Вконтакте Facebook Twitter Лента RSS

Углекислый газ поступает в атмосферу в результате. Углекислый газ. Роль в парниковом эффекте

Образование большого количества N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также N2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зеленые водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Одной из важнейших частей воздуха является углекислый газ. У земной поверхности углекислый газ содержится в переменных количествах, в среднем 0,03% по объему.

В атмосферу углекислый газ поступает в результате вулканической деятельности, разложения и гниения органических веществ, дыхания животных и растений, сжигания топлива. Основным регулятором содержания углекислого газа в атмосфере является мировой океан. Он поглощает и отдает в атмосферу около 20% от среднего содержания в атмосфере.

Несмотря на относительно небольшое его содержание в атмосфере, углекислый газ оказывает большое влияние на так называемый «парниковый эффект». Пропуская к земной поверхности коротковолновую солнечную радиацию, поглощая длинноволновое (тепловое) излучение, поступающее от земной поверхности, он способствует повышению температуры воздуха в нижележащих слоях атмосферы.

В эпоху индустриализации отмечается повышенное содержание углекислого газа антропогенного происхождения.

Под влиянием деятельности человека увеличивается содержание в атмосфере газов техногенного происхождения, например сернистого, окиси углерода, различных окислов азота.

Исключительно важную роль имеет озон, поглощающий неблагоприятную для живых организмов и растений часть ультрафиолетового излучения Солнца. У земной поверхности озон содержится в небольших количествах: образуется в результате грозовых разрядов. Наибольшее его количество в стратосфере (озоносфере) от 10 до 50 км с максимумом в слое на высотах 20-25 км. В этом слое под действием ультрафиолетового излучения Солнца двухатомные молекулы кислорода частично распадаются на атомы, последние, присоединяясь к не распавшимся двухатомным молекулам кислорода, образуют трехатомный озон. Одновременно с образованием озона идет обратный процесс.

Концентрация озона зависит от интенсивности образования и разрушения молекул озона. Содержание озона увеличивается от экватора к высоким широтам.

Важная составная часть воздуха - водяной пар, который поступает в атмосферу в результате испарения с водной поверхности, суши, при вулканических извержениях. В нижних слоях атмосферы содержится от 0,1 до 4% водяного пара. С высотой его содержание резко убывает.

Водяной пар активно участвует во многих термодинамических процессах, связанных с образованием облаков, туманов.

В атмосфере присутствуют аэрозоли - это твердые и жидкие частицы, находящиеся в воздухе во взвешенном состоянии. Некоторые из них, являясь ядрами конденсации, участвуют в процессе образования облаков, туманов.

К естественным аэрозолям относятся водяные капли и кристаллы льда, образующиеся при конденсации водяного пара; пыль, сажа, возникающие при лесных пожарах, почвенная, космическая, вулканическая пыль, соли морской воды. Также в атмосферу попадает большое количество аэрозолей искусственного происхождения - выбросы промышленных предприятий, автотранспорта и др.

Наибольшее количество аэрозолей содержится в нижних слоях атмосферы.

4. Строение атмосферы.

Масса атмосферы составляет 5.3* 105 т. В слое до 5,5 км

содержится 50%, до 25 км - 95% и до 30 км - 99% всей массы атмосферы. Тридцатикилометровый слой атмосферы составляет 1/200 или 0,05 радиуса Земли. На глобусе диаметром 40 см этот 30-километровый слой имеет толщину около 1 мм, т.е. атмосфера представляет тонкую пленку, покрывающую поверхность Земли.

Нижней границей атмосферы является земная поверхность, называемая в метеорологии подстилающей поверхностью. Четко выраженной верхней границы атмосфера не имеет. Она плавно переходит в межпланетное пространство.

За верхнюю границу атмосферы условно принимают высоту 1500-2000 км, выше которой находится земная корона .

Давление и плотность с высотой убывают: при давлении у земли 1013 гПа плотность равна 1,27*103 г/м3 , а на высоте 750 км плотность составляет 10-10 г/м3 .

Распределение физических свойств в атмосфере имеет слоистый характер, поскольку их изменение по высоте происходит во много раз интенсивнее, нежели в горизонтальном направлении. Так, вертикальные температурные градиенты в несколько сотен раз больше горизонтальных градиентов.

Расчленение атмосферы на слои делают по различным свойствам воздуха: по температуре, влажности, содержанию озона, по электропроводимости и т.п. Наиболее отчетливо различие слоев атмосферы проявляется в характере распределения температуры воздуха с высотой. По этому признаку выделяют пять основных слоев.

Очень велика. Углекислый газ принимает участие в образовании всего живого вещества планеты и вместе с молекулами воды и метана создает так называемый «оранжерейный (парниковый) эффект».

Значение углекислого газа (CO 2 , двуокись или диоксид углерода ) в жизнедеятельности биосферы состоит прежде всего в поддержании процесса фотосинтеза, который осуществляется растениями .

Являясь парниковым газом , двуокись углерода в воздухе оказывает влияние на теплообмен планеты с окружающим пространством, эффективно блокируя переизлучамое тепло на ряде частот, и таким образом участвует в формировании .

В последнее время наблюдается увеличение концентрации углекислого газа в воздухе, что ведет к .

Углерод (С) в атмосфере содержится в основном в виде углекислого газа (СО 2) и в небольшом количестве в виде метана (СН 4), угарного газа и других углеводородов.

Для газов атмосферы применяют понятие «время жизни газа». Это время, за которое газ полностью обновляется, т.е. время, за которое в атмосферу поступает столько же газа, сколько в нем содержится. Так вот, для углекислого газа это время составляет 3-5 лет, для метана - 10-14 лет. СО окисляется до СО 2 в течение нескольких месяцев.

В биосфере значение углерода очень велико, так как он входит в состав всех живых организмов. В пределах живых существ углерод содержится в восстановленном виде, а вне пределов биосферы - в окисленном. Таким образом, формируется химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источники углерода в атмосфере.

Источником первичной углекислоты являются , при извержении которых в атмосферу выделяется огромное количество газов. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма.

Также углерод поступает в атмосферу в виде метана в результате анаэробного разложения органических остатков. Метан под воздействием кислорода быстро окисляется до углекислого газа. Основными поставщиками метана в атмосферу являются тропические леса и .

В свою очередь углекислый газ атмосферы является источником углерода для других геосфер - , биосферы и .

Миграция СО 2 в биосфере.

Миграция СО 2 протекает двумя способами:

При первом способе СО 2 поглощается из атмосферы в процессе фотосинтеза и участвует в образовании органических веществ с последующем захоронением в в виде полезных ископаемых: торфа, нефти, горючих сланцев.

При втором способе углерод участвует в создании карбонатов в гидросфере. СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Каким образом осуществляется геохимический круговорот углерода в природе и как углекислый газ возвращается снова в атмосферу

Исследователи из Института океанографии Скриппса при Калифорнийском университете в Сан-Диего сообщили USA Today, что содержание углекислого газа в атмосфере Земли достигло самой высокой отметки за последние 800 тысяч лет. Теперь оно составляет 410 ppm (частей на миллион). Это значит, что в каждом кубометре воздуха углекислота занимает объем в 410 мл.

Углекислый газ в атмосфере

Диоксид углерода, или углекислый газ выполняет в атмосфере нашей планеты важную функцию: он пропускает часть излучения от Солнца, которое обогревает Землю. Однако, из-за того, что газ также поглощает тепло, испускаемое планетой, он способствует появлению парникового эффекта. Именно это считается главным фактором глобального потепления.

Постоянный рост содержания углекислоты в атмосфере начался с момента индустриальной революции. До того, концентрация никогда не превышала 300 ppm. В апреле текущего года была установлена самая высокая средняя отметка за последние 800 тысяч лет. В первый раз цифра 410 ppm была зафиксирована на станции мониторинга качества воздуха на Гавайях в апреле 2017 года, но тогда это был скорее из ряда вон выходящий случай. В апреле же 2018 года эта отметка стала средней за весь месяц. Концентрация диоксида углерода повысилась на 30% с момента начала наблюдений исследователями из Института Скриппса.

Почему концентрация повышается

Ученый Ральф Килинг из Института Скриппса, руководитель программы исследований СО2 считает, что концентрация углекислого газа продолжает расти в атмосфере из-за того, что мы постоянно сжигаем топливо. При переработке нефти, газа и угля в атмосферу выделяются такие парниковые газы, как диоксид углерода и метан. Газы вызвали повышение температуры Земли за последнее столетие до уровня, который не может быть объяснен естественной изменчивостью. Это давно известный факт, однако никто не принимает мер для того, чтобы как-то исправить ситуацию.

В свою очередь, Всемирная метеорологическая организация заявила, что увеличение количества парниковых газов способствует изменению климата и делает «планету более опасной и негостеприимной для будущих поколений». Вопрос нужно решать на глобальном уровне, и делать это как можно скорее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Деятельность человека достигла уже таких масштабов, что общее содержание углекислого газа в атмосфере Земли достигло предельно допустимых значений. Природные системы - суша, атмосфера, океан, находятся под разрушительным воздействием.

Важные факты

Например, к ним относятся фторхлоруглеводороды. Эти примеси газов излучают и поглощают солнечную радиацию, что отражается на климате планеты. В совокупности СО 2 , иные газообразные соединения, оказывающиеся в атмосфере, называют парниковыми газами.

Историческая справка

Он предупреждал о том, что увеличение объемов сжигаемого топлива может привести к нарушению радиационного баланса Земли.

Современные реалии

Сегодня большее количество диоксида углерода в атмосферу поступает при сжигании топлива, а также в связи с теми изменениями, что происходят в природе из-за вырубки лесных угодий, увеличения площадей сельскохозяйственных угодий.

Механизм воздействия диоксида углерода на живую природу

Повышение содержания углекислого газа в атмосфере вызывает парниковый эффект. Если при коротковолновой солнечной радиации оксид углерода (IV) прозрачен, то длинноволновую радиацию он поглощает, излучая энергию по всем направлениям. В результате содержание углекислого газа в атмосфере существенно увеличивается, нагревается поверхность Земли, горячими становятся нижние слои атмосферы. При последующем увеличении количества диоксида углерода возможно глобальное изменение климата.

Именно поэтому важно прогнозировать общее содержание углекислого газа в атмосфере Земли.

Источники попадания в атмосферу

Среди них можно выделить промышленные выбросы. Содержание углекислого газа в атмосфере возрастанием в связи с антропогенными выбросами. Экономический рост напрямую зависит от количества сжигаемых природных ископаемых, так как многие производства являются энергозатратными предприятиями.

Результаты статистических исследований свидетельствуют о том, что с конца прошлого века во многих странах происходит снижение удельных затрат энергии при существенном росте цен на электроэнергию.

Эффективное ее использование достигается благодаря модернизации технологического процесса, транспортных средств, использованию новых технологий в строительстве производственных цехов. Некоторые развитые промышленные страны перешли от развития перерабатывающей и сырьевой отрасли к развитию тех направлений, которые занимаются изготовлением конечного продукта.

В крупных мегаполисах, обладающих серьезной производственной базой, выбросы диоксида углерода в атмосферу существенно выше, поскольку СО 2 часто является побочным продуктом отраслей, деятельность которых удовлетворяет запросы образования, медицины.

В развивающихся странах существенный рост использования высококачественного топлива на 1 жителя, считается серьезным фактором для перехода на более высокий уровень жизни. В настоящее время выдвигается идея, согласно которой продолжение экономического роста и повышение уровня жизни возможно без увеличения количества сжигаемого топлива.

В зависимости от региона содержание углекислого газа в атмосфере составляет от 10 до 35 %.

Связь между потребляемой энергией и выбросами СО2

Начнем с того, что энергия не производится только ради ее получения. В развитых промышленных странах большая ее часть используется в промышленности, для обогрева и охлаждения зданий, для транспорта. Исследования, проводимые крупными научными центрами, показали, что при использовании энергосберегающих технологий можно получить существенное снижение выбросов диоксида углерода в земную атмосферу.

Например, ученым удалось посчитать, что если бы США перешли на менее энергоемкие технологии при производстве товаров народного потребления, это бы позволило снизить количество углекислого газа, попадающего в атмосферу, на 25 %. В масштабах земного шара это позволило бы снизить проблему парникового эффекта на 7 %.

Углерод в природе

Анализируя проблему, касающуюся выбросов диоксида углерода в атмосферу Земли, отметим, что углерод, который входит в его состав, является жизненно важным для существования биологических организмов. Его способность образовывать сложные углеродные цепочки (ковалентные связи) приводит к появлению белковых молекул, необходимых для жизни. Биогенный цикл углерода является сложным процессом, поскольку в него входит не просто функционированием живых существ, но и перенос неорганических соединений между разными резервуарами углерода, а также внутри них.

К ним относится атмосфера, континентальная масса, в том числе почвы, а также гидросфера, литосфера. На протяжении двух последних столетий в системе биофера-атмосфера-гидросфера наблюдаются изменения потоков углерода, который по своей интенсивности существенно превышают скорость протекания геологических процессов переноса данного элемента. Именно поэтому нужно ограничиваться рассмотрением взаимоотношений внутри системы, включая и почву.

Серьезные исследования, касающиеся определения количественного содержания углекислого газа в земной атмосфере, стали проводиться с середины прошлого века. Первопроходцем в таких вычислениях стал Киллинг, работающий в известной обсерватории Мауна-Лоа.

Анализ наблюдений показал, что на изменения концентрации диоксида углерода в атмосфере влияет цикл фотосинтеза, деструкция растений на суше, а также годовое изменение температуры в Мировом океане. В ходе экспериментов удалось выяснить, что количественное содержание углекислого газ в северном полушарии существенно выше. Ученые предположили, что это связно с тем, что большая часть антропогенного поступления приходится именно на это земное полушарие.

Для проведения анализа были взяты без специальных методик, кроме того не учитывалась относительная и абсолютная погрешность вычислений. Благодаря анализу пузырьков воздуха, которые содержались в ледниковых кернах, исследователям удалось установить данные по содержанию в земной атмосфере углекислого газа в диапазоне 1750-1960 гг.

Заключение

На протяжении последних столетий произошли существенные изменения в континентальных экосистемах, причиной стало увеличение антропогенного воздействия. При повышении количественного содержания углекислого газа в атмосфере нашей планеты, возрастает парниковый эффект, что негативно отражается на существовании живых организмов. Именно поэтому важно переходить на энергосберегающие технологии, которые позволяют снижать поступление СО 2 в атмосферу.

Состав и строение атмосферы.

Атмосфера – газовая оболочка Земли. Вертикальная протяженность атмосферы более трех земных радиусов (средний радиус равен 6371 км) а масса - 5,157х10 15 т, что составляет примерно миллионную от массы Земли.

В основу деления атмосферы на слои в вертикальном направлении положено следующее:

Состав атмосферного воздуха,

Физико-химические процессы;

Распределение температуры по высоте;

Взаимодействие атмосферы с подстилающей поверхностью.

Атмосфера нашей планеты представляет собой механическую смесь различных газов, в том числе водяного пара, а также некоторого количества аэрозолей. Состав сухого воздуха в нижнем 100 км остается практически постоянным. Чистый и сухой воздух, в ко­тором нет водяного пара, пыли и других примесей, представляет со­бой смесь газов, главным образом азота (78 % объема воздуха) и ки­слорода (21 %). Немного менее одного процента составляет аргон и в очень малых количествах находится множество других газов - ксе­нон, криптон, углекислый газ, водород, гелий и др. (табл. 1.1).

Азот, кислород и другие составляющие атмосферного воздуха нахо­дятся в атмосфере всегда в газообразном состоянии, так как критические температуры, то есть температуры, при которых они могут находиться в жидком состоянии, много ниже температур, наблюдаемых у поверхно­сти Земли. Исключение составляет углекислый газ. Однако для перехода в жидкое состояние кроме температуры необходимо еще достижение состояния насыщения. В атмосфере углекислого газа немного (0,03 %) и он находится в виде отдельных молекул, равномерно распределенных среди молекул других атмосферных газов. За последние 60-70 лет его содержание увеличилось на 10-12%, под влиянием деятельности человека.

Больше других подвержено изменению содержание водяного пара, концентрация которого у поверхности Земли при высокой температуре может достигать 4%. С увеличением высоты и понижением температуры содержание водяного пара резко убывает (на высоте 1,5-2,0 км – наполовину и в 10-15 раз от экватора к полюсу).

Масса твердых примесей за последние 70 лет в атмосфере северного полушария возросла примерно в 1,5 раза.

Постоянство газового состава воздуха обеспечивается интенсив­ным перемешиванием нижнего слоя воздуха.

Газовый состав нижних слоев сухого воздуха (без водяного пара)

Роль и значение основных газов атмосферного воздуха

КИСЛОРОД (О) жизненно необходим почти для всех обитателей планеты. Это активный газ. Он участвует в химических реакциях с другими газами атмосферы. Кислород активно поглощает лучистую энергию, особенно очень короткие волны длиной менее 2.4 мкм. Под действием солнечного ультрафиолетового излучения (X < 03 мкм), молекула кислорода распадается на атомы. Атомарный кислород, со­единяясь с молекулой кислорода, образует новое вещество - трех­атомный кислород или озон (Оз). Озон в основном находится на больших высотах. Там его роль для планеты исключительно благо­творна. У поверхности Земли озон образуется при грозовых разрядах.

В отличие от всех других газов в атмосфере, которые не имеют ни вкуса, ни запаха, озон имеет характерный запах. В переводе с грече­ского языка слово «озон» означает «остро пахнущий». После грозы этот запах приятен, он воспринимается как запах свежести. В больших количествах озон является отравляющим веществом. В городах с большим количеством автомобилей, а значит и большими выбросами автомобильных газов, в безоблачную или малооблачную погоду под действием солнечных лучей образуется озон. Город окутывается жел­то-синим облаком, видимость ухудшается. Это фотохимический смог.

АЗОТ (N2) - нейтральный газ, он, не вступает в реакции с други­ми газами атмосферы, не участвует в поглощении лучистой энергии.

До высот 500 км атмосфера в основном состоит из кислорода и азота. При этом, если в нижнем слое атмосферы преобладает азот, то на больших высотах кислорода больше, чем азота.

АРГОН (Аг) - нейтральный газ, в реакции не вступает, в погло­щении и излучении лучистой энергии не участвует. Аналогично - ксенон, криптон и многие другие газы. Аргон - тяжелое вещество, в высоких слоях атмосферы его очень мало.

УГЛЕКИСЛОГО ГАЗА (С02) в атмосфере в среднем 0,03 %. Этот газ очень необходим растениям и активно ими поглощается. Фактиче­ское количество его в воздухе может несколько изменяться. В индуст­риальных районах его количество может увеличиваться до 0.05 %. В сельской местности, над лесами, полями его меньше. Над Антаркти­дой примерно 0,02 % углекислого газа, т. е. почти на Уз меньше сред­него его количества в атмосфере. Столько же и даже меньше его над морем - 0.01 - 0.02 %, так как углекислый газ интенсивно поглоща­ется водой.

В слое воздуха, который непосредственно примыкает к земной по­верхности, количество углекислого газа испытывает и суточные коле­бания.

Ночью его больше, днем меньше. Объясняется это тем, что в светлое время суток углекислый газ поглощается растениями, а ночью нет. Растения планеты на протяжении года берут из атмосферы около 550 млрд. т. и возвращают в нее около 400 млрд. т. кислорода.

Углекислый газ полностью прозрачен для солнечных коротковол­новых лучей, но интенсивно поглощает тепловое инфракрасное излу­чение Земли. С этим связана проблема парникового эффекта, по пово­ду которого периодически разгораются дискуссии на страницах науч­ной печати, а, главным образом, в массмедиа.

ГЕЛИЙ (Не) - очень легкий газ. Он поступает в атмосферу из земной коры в результате радиоактивного распада тория и урана. Ге­лий улетучивается в космическое пространство. Скорость убывания гелия соответствует скорости поступления его из недр Земли. От вы­соты 600 км до 16000 км наша атмосфера состоит главным образом из гелия. Это «гелиевая корона Земли» по выражению Вернадского. Ге­лий не вступает в реакции с другими газами атмосферы, не участвует в лучистом теплообмене.

ВОДОРОД (Нг) еще более легкий газ. У поверхности Земли его очень мало. Он поднимается в верхние слои атмосферы. В термосфере и экзосфере атомарный водород становится доминирующим компо­нентом. Водород - это самая верхняя, самая дальняя оболочка нашей планеты. Выше 16000 км до верхней границы атмосферы, то есть до высот 30 - 40 тыс. км, преобладает водород. Таким образом, химиче­ский состав нашей атмосферы с высотой приближается к химическо­му составу Вселенной, в которой водород и гелий - наиболее рас­пространенные элементы. В самой внешней, крайне разряженной части верхней атмосферы, происходит убегание из атмосферы водорода и гелия. Отдельные их атомы имеют для этого достаточно большие скорости.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции