Вконтакте Facebook Twitter Лента RSS

Решение задач с помощью формулы полной вероятности и формулы байеса. Формула полной вероятности

На практике часто необходимо определить вероятность интересующего события, которое может произойти с одним из событий, образующих полную группу. Следующая теорема, являющаяся следствием теорем сложения и умножения вероятности, приводит к выводу важной формулы для вычисления вероятности подобных событий. Эта формула называется формулой полной вероятности.

Пусть H 1 , H 2 , … , H n есть n попарно несовместных событий, образующих полную группу:

1) все события попарно несовместны: H i H j = ; i , j = 1,2, … , n ; i j;

2) их объединение образует пространство элементарных исходов W:

Такие события иногда называют гипотезами. Пусть совершается событие А , которое может наступить только при условии наступления одного из событий H i (i = 1, 2, … , n ). Тогда справедлива теорема.

Доказательство. Действительно, по условию событие А может наступить, если наступает одно из несовместных событий H 1 , H 2 … H n , т.е. появление события А означает осуществление одного из событий H 1 ∙ А , H 2 ∙ А , … , H n ∙ А . Последние события также несовместны, т.к. из H i ∙ H j = (i j ) следует, что и (А H i) ∙ (А H j) = (i j ). Теперь заметим, что

Это равенство хорошо иллюстрируется рис. 1.19. Из теоремы сложения следует . Но по теореме умножения справедливо равенст-во при любом i, 1i n . Следовательно, фор-мула полной вероятности (1.14) справедлива. Теорема доказана.

Замечание. Вероятности событий (гипотез) H 1 , H 2 , … , H n , которые входят в формулу (1.14) при решении конкретных задач или заданы или же они должны быть вычислены в процессе решения. В последнем случае правильность вычисления р (H i) (i = 1, 2, … , n ) проверяется по соотношению = 1 и расчёт р (H i) выполняется на первом этапе решения задачи. На втором этапе рассчитывается р (А ).

При решении задач на применении формулы полной вероятности удобно придерживаться следующей методики.

Методика применения формулы полной вероятности

а). Ввести в рассмотрение событие (обозначим его А ), вероятность которого необходимо определить по условию задачи.

б). Ввести в рассмотрение события (гипотезы) H 1 , H 2 , … , H n , которые образуют полную группу.

в). Выписать или вычислить вероятности гипотез р (H 1), р (H 2), … , р (H n). Контроль правильности вычисления р (H i) проверяется по условию В большем числе задач вероятности р (H i) задаются непосредственно в условии задачи. Иногда эти вероятности, а также вероятности p (А /H 1), p (А /H 2), …, p (А /H n) умножены на 100 (заданы числа в процентах). В этом случае заданные числа надо поделить на 100.

г). Вычислить искомую вероятность р (А ) по формуле (1.14).

Пример . Экономист рассчитал, что вероятность роста стоимости акции его компании в следующем году составит 0,75, если экономика страны будет на подъёме, и 0,30, если будет финансовый кризис. По мнению экспертов, вероятность экономического подъёма равна 0,6. Оценить вероятность того, что акции компании в следующем году поднимутся в цене.

Решение. В начале условие задачи формализуется по вероятности. Пусть А – событие ” акции поднимутся в цене” (по вопросу задачи). По условию задачи выделяются гипотезы: H 1 – “экономика будет на подъёме”, H 2 – “экономика вступит в полосу кризиса”. H 1 , H 2 – образуют полную группу, т.е. H 1 ∙ H 2 = , H 1 + H 2 = . Вероятность p (H 1) = 0,6, следовательно, p (H 2) = 1 – 0,6 = 0,4. Условные вероятности p (А /H 1) = 0,75, p (А /H 2) = 0,3. Используя формулу (1.14), получим:

p (А ) = p (H 1) ∙ p (А /H 1) + p (H 2) ∙ p (А /H 2) = 0,75 ∙ 0,6 + 0,3 ∙ 0,4 = 0,57.

Цель работы: сформировать навыки решения задач по теории вероятностей с помощью формулы полной вероятности и формулы Байеса.

Формула полной вероятности

Вероятность события А , которое может наступить лишь при условии появления одного из несовместных событий В х,В 2 ,...,В п, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Эту формулу называют формулой полной вероятности.

Вероятность гипотез. Формула Байеса

Пусть событие А может наступить при условии появления одного из несовместных событий В ь В 2 ,...,В п, образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А . Требуется определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Условные вероятности гипотез находят по формуле

В этой формуле индекс / = 1,2

Эту формулу называют формулой Байеса (по имени английского математика, который её вывел; опубликована в 1764 г.). Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А .

Задача 1. Завод изготавливает определённого типа детали, каждая деталь имеет дефект с вероятностью 0,05. Деталь осматривается одним контролёром; он обнаруживает дефект с вероятностью 0,97, а если дефект не обнаружен, пропускает деталь в готовую продукцию. Кроме того, контролер может по ошибке забраковать деталь, не имеющую дефекта; вероятность этого равна 0,01. Найти вероятности следующих событий: А - деталь будет забракована; В - деталь будет забракована, но ошибочно; С - деталь будет пропущена в готовую продукцию с дефектом.

Решение

Обозначим гипотезы:

Н = (на контроль поступит стандартная деталь);

Н =(на контроль поступит нестандартная деталь).

Событие А = (деталь будет забракована).

Из условия задачи находим вероятности

Р Н (А) = 0,01; Pfi(A) = 0,97.

По формуле полной вероятности получаем

Вероятность того, что деталь будет забракована ошибочно, равна

Найдём вероятность того, что деталь будет пропущена в готовую продукцию с дефектом:

Ответ:

Задача 2. Изделие проверяется на стандартность одним из трёх товароведов. Вероятность того, что изделие попадёт к первому товароведу, равна 0,25, ко второму - 0,26 и к третьему - 0,49. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,95, вторым - 0,98, третьим - 0,97. Найти вероятность того, что стандартное изделие проверено вторым контролёром.

Решение

Обозначим события:

Л. = (изделие для проверки попадёт к /-му товароведу); / = 1, 2, 3;

В = (изделие будет признано стандартным).

По условию задачи известны вероятности:

Также известны условные вероятности

По формуле Байеса находим вероятность того, что стандартное изделие проверено вторым контролёром:

Ответ: «0,263.

Задача 3. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,06, а на втором - 0,09. Производительность второго автомата вдвое больше, чем первого. С конвейера взята нестандартная деталь. Найти вероятность того, что эта деталь произведена вторым автоматом.

Решение

Обозначим события:

А. = (взятая с конвейера деталь произведена /-м автоматом); / = 1,2;

В = (взятая деталь окажется нестандартной).

Также известны условные вероятности

По формуле полной вероятности находим

По формуле Байеса находим вероятность того, что взятая нестандартная деталь произведена вторым автоматом:

Ответ: 0,75.

Задача 4. Испытывается прибор, состоящий из двух узлов, надёжность которых равна 0,8 и 0,9 соответственно. Узлы отказывают независимо друг от друга. Прибор отказал. Найти с учётом этого вероятности гипотез:

  • а) неисправен только первый узел;
  • б) неисправен только второй узел;
  • в) неисправны оба узла.

Решение

Обозначим события:

Д = (7-й узел не выйдет из строя); i = 1,2;

Д - соответствующие противоположные события;

А = (при испытании будет отказ прибора).

Из условия задачи получаем: Р(Д) = 0,8; Р(Л 2) = 0,9.

По свойству вероятностей противоположных событий

Событие А равно сумме произведений независимых событий

Используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получаем

Теперь находим вероятности гипотез:

Ответ:

Задача 5. На заводе болты изготавливаются на трёх станках, которые производят соответственно 25%, 30% и 45% всего количества болтов. В продукции станков брак составляет соответственно 4%, 3% и 2%. Какова вероятность того, что болт, случайно взятый из поступившей продукции, окажется дефектным?

Решение

Обозначим события:

4 = (наудачу взятый болт изготовлен на /-м станке); i = 1, 2, 3;

В = (взятый наудачу болт окажется дефектным).

Из условия задачи по формуле классической вероятности находим вероятности гипотез:

Также по формуле классической вероятности находим условные вероятности:

По формуле полной вероятности находим

Ответ: 0,028.

Задача 6. Электронная схема принадлежит одной из трёх партий с вероятностями 0,25; 0,5 и 0,25. Вероятность того, что схема проработает сверх гарантийного срока службы для каждой из партий, соответственно составляет 0,1; 0,2 и 0,4. Найти вероятность того, что наугад взятая схема проработает сверх гарантийного срока службы.

Решение

Обозначим события:

4 = (наугад взятая схема из г-й партии); i = 1, 2, 3;

В = (наугад взятая схема проработает сверх гарантийного срока службы).

По условию задачи известны вероятности гипотез:

Также известны условные вероятности:

По формуле полной вероятности находим

Ответ: 0,225.

Задача 7. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определить вероятность того, что отказали оба блока.

Решение

Обозначим события:

Д = (z-й блок выйдет из строя); i = 1,2;

А = (устройство выйдет из строя).

Из условия задачи по свойству вероятностей противоположных событий получаем: ДД) = 1-0,99 = 0,01; ДД) = 1-0,97 = 0,03.

Событие А наступает только тогда, когда наступает хотя бы одно из событий Д или А 2 . Поэтому это событие равно сумме событий А = Д + А 2 .

По теореме сложения вероятностей совместных событий получаем

По формуле Байеса находим вероятность того, что устройство вышло из строя из-за отказа обоих блоков.

Ответ:

Задачи для самостоятельного решения Задача 1. На складе телевизионного ателье имеется 70% кинескопов, изготовленных заводом № 1; остальные кинескопы изготовлены заводом № 2. Вероятность того, что кинескоп не выйдет из строя в течение гарантийного срока службы, равна 0,8 для кинескопов завода № 1 и 0,7 - для кинескопов завода № 2. Кинескоп выдержал гарантийный срок службы. Найти вероятность того, что он изготовлен заводом № 2.

Задача 2. На сборку поступают детали с трёх автоматов. Известно, что 1-й автомат даёт 0,3% брака, 2-й - 0,2%, 3-й - 0,4%. Найти вероятность поступления на сборку бракованной детали, если с 1-го автомата поступили 1000, со 2-го - 2000, с 3-го - 2500 деталей.

Задача 3. На двух станках производятся одинаковые детали. Вероятность того, что деталь, произведённая на первом станке, будет стандартной, равна 0,8, а на втором - 0,9. Производительность второго станка втрое больше производительности первого. Найти вероятность того, что стандартной будет деталь, взятая наудачу с транспортёра, на который поступают детали с обоих станков.

Задача 4. Руководитель компании решил воспользоваться услугами двух из трёх транспортных фирм. Вероятности несвоевременной доставки груза для первой, второй и третьей фирм равны соответственно 0,05; 0,1 и 0,07. Сопоставив эти данные с данными о безопасности грузоперевозок, руководитель пришёл к выводу о равнозначности выбора и решил сделать его по жребию. Найти вероятность того, что отправленный груз будет доставлен своевременно.

Задача 5. Прибор содержит два блока, исправность каждого из которых необходима для функционирования прибора. Вероятности безотказной работы для этих блоков соответственно равны 0,99 и 0,97. Прибор вышел из строя. Определите вероятность того, что отказал второй блок.

Задача 6. В сборочный цех поступают детали с трёх автоматов. Первый автомат даёт 3% брака, второй - 1% и третий - 2%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата поступило соответственно 500, 200, 300 деталей.

Задача 7. На склад поступает продукция трёх фирм. Причём продукция первой фирмы составляет 20%, второй - 46% и третьей - 34%. Известно также, что средний процент нестандартных изделий для первой фирмы равен 5%, для второй - 2% и для третьей - 1%. Найти вероятность того, что наудачу взятое изделие произведено второй фирмой, если оно оказалось стандартным.

Задача 8. Брак в продукции завода вследствие дефекта а составляет 5%, причём среди забракованных по признаку а продукции в 10% случаев встречается дефект р. А в продукции, свободной от дефекта а , дефект р встречается в 1% случаев. Найти вероятность встречи дефекта Р во всей продукции.

Задача 9. В фирме имеются 10 новых автомобилей и 5 старых, которые ранее находились в ремонте. Вероятность исправной работы для нового авто равна 0,94, старого - 0,91. Найти вероятность того, что наудачу выбранный автомобиль будет исправно работать.

Задача 10. Два датчика посылают сигналы в общий канал связи, причём первый из них посылает вдвое больше сигналов, чем второй. Вероятность получить искажённый сигнал от первого датчика равна 0,01, от второго - 0,03. Какова вероятность получить искажённый сигнал в общем канале связи?

Задача 11. Имеется пять партий изделий: три партии по 8 штук, из которых 6 стандартных и 2 нестандартных, и две партии по 10 штук, из которых 7 стандартных и 3 нестандартных. Наудачу выбирают одну из партий, а из этой партии берут деталь. Определить вероятность того, что взятая деталь будет стандартной.

Задача 12. Сборщик получает в среднем 50% деталей первого завода, 30% - второго завода и 20% - третьего завода. Вероятность того, что деталь первого завода отличного качества, равна 0,7; для деталей второго и третьего заводов соответственно 0,8 и 0,9. Наудачу взятая деталь оказалась отличного качества. Найти вероятность того, что деталь изготовлена первым заводом.

Задача 13. Таможенный досмотр автомашин осуществляют два инспектора. В среднем из 100 машин 45 проходят через первого инспектора. Вероятность того, что при досмотре машина, соответствующая таможенным правилам, не будет задержана, составляет 0,95 у первого инспектора и 0,85 - у второго. Найти вероятность того, что машина, соответствующая таможенным правилам, не будет задержана.

Задача 14. Детали, необходимые для сборки прибора, поступают с двух автоматов, производительность которых одинакова. Вычислите вероятность поступления на сборку стандартной детали, если один из автоматов даёт в среднем 3% нарушения стандарта, а второй - 2%.

Задача 15. Тренер по тяжёлой атлетике рассчитал, что для получения командных зачётных очков в данной весовой категории спортсмен должен толкнуть штангу в 200 кг. На место в команде претендуют Иванов, Петров и Сидоров. Иванов за время тренировок пытался поднять такой вес в 7 случаях, а поднял в 3 из них. Петров поднял в 6 случаях из 13, а Сидоров имеет 35%-ную вероятность успешно справиться со штангой. Тренер случайным жребием выбирает одного спортсмена в команду.

  • а) Найти вероятность того, что выбранный спортсмен принесёт команде зачётные очки.
  • б) Команда не получила зачётных очков. Найти вероятность того, что выступал Сидоров.

Задача 16. В белом ящике 12 красных и 6 синих шаров. В черном - 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?

Задача 17. В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.

Задача 18. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Задача 19. В ящик, содержащий 3 одинаковые детали, брошена стандартная деталь, а затем наудачу одна деталь извлечена. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.

Задача 20. Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.

Составитель преподаватель кафедры высшей математики Ищанов Т.Р. Занятие №4. Формула полной вероятности. Вероятность гипотез. Формулы Байеса.

Теоретический материал
Формула полной вероятности
Теорема. Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

.
Эту формулу называют «формулой полной вероятности».

Доказательство. По условию, событие А может наступить, если наступит одно из несовместных событий . Другими словами, появление события А означает осуществление одного, безразлично какого, из несовместных событий . Пользуясь для вычисления вероятности события А теоремой сложения, получим
. (*)
Остается вычислить каждое из слагаемых. По теореме умножения вероятностей зависимых событий имеем
.
Подставив правые части этих равенств в соотношение (*), получим формулу полной вероятности

Пример 1. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0,8, а второго-0,9. Найти вероятность того, что взятая наудачу деталь (из наудачу взятого набора) - стандартная.
Решение. Обозначим через А событие «извлеченная деталь стандартна».
Деталь может быть извлечена либо из первого набора (событие ), либо из второго (событие ).
Вероятность того, что деталь вынута из первого набора, .
Вероятность того, что деталь вынута из второго набора, .
Условная вероятность того, что из первого набора будет извлечена стандартная деталь, .
Условная вероятность того, что из второго набора будет извлечена стандартная деталь .
Искомая вероятность того, что извлеченная наудачу деталь - стандартная, по формуле полной вероятности равна

Пример 2. В первой коробке содержится 20 радиоламп, из них 18 стандартных; во второй коробке-10 ламп, из них 9 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
Решение. Обозначим через А событие «из первой коробки извлечена стандартная лампа».
Из второй коробки могла быть извлечена либо стандартная лампа (событие ), либо нестандартная (событие ).
Вероятность того, что из второй коробки извлечена стандартная лампа, .
Вероятность того, что из второй коробки извлечена нестандартная лампа,
Условная вероятность того, что из первой коробки извлечена стандартная лампа, при условии, что из второй коробки в первую была переложена стандартная лампа, равна .
Условная вероятность того, что из первой коробки извлечена стандартная лампа, при условии, что из второй коробки в первую была переложена нестандартная лампа, равна .
Искомая вероятность того, что из первой коробки будет извлечена стандартная лампа, по формуле полной вероятности равна

Вероятность гипотез. Формулы Байеса

Пусть событие A может наступить при условии появления одного из несовместных событий , образующих полную группу. Поскольку заранее не известно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события A определяется по формуле полной вероятности:

Допустим, что произведено испытание, в результате которого появилось событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности

Найдем сначала условную вероятность . ПО теореме умножения имеем

.

Заменив здесь Р (А) по формуле (*), получим

Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т. е. условная вероятность любой гипотезы может быть вычислена по формуле

Полученные формулы называют формулами Байеса (по имени английского математика, который их вывел; опубликованы в 1764 г.). Формулы Бейеса позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример. Детали, изготовляемые цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадает к первому контролеру, равна 0,6, а ко второму - 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, а вторым-0,98. Годная деталь при проверке была признана стандартной. Найти вероятность того, что эту деталь проверил первый контролер.
Решение. Обозначим через А событие, состоящее в том, что годная деталь признана стандартной. Можно сделать два предположения:
1)деталь проверил первый контролер (гипотеза );
2)деталь проверил второй контролер (гипотеза ). Искомую вероятность того, что деталь проверил первый контролер, найдем по формуле Байеса:

По условию задачи имеем:
(вероятность того, что деталь попадает к первому контролеру);
(вероятность того, что деталь попадет ко второму контролеру);
(вероятность того, что годная деталь будет признана первым контролером стандартной);
(вероятность того, что годная деталь будет признана вторым контролером стандартной).
Искомая вероятность

Как видно, до испытания вероятность гипотезы равнялась 0,6, после того, как стал известен результат испытания, вероятность этой гипотезы (точнее, условная вероятность) изменилась и стала равной 0,59. Таким образом, использование формулы Байеса позволило переоценить вероятность рассматриваемой гипотезы.

Практический материал.
1. (4) Сборщик получил 3 коробки деталей, изготовленных заводом № 1, и 2 коробки деталей, изготовленных заводом № 2. Вероятность того, что деталь завода № 1 стандартна, равна 0,8, а завода № 2 - 0,9, Сборщик наудачу извлек деталь из наудачу взятой коробки. Найти вероятность того, что извлечена стандартная деталь.
Отв. 0,84.
2. (5) В первом ящике содержится 20 деталей, из них 15 стандартных; во втором-30 деталей, из них 24 стандартных; в третьем - 10 деталей, из них 6 стандартных. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика-стандартная.
Отв. 43/60.
3. (6) В телевизионном ателье имеется 4 кинескопа. Вероятности того, что кинескоп выдержит гарантийный срок службы, соответственно равны 0,8; 0,85; 0,9; 0,95. Найти вероятность того, что взятый наудачу кинескоп выдержит гарантийный срок службы.
Отв. 0,875.
4. (3) В группе спортсменов 20 лыжников, 6 велосипедистов и 4 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника-0,9, для велосипедиста-0,8. и для бегуна-0,75. Найти вероятность того, что спортсмен, выбранный наудачу, выполнит норму.
Отв. 0,86.
5. (С) В белом ящике 12 красных и 6 синих шаров. В черном – 15 красных и 10 синих шаров. Бросают игральный кубик. Если выпадет количество очков, кратное 3, то наугад берут шар из белого ящика. Если выпадет любое другое количество очков, то наугад берут шар из черного ящика. Какова вероятность появления красного шара?
Решение :
Возможны две гипотезы:
– при бросании кубика выпадет количество очков, кратное 3, т.е. или 3 или 6;
– при бросании кубика выпадет другое количество очков, т.е. или 1 или 2 или 4 или 5.
По классическому определению вероятности гипотез равны:

Поскольку гипотезы составляют полную группу событий, то должно выполняться равенство

Пусть событие А состоит в появлении красного шара. Условные вероятности этого события зависят от того, какая именно гипотеза реализовалась, и составляют соответственно:

Тогда по формуле полной вероятности вероятность события А будет равна:

6. (7) В двух ящиках имеются радиолампы. В первом ящике содержится 12 ламп, из них 1 нестандартная; во втором 10 ламп, из них 1 нестандартная. Из первого ящика наудачу взята лампа и переложена во второй. Найти вероятность того, что наудачу извлеченная из второго ящика лампа будет нестандартной.
Отв. 13/132.

7. (89 Г) В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Решение. Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: - белых шаров нет, - один белый шар, - два белых шара.
Поскольку всего имеется три гипотезы, причем по условию они равновероятны, и сумма вероятностей гипотез равна единице (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3, т.е. .
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, .
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, .
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара .
Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

8. (10) В ящик, содержащий 3 одинаковых детали, брошена стандартная деталь, а затем наудачу извлечена одна деталь. Найти вероятность того, что извлечена стандартная деталь, если равновероятны все возможные предположения о числе стандартных деталей, первоначально находящихся в ящике.
Отв. 0,625 .

9. (6.5.2Л) Для улучшения качества радиосвязи используются два радиоприемника. Вероятность приема сигнала каждым приемником равна 0,8, и эти события (прием сигнала приемником) независимы. Определить вероятность приема сигнала, если вероятность безотказной работы за время сеанса радиосвязи для каждого приемника равна 0,9.
Решение.
Пусть событие А={сигнал будет принят}. Рассмотрим четыре гипотезы:

={первый приемник работает, второй - нет};

={второй работает, первый - нет};

={оба приемника работают};

={оба приемника не работают}.

Событие А может произойти только с одной из этих гипотез. Найдем вероятность этих гипотез, рассматривая следующие события:

={первый приемник работает},

={второй приемник работает}.

Контроль:

.

Условные вероятности соответственно равны:

;

;

Теперь по формуле полной вероятности находим искомую вероятность

10. (11) При отклонении от нормального режима работы автомата срабатывает сигнализатор С-1 с вероятностью 0,8, а сигнализатор С-11 срабатывает с вероятностью 1. Вероятности того, что автомат снабжен сигнализатором С-1 или С-11, соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С-1 или С-11?
Отв. Вероятность того, что автомат снабжен сигнализатором С-1, равна 6/11, а С- 11- 5/11

11. (12) Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса 4, из второй - 6, из третьей группы - 5 студентов. Вероятности того, что студент первой, второй и третьей группы попадает в сборную института, соответственно равны 0,9; 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную. К какой из групп вероятнее всего принадлежал этот студент?
Отв. Вероятности того, что выбран студент первой, второй, третьей групп, соответственно равны: 18/59, 21/59, 20/59.

12. (1.34К) В торговую фирму поступили телевизоры от трех поставщиков в отношении 1:4:5. Практика показала, что телевизоры, поступающие от 1-го, 2-го и 3-го поставщиков, не потребуют ремонта в течении гарантийного срока соответственно в 98, 88 и 92% случаев.
1) Найти вероятность того, что поступивший в торговую фирму телевизор не потребует ремонта в течение гарантийного срока.
2) Проданный телевизор потребовал ремонта в течение гарантийного срока. От какого поставщика вероятнее всего поступил этот телевизор?
Решение.
Обозначим события: - телевизор поступил в торговую фирму от i-го поставщика (i=1,2,3);
A – телевизор не потребует ремонта в течение гарантийного срока.
По условию

По формуле полной вероятности

Событие телевизор потребует ремонта в течение гарантийного срока; .
По условию

По формуле Байеса

;

Таким образом, после наступления события вероятность гипотезы увеличилась с до максимальной , а гипотезы - уменьшилась от максимальной до ; если ранее (до наступления события А) наиболее вероятной была гипотеза , то теперь, в свете новой информации (наступления события А), наиболее вероятна гипотеза -поступление данного телевизора от 2-го поставщика.

13. (1.35К) Известно, что в среднем 95% выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной продукцию с вероятностью 0,98, если она стандартна, и с вероятностью 0,06, если она нестандартна. Определить вероятность того, что:
1) взятое наудачу изделие пройдет упрощенный контроль;
2) изделие стандартное, если оно: а) прошло упрощенный контроль; б) дважды прошло упрощенный контроль.
Решение.
1). Обозначим события:
- взятое наудачу изделие соответственно стандартное или нестандартное;
- изделие прошло упрощенный контроль.

По условию

Вероятность того, что взятое наудачу изделие пройдет упрощенный контроль, по формуле полной вероятности:

2, а). Вероятность того, что изделие, прошедшее упрощенный контроль, стандартное, по формуле Байеса:

2, б). Пусть событие - изделие дважды прошло упрощенный контроль. Тогда по теореме умножения вероятностей:

По формуле Байеса

очень мала, то гипотезу о том, что изделие, дважды прошедшее упрощенный контроль, нестандартное, следует отбросить как практически невозможное событие.

14. (1.36К) Два стрелка независимо друг от друга стреляют по мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 0,8; для второго – 0,4. После стрельбы в мишени обнаружена одна пробоина. Какова вероятность того, что она принадлежит:
а) 1-му стрелку;
б) 2-му стрелку?
Решение.
Обозначим события:

Оба стрелка не попали в мишень;

Оба стрелка попали в мишень;

1-й стрелок попал в мишень, 2-й нет;

1-й стрелок не попал в мишень, 2-й попал;

В мишени одна пробоина (одно попадание).

1. Формула полной вероятности.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , которые образуют полную группу. Пусть известны вероятности этих событий и условные вероятности P(A/B 1), P(A/B 2), ..., P(A/B n) события А. Требуется найти вероятность события А.

Теорема: Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

– Формула полной вероятности.


Доказательство:

По условию, событие А может наступить, если наступит одно из несовместных событий B 1 , B 2 , B 3 , ..., B n . Другими словами, появление события А означает осуществление одного (безразлично какого) из несовместных событий: B 1 *A, B 2 *A , B 3 *A , ..., B n *A . Пользуясь теоремой сложения, получим:

По теореме умножения вероятностей зависимых событий имеем:

ч.т.д.

Пример: Имеется 2 набора деталей. Вероятность того, что деталь из первого набора стандартна, равна 0,8, а для второго набора- 0,9. Найдите вероятность того, что взятая наудачу деталь (из наудачу взятого набора) стандартна.

Решение: Событие А- «Извлеченная деталь стандартна». Событие -«Извлекли деталь, изготовленную 1 заводом». Событие - «Извлекли деталь, изготовленную вторым заводом». Р(B 1 )=Р(B 2)= 1/2.Р(А / B 1 )=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2 )=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Тогда, по формуле полной вероятности, имеем:

Пример: Сборщик получил 3 коробки деталей, изготовленных заводами №1 и 2 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь, изготовленная заводом №1, стандартна равна 0,8. Для завода №2 эта вероятность равна 0,9. Сборщик наудачу извлек деталь из наудачу выбранной коробки. Найдите вероятность того, что извлечена стандартная деталь.

Решение: Событие А- «Извлечена стандартная деталь». Событие B 1 - «Извлечена деталь из коробки завода №1». Событие B 2 - «Извлечена деталь из коробки завода № 2». Р(B 1)= 3/5. Р(B 2 )= 2/5.

Р(А / B 1)=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2)=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Пример: В первой коробке лежит 20 радиоламп, из них- 18 стандартных. Во второй коробке лежит 10 радиоламп, из них- 9 стандартных. Из второй коробки в первую наудачу переложена одна радиолампа. Найдите вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.

Решение: Событие А-« Из 1 коробки извлекли стандартную лампу». Событие B 1 -«Из второй в первую коробку переложили стандартную лампу». Событие B 2 -«Из второй в первую коробку переложили нестандартную лампу». Р(B 1 )= 9/10. Р(B 2)= 1/10.Р(А / B 1)= 19/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее так же стандартная.

Р(А / B 2 )= 18/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее нестандартная.

2. Формул гипотез Томаса Байеса.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности, рассмотренной ранее.

Допустим, что произведено испытание, в результате которого произошло событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности P(B 1 /A), P(B 2 /A), ..., P(B n /A)

Найдем условную вероятность P(B 1 /A) . По теореме умножения имеем:

Отсюда следует:


Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т.е. условная вероятность любой гипотезу B k (i =1, 2, …, n ) может быть вычислена по формуле:

Формулы гипотез Томаса Байеса.

Томас Байес (английский математик) опубликовал формулу в 1764 году.

Данные формулы позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример: Детали, изготовленные цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадет к первому контролеру, равна 0,6, ко второму- 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, для второго контролера эта вероятность равна 0,98.Годная деталь при проверке была признана стандартной. Найдите вероятность того, что эту деталь проверил первый контролер.

Решение: Событие А- «Годная деталь признана стандартной». Событие B 1 - «Деталь проверял первый контролер». Событие B 2 - «Деталь проверил второй контролер». Р(B 1 )=0,6. Р(B 2 )=0,4.

Р(А / B 1)=0,94- вероятность, что деталь, проверенная первым контролером, признана стандартной.

Р(А / B 2)=0,98 - вероятность, что деталь, проверенная вторым контролером, признана стандартной.

Тогда:

Пример: Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса-4 человека, из второй- 6 человек, из третьей- 5 человек. Вероятность того, что студент первой группы попадет в сборную, равна 0,9, для студентов второй и третьей групп эти вероятности соответственно равны 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную К какой из групп, вероятнее всего, он принадлежит?

Решение: Событие А- «Наудачу выбранный студент, попал в сборную института». Событие B 1 - «Наудачу выбран студент из первой группы». Событие B 2 - «Наудачу выбран студент из второй группы». Событие B 3 - «Наудачу выбран студент из третьей группы». Р(B 1)= 4/15 . Р(B 2)= 6/15. Р(B 3)= 5/15 .

Р(А / B 1)=0,9- вероятность, что студент из первой группы попадет в сборную.

Р(А / B 2)=0,7- вероятность, что студент из второй группы попадет в сборную.

Р(А / B 3 )=0,8- вероятность, что студент из третьей группы попадет в сборную.

Тогда:

Вероятность, что в сборную попал студент из первой группы.


Вероятность, что в сборную попал студент из второй группы.


Вероятность, что в сборную попал студент из третьей группы.


Вероятнее всего в сборную попадет студент из второй группы.

Пример: При отклонении от нормального режима работы автомата сработает сигнализатор С 1 с вероятностью 0,8, а сигнализатор С 2 сработает с вероятностью 1. Вероятность того, что автомат снабжен сигнализатором С 1 или С 2 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С 1 или С 2 ?

Решение: Событие А-«Получен сигнал о разделке автомата». Событие B 1 -« Автомат снабжен сигнализатором С1. Событие B 2 - «Автомат снабжен сигнализатором С2. Р(B 1 )= 0,6. Р(B 2)= 0,8.

Р(А / B 1)=0,8- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С1.

Р(А / B 2 )=1- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С2.

Тогда:

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С1.

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С2.


Т.е. вероятнее, что при разделке автомата будет получен сигнал от сигнализатора С1.

Следствием двух основных теорем теории вероятностей – теоремы сложения и умножения – являются формулы полной вероятности и формулы Бейеса.

На языке алгебры событий набор , , ¼, называется полной группой событий , если:

1. События попарно несовместны, т.е. , , ;.

2. В сумме составляют все вероятностное пространство .

Теорема 5 (Формула полной вероятности). Если событие А может произойти только при условии появления одного из событий (гипотез) , ,¼,, образующих полную группу, то вероятность события А равна

Доказательство. Так как гипотезы , ,¼,– единственно возможные, а событие A по условию теоремы может произойти только вместе с одной из гипотез, то . Из несовместности гипотез следует несовместность .

Применяем теорему сложения вероятностей в виде (6):

По теореме умножения . Подставляя данное представление в формулу (13), окончательно имеем: , что и требовалось доказать.

Пример 8. Экспортно-импортная фирма собирается заключить контракт на поставку сельскохозяйственного оборудования в одну из развивающихся стран. Если основной конкурент фирмы не станет одновременно претендовать на заключение контракта, то вероятность получения контракта оценивается в 0,45; в противном случае – в 0,25. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,40. Чему равна вероятность заключения контракта?

Решение. А - «фирма заключит контракт», - «конкурент выдвинет свои предложения», - «конкурент не выдвинет свои предложения». По условию задачи , . Условные вероятности по заключению контракта для фирмы , . По формуле полной вероятности

Следствием теоремы умножения и формулы полной вероятности является формула Бейеса.

Формула Байеса позволяет пересчитать вероятность каждой из гипотез, при условии, что событие произошло. (Она применяется, когда событие А , которое может появиться только с одной из гипотез, образующих полную группу событий, произошло и необходимо провести количественную переоценку априорных вероятностей этих гипотез известных до испытания, т.е. надо найти апостериорные (получаемые после проведения испытания) условные вероятности гипотез) , ,…, .

Теорема 6 (Формула Бейеса). Если событие А произошло, то условные вероятности гипотез вычисляются по формуле, которая носит название формулы Бейеса:

Доказательство. Для получения искомой формулы запишем теорему умножения вероятностей событий А и в двух формах:

откуда что и требовалось доказать.

Значение формулы Бейеса состоит в том, что при наступлении события А, т.е. по мере получения новой информации, мы можем проверять и корректировать выдвинутые до испытания гипотезы. Такой подход, называемый бейесовским, дает возможность корректировать управленческие решения в экономике, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и т.п.



Задача 9. Группа состоит из 6 отличников, 12 хорошо успевающих студентов и 22 студентов, успевающих посредственно. Отличник отвечает на 5 и 4 с равной вероятностью, хорошист отвечает на 5, 4 и 3 с равной вероятностью, и посредственно успевающий студент отвечает на 4, 3 и 2 с равной вероятностью. Случайно выбранный студент ответил на 4. Какова вероятность того, что был вызван посредственно успевающий студент?

Решение. Рассмотрим три гипотезы:

Рассматриваемое событие . Из условия задачи известно, что

, , .

Найдем вероятности гипотез. Поскольку в группе всего 40 студентов, а отличников 6, то . Аналогично, , . Применяя формулу полной вероятности, находим

Теперь применим к гипотезе формулу Байеса:

Пример 10. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,15; 0,70 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,60, когда ситуация «хорошая»; с вероятностью 0,30, когда ситуация посредственная, и с вероятностью 0,10, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме?

Решение. А = «индекс экономического состояния страны возрастет», Н 1 = «экономическая ситуация в стране «хорошая»», Н 2 = «экономическая ситуация в стране «посредственная»», Н 3 = «экономическая ситуация в стране «плохая»». По условию: , , . Условные вероятности: ,, . Требуется найти вероятность . Находим ее по формуле Бейеса:

Пример 11. В торговую фирму поступили телевизоры от трех поставщиков в соотношении 1:4:5. Практика показала, что телевизоры, поступающие от 1-го, 2-го и 3-го поставщиков, не потребуют ремонта в течение гарантийного срока соответственно в 98%, 88% и 92% случаев.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции