, водорослей — 90%. Подсчитано, что содержание воды в тканях живых организмов примерно в шесть раз превышает ее количество во всех реках земного шара.

    Известно, что в природе вода может находиться в трех различных состояниях, таких как: твердое, жидкое или газообразное.

    Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка — это совокупность мельчайших кристалликов льда, а дождь — всего лишь жидкая вода.

    Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как "влажный", это означает, что в воздухе содержится большое количество водяных паров.

    Лед — твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

    Лишь недавно, в конце второго тысячелетия, было обнаружено еще одно, четвертое состояние воды - информационное. В поисках ответов на многочисленные вопросы, хоть сколь-нибудь приблизившие бы к пониманию непредсказуемого поведения воды, ученым вдруг стало остро очевидно: вода, словно живое существо, обладает памятью. Она воспринимает и запоминает любое воздействие, как будто понимая все, что происходит в пространстве.

    В ходе опытов со структурой жидкости удалось выяснить, что памятью воды можно управлять. Суть сводится к следующему: молекулы того или иного вещества, растворяясь в воде, как бы пронумеровывают и программируют расположение ее структурных элементов. Если записать объемное распределение взаимных ориентацией граней вокруг молекулы вещества, то фактически будет произведена запись вполне определенного состояния воды, отвечающего за то или иное ее свойство (например, горький или сладкий вкус и т. д.). Нетрудно представить, какие громадные возможности направленного задания желаемых свойств воды это открывает.

    Сверхкритическую воду систематически исследуют с начала прошлого века. Однако сегодня эти работы привлекательны не только с теоретической точки зрения. Есть надежда, что самый распространённый, дешёвый, безопасный и экологически чистый растворитель займет свою уникальную нишу в химической промышленности.

    Сверхкритические состояния первым начал изучать Каньяр де ля Тур в 1822 году. Если любую кипящую жидкость (когда существует равновесие между жидкостью и паром) продолжать нагревать и увеличивать давление, то в какой-то момент плотности жидкости и пара становятся одинаковыми, а граница раздела между этими фазами исчезает. В этой критической точке вещество переходит в промежуточное состояние - становится не газом и не жидкостью. При температуре выше критической точки уже двух фаз не получится, хотя если этот однородный флюид сжимать, то его плотность будет меняться от газоподобного к жидкоподобному. При меньших температурах вода находится в докритическом состоянии, а при изменении давления её плотность меняется скачком: жидкость переходит в пар. Выше - в сверхкритическом, вещество однородно, а плотность меняется непрерывно.

    Уже накоплено много экспериментальных данных по сверхкритическому состоянию воды.

    Все эти данные подтверждают, что при повышении температуры и давления меняются: её диэлектрическая проницаемость, электропроводность, ионное произведение, структура водородных связей.

    Из всех жидкостей вода, наверное, претерпевает самые сильные изменения, переходя в сверхкритическое состояние. Если при нормальном давлении и температуре вода - полярный растворитель, то в сверхкритической воде растворяются почти все органические вещества. Растворимость неорганических веществ также меняется. Даже небольшое отклонение температуры и давления вблизи критической точки изменяет все физико-химические характеристики воды, поэтому при малейших флуктуациях давления и температуры в такой воде могут полностью растворяться или, наоборот, осаждаться оксиды и соли. Собственно, на этом основана технология гидротермального выращивания кристаллов, которой больше полувека.

    В сверхкритическом состоянии вода (скH2O) неограниченно смешивается с кислородом, водородом и углеводородами, облегчая их взаимодействие между собой - в ней очень быстро протекают все реакции окисления. Одно из особенно интересных применений такой воды - эффективное уничтожение боевых отравляющих веществ. В смеси с другими веществами скH2O можно использовать не только для окисления, но и в реакциях гидролиза, гидратации, образования и расщепления углерод-углеродных связей, гидрирования и других.

    До- и сверхкритическая вода - это нетоксичный растворитель, свойствами которого можно управлять, подстраивая их под конкретную каталитическую реакцию. В процессах со сверхкритическим флюидом нет проблем с диффузией на границе газ-жидкость (ведь это не газ и не жидкость), а значит, легче регулировать скорость такой реакции.

    Кроме перечисленных состояний воды открыто новое, в котором она не замерзает даже при температуре, близкой к абсолютному нулю, а также обладает иными необычными свойствами.

    Группа американских ученых из Аргоннской национальной лаборатории под руководством Александра Колесникова открыла новое состояние воды, получившее название «нанотрубочная вода» (nanotube water). Несмотря на то что в новом состоянии молекула воды также состоит из атома кислорода и двух атомов водорода, она не замерзает даже при температуре 8 градусов Кельвина.

    Поведение воды в сверхмалых объемах, стенки которых не смачиваются водой, очень интересует специалистов в различных областях – от геологов до разработчиков новых материалов. Американские ученые решили исследовать свойства воды, помещенной в «сосуд» из углеродной нанотрубки. «Я с удивлением узнал, — рассказал г-н Колесников, — что никто до сих пор не пытался исследовать поведение воды в нанотрубках. Имеется большое количество расчетов, однако они усложняются еще и тем фактом, что вода крайне сложна для моделирования – в отличие от экспериментального исследования».

    Для изучения поведения воды в таких «экстремальных» условиях ученые наполнили водой углеродные нанотрубки размером 1,4 нм в поперечнике и длиной 10 тыс. нм. Для этого они подвергали их воздействию водяного пара на протяжении нескольких часов, после чего изучили структуру атомов внутри нанотрубок с помощью потока нейтронов. «В столь тесном одноразмерном сосуде мы ожидали увидеть что-то необычное, но не настолько, — сказал г-н Колесников.

    — Обнаружилось нечто поистине странное».

    Оказалось, что вода в нанотрубках находится в новом состоянии, не похожем ни на жидкое, ни на газообразное агрегатные состояния. Выяснилось, в частности, что среднее количество водородных связей, связывающих молекулу воды с соседними (так называемое координатное число) сократилось с 3,8 до 1,86. Вследствие этого повысилась подвижность молекул. «Новая вода» не замерзала даже при температуре, всего на восемь градусов отличающейся от абсолютного нуля.

    Ученые продолжают оказавшиеся столь плодотворными исследования. На очереди разработка более корректной математической модели воды с использованием методов параллельных вычислений, изучение свойств воды в нанотрубках меньшего диаметра – например, сравнимого с размером протеинов клеточной мембраны, а также изучение термодинамических свойств "нанотрубочной воды".

    © 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции