Вконтакте Facebook Twitter Лента RSS

Расчет и выбор аспирационного оборудования. Расчёт аспирационной установки Таблица расчет воздуховодов систем аспирации

В помощь инженерам, занимающимся проектированием и расчетом вентиляции, создано множество программ. Компьютер не только подсчитает все требуемые параметры, но и сделает чертежи вентиляции. О самых удобных и простых решениях, а также о том, на чем основывается алгоритм их работы, читайте далее.

Программа для расчета вентиляции Vent-Calc

Программа для проектирования Vent-Calc одна из самых функциональных и доступных. Алгоритм ее работы основан на формулах Альтшуля. Гидравлические расчеты воздуховодов делаются по методике, взятой из «Справочника проектировщика» под редакцией Староверова. Одинаково хорошо справляется с расчетом естественной и принудительной вентиляции.

Функции программы для вентиляции Vent-Calc :

  • Расчет воздуховодов с учетом температуры и скорости движения потоков, расхода воздуха;
  • Расчет воздуховодов гидравлический;
  • Расчет местных сопротивлений (сужений, отводов, расширений и развилок) каналов помещений. Высчитываются коэффициенты сопротивления на различных участках системы, потери давления в Паскалях, программа подбирает вентиляционное оборудование. Чтобы удостовериться в правильности расчетов, прилагаются таблицы ВСН 353-86. Во время работы программа для вентиляции отсылает пользователя к требуемым формулам и таблицам;
  • Подходит для расчета естественной вентиляции помещения. Определяется оптимальное сечение вентканала, обеспечивающее превалирование тяги над сопротивлением воздуха при заданном расходе воздуха;
  • Подсчитывает мощность нагрева калорифером или любым другим типом подогревателя воздуха.

Эта программа для расчета систем вентиляции очень хороша для учащихся, только проходящих курс вентиляции в университете. Еще одно преимущество – это ее бесплатное распространение.

Последняя редакция программы для проектирования вентиляции Vent-Calc позволяет за кратчайшие сроки рассчитать аэродинамическое сопротивление системы и другие показатели, необходимые для предварительного подбора оборудования. Для этого необходимы следующие показатели:

  • длина основного воздуховода помещения;
  • расход воздуха в начале системы;
  • расход воздуха в конце системы.

Вручную такой расчет достаточно трудоемок и осуществляется поэтапно. Поэтому программа для расчета Vent-Calc облегчит и ускорит работу проектировщиков, специалистов по продаже климатической техники и квалифицированных монтажников.

Программа для проектирования инженерных систем MagiCAD

Это программа для проектирования систем вентиляции, отопления, водоснабжения и канализации, электросетей. MagiCAD рассчитывает и делает необходимые чертежи.

Будет полезна строителям, проектировщикам, чертежникам и менеджерам по продаже оборудования.

Функции MagiCAD:

  • все виды расчетов для вентиляционных систем(приточные и вытяжные);
  • изображение в 2D;
  • изображение в 3D;
  • широчайшая база данных оборудования европейских производителей;
  • создание всей необходимой проектной документации, в том числе спецификаций;
  • возможность обмена данными с иными программами для рисования вентиляции;
  • совместимость с ADT и AutoCAD.

Графика MagiCAD основана на базе AutoCAD и фактически является ее дополнением. Программа создана финскими разработчиками, которые максимально упростили ее использование. Поэтому инженер, знакомый с AutoCAD без труда разберется с дочерней программой для расчета вентиляции и других инженерных систем MagiCAD. Удобство использования достигается разделением ядра на модули: Вентиляция, Трубопроводы, Электричество и Помещение.

Специалисту не нужно прочерчивать сложные воздухораспределительные сети, фитинги и повороты. Уже готовые элементы составляются подобно конструктору. Не нужна даже линейка. Основная работа проектировщика – правильно скомпоновать существующие узлы для получения оптимального результата. Все данные о проекте присутствуют тут же. Заглянув в электронный чертеж, можно получить необходимые сведения о работе будущей вентиляции, например, о сечении воздуховодов и скорости воздушного потока в них.

Программой для расчетов вентиляционных систем MagiCAD пользуются десятки крупных проектных бюро скандинавских стран и многие проектные организации стран СНГ.

Программа расчета естественной вентиляции и аспирации GIDRV 3.093

Программа GIDRV 3.093 создана для расчета систем вентиляции с принудительной и естественной тягой. Представляет собой многозадачную форму с набором закладок: «Характеристики схемы», «Этажи», «Участки», «Местные сопротивления», «Расчетная таблица».

Функции программы для расчета естественной вентиляции GIDRV 3.093:

  • контрольный расчет параметров вытяжного воздуховода естественной вентиляции;
  • расчет нового и контрольный расчет воздушных каналов для аспирации;
  • расчет новых и контрольные расчеты приточных и вытяжных воздуховодов для систем с принудительной тягой.

Получив результаты, можно изменить исходные параметры на любых участках воздуховодов и сделать новую схему. С помощью этой программы для расчета естественной вентиляции можно подбирать любые комбинации, добиваясь оптимальных показателей работы.

Схемы с пояснениями (характеристики каналов, сопротивления системы, результаты подсчетов) хранятся в едином файле. Переключение и работа с различными вариантами расчетов очень удобны и просты.

Автоматически выявляются участки с избыточным напором и предоставляются варианты решения проблемы (сужать сечение, использовать диафрагмы, шибера, дроссели).

Программа расчетов естественной вентиляции снабжена функцией расчетов дросселирующих механизмов, выдающей несколько лучших вариантов и обозначив наиболее подходящий.

В процессе расчетов естественной вентиляции обнаруживает самые перегруженные участки системы. Показывает давление по каждому участку, потери и их причины (сопротивление трубы, трение).

Все расчеты можно распечатать, включая таблицы.

Платная, но для ознакомления доступна демо-версия.

Программа расчета противодымной вентиляции Fans 400

Программа Fans 400 создана для расчета противодымной вентиляции помещений. С ее помощью можно определить показатели системы удаления дыма из холлов, коридоров и вестибюлей. Программа для расчета противодымной вентиляции помогает подобрать мощность вентиляторов и другого специального оборудования.

Fans 400 создана для инженеров-проектировщиков, пожарных инспекторов и студентов профильных специальностей.

Использование для расчетов противодымной вентиляции не вызовет сложностей у пользователя любого уровня подготовки. Она распространяется бесплатно. Для корректной работы программы к компьютеру необходимо подключить принтер.

Программа подбора воздуховодов Ducter 2.5

Эта программа подбора вентиляционного оборудования высчитывает диаметры сечений воздуховодов. Пользователь вводит максимальные значения скорости потока в воздуховодах, перепады высот при расчетах естественной вентиляции или КМС отрезка. На основании этих сведений программа подбирает вентиляционное оборудование стандартного диаметра согласно ВСН 353-86 линейно. Таким образом, окончательное решение по диаметру остается за специалистом.

Если необходим воздуховод нестандартных параметров, программа тоже поможет: вводится один параметр, остальные подбираются. Шаг подбора устанавливается в настройках.

Задаются показатели давления и температуры воздуха, если рассчитывается система кондиционирования. Есть возможность получения данных о давлении на каждом участке, вводя его длину и суммарный коэффициент сопротивления. Учитывается материал будущего воздуховода.

Можно задать один из нескольких вариантов отображения размеров каждого участка.

Версии программы от Ducter 3 и выше для подбора оборудования помогут полностью просчитать всю систему вентиляции.

Программа для рисования вентиляции «SVENT»

Программа SVENT разработана для рисования вентиляции помещений на компьютерах под управлением Windows.

Функции SVENT:

  • аэродинамический расчет систем принудительной и вытяжной вентиляции;
  • программа для чертежей вентиляции в аксонометрии, использует элементы AutoCAD;
  • составляет спецификации.

Производит 2 типа расчетов:

  • Автоматически предлагает сечение прямоугольной или круглой формы на основании введенных данных о скоростях возле вентиляторов и на концах воздуховодов;
  • Расчет системы с введенными данными о сечениях и потерях давления.

Программа расчета работает с любыми типами воздуховодов (круглые, прямоугольные и нестандартной формы). Можно дополнять базу данных воздуховодов необходимыми образцами.

База узлов работает на схемах расчетов коэффициентов местных сопротивлений из ВСН 353-86, Справочника проектировщика под редакцией Староверова И.Г. и нескольких других источников. Ее тоже можно дополнять.

Программа для рисования вентиляции CADvent

Эта программа для рисования вентиляции создана на базе мощной и сложной AutoCAD. Вместе с развитием AutoCAD видоизменяется и совершенствуется CADvent, добавляются новые возможности. Это профессиональные программы для черчения вентиляции, расчетов и презентаций, созданные для инженеров, работающих в области проектирования и разработок систем вентиляции, кондиционирования и отопления.

Функции CADvent:

  • расчет сечения воздуховодов;
  • расчет потерь давления;
  • акустический расчет;
  • создание 2D чертежа с необходимыми обозначениями;
  • 3D моделирование;
  • спецификация по элементам, которую можно перенести в MS excel;
  • создание презентаций.

Программа CADvent предоставляет возможность изменять любые изменения в уже готовый проект, изменять расчетные параметры, добавлять новые элементы. Ее можно комбинировать с программами DIMsilencer (программа для подбора шумоглушителя в системе вентиляции) и DIMcomfort (подбирает распределители воздуха, учитывая скорость движения потока и шум в местах нахождения людей).

Пользователи отмечают удобство пользования, но не хватает русификации, а также возможности создать аксонометрическую проекцию.

Еще об одной программе под названием Комфорт-В смотрите видеоролик.

2. Расчетная часть 6

2.1. Методика расчета 6

2.1.1. Последовательность расчета 6

2.1.2. Определение потерь давления в воздуховоде 7

2.1.3. Определение потерь давления в коллекторе 8

2.1.4. Расчет пылеулавливающего аппарата 9

2.1.5. Расчет материального баланса процесса пылеулавливания 11

2.1.6. Выбор вентилятора и электродвигателя 12

2.2. Пример расчета 13

2.2.1. Аэродинамический расчет сети аспирации (от местного отсоса до коллектора включительно) 13

2.2.2. Увязка сопротивлений участков 19

2.2.3. Расчет потерь давления в коллекторе 22

2.2.4. Расчет пылеулавливающего аппарата 23

2.2.5. Расчет участков 7 и 8 до установки вентилятора 25

2.2.6. Выбор вентилятора и электродвигателя 28

2.2.7. Уточнение сопротивлений участков 7 и 8 29

2.2.8. Материальный баланс процесса пылеулавливания 31

Библиографический список 32

Приложение 1 33

Приложение 2 34

Приложение 3 35

Приложение 4 36

Приложение 5 37

Приложение 6 38

Приложение 7 39

Приложение 8 40

Приложение 9 41

Приложение 10 42

Приложение 11 43

Приложение 12 44

Приложение 13 46

Приложение 14 48

1. Общие положения

В процессах обработки древесины на деревообрабатывающих станках образуется большое количество как крупных частиц – отходов производства (стружка, щепа, кора), так и более мелких (опилки, пыль). Особенностью данного технологического процесса является значительная скорость, сообщаемая образующимся частицам при воздействии режущего инструмента на обрабатываемый материал, а также большая интенсивность пылеобразования. Поэтому практически все деревообрабатывающие станки оборудованы вытяжными устройствами, которые принято называть местными отсосами.

Система, объединяющая местные отсосы, воздуховоды, коллектор (сборник, к которому подсоединяются воздуховоды - ответвления), пылеулавливающий аппарат и вентилятор, называется аспирационной системой .

Совокупность воздуховодов - ответвлений, подсоединенных к коллектору, называется узлом .

На деревообрабатывающих участках, оборудованных станками, применяются коллекторы различных конструкций (рис.1). Характеристики некоторых видов коллекторов приведены в табл. 1.

Для перемещения образующихся отходов (например, из бункеров хранения отходов к топливным бункерам котельной) используется система пневматического транспорта, ее отличие от аспирационной системы заключается в том, что функции местного отсоса выполняет загрузочная воронка.

Важнейшей характеристикой, используемой при расчетах систем аспирации и пневмотранспорта, является массовая концентрация запыленного воздуха (М, кг/кг) . Массовая концентрация – это отношение количества перемещаемого материала к количеству транспортирующего его воздуха:

Рис. 1. Виды коллекторов:

а) вертикальный коллектор с нижним отводом (барабанный)

б) вертикальный коллектор с верхним отводом ("люстра") в) горизонтальный коллектор

Таблица 1

Характеристика коллекторов

Минимальное количество отводимого воздуха, м³/ч

Входные патрубки

Выходной патрубок

коли-чество

вх

диаметр (размер сечения), мм

коэффициент местного сопротивления ζвых

коллекторы горизонтальные

Дэ = 339 (300х300)

Дэ = 339 (300х300)

Дэ = 391 (400х300)

коллекторы вертикальные

а) с верхним вводом (с нижним отводом)

б) с нижним вводом (с верхним отводом)

кг/кг, (1)

где G Σ n – суммарный массовый расход перемещаемого материала, кг/ч;

L Σ – суммарное количество воздуха, требуемое для перемещения материала (объемный расход), м 3 /ч;

ρ в – плотность воздуха, кг/м 3 . При температуре 20°С и атмосферном давлении В = 101,3 кПа, ρ в = 1,21 кг/м 3 .

При проектировании аспирационных систем важное место занимает аэродинамический расчет, заключающийся в выборе диаметров воздуховодов, подборе коллектора, определении скоростей на участках, расчете и последующей увязке потерь давления на участках, определении суммарного сопротивления системы.

В одну аспирационную сеть объединяется оборудование:
-работающее одновременно;
-близко расположенное;
-с одинаковой пылью, или близкой по качеству и свойствам;
-с одинаковой или с небольшой разницей температуры воздуха.
Оптимальное количество точек отсоса - не более шести, но можно больше.
Если в какой-либо машине режим воздушного потока периодически изменяется, т. е. регулируется в соответствии с технологическим процессом, то для неё проектируется отдельная вентиляционная установка; или с очень небольшим количеством дополнительных, "попутных" точек отсоса (одна - две с малым расходом).

Примеры компоновки аспирационных установок - на странице .

Определить расход воздуха на аспирацию и потери давления (сопротивление) для каждой аспирируемой машины, ёмкости, точки. Данные взять из паспортной документации оборудования или по "нормам на аспирацию" в справочной литературе. Можно использовать данные аналогичных проектов.
Расход воздуха можно определить по размерам всасывающего патрубка или аспирационного отверстия в корпусе машины, если патрубок и отверстие сделаны заводом-изготовителем и (или) по размерам проектной организации.
Если поступающий продукт эжектирует в оборудование какое-то дополнительное количество воздуха (например, двигаясь с большой скоростью по самотечной трубе), то этот дополнительный объём следует прибавить к нормативному, определив его тоже по нормам, или методами расчёта, применительными к данному конкретному питающему устройству и продукту.
Если с отводящимся продуктом из оборудования уносится некоторое количество воздуха, его также следует определить, и вычесть из расхода воздуха на аспирацию.

Излишнее эжектирование или унос воздуха можно уменьшить, если в схему питающего, отводящего устройств включить элементы для снижения скорости движения материала, продукта; повысить степень заполнения продуктом проходного сечения устройства (трубы).
Эжектирование, унос воздуха совсем незначительны и даже отсутствуют, если:
-проходное сечение питателя, отвода полностью заполнено продуктом;
-продукт поступает из постоянно заполненной ёмкости;
-в подводящей, отводящей конструкции установлено герметизирующее устройство (шлюзовой затвор, клапан и т. п.).
Если какое-либо оборудование периодически заполняется из другого большими разовыми порциями за короткое время, то между ними надо установить воздуховод свободного перетекания вытесняемого воздуха и распределения избыточных давлений, которые возникают внутри корпусов и ёмкостей в момент разгрузки-выгрузки. Переточный воздуховод - большого диаметра, вертикальный или сильнонаклонный, без горизонтальных участков.

Все расходы сложить, и разделить на объём помещения - нормальный воздухообмен для различных предприятий разный, но обычно находится в пределах 1 - 3 обмена в час. Более высокие воздухообмены применяют при расчёте общеобменной приточно-вытяжной вентиляции для удаления вредных выделений, примесей, запахов из воздуха помещений.
Для снижения повышенного вакуума в закрытом помещении следует предусмотреть приток наружного воздуха к аспирируемому оборудованию или в это помещение.

Надёжно транспортирующая скорость воздуха для различных видов пыли и сыпучих материалов принимается по рекомендациям отраслевых указаний. Можно использовать информацию тематической литературы, данные аналогичных проектов, параметры действующих аспирационных и пневмотранспортных установок предприятия.
Скорость воздуха в материалопроводах пневмотранспорта:
V = k(10,5 + 0,57·V вит) м/сек, где V вит - скорость витания частиц продукта, k - коэффициент запаса, учитывает колебания нагрузки на пневмотранспортёр. Расчёт пневмотранспортной установки рассмотрен на странице . Если считать, что нагрузка в воздуховоде аспирации постоянна, то и коэффициент запаса должен быть равен 1. Для некоторых материалов витания и пневмотранспортирования приведены в разделе "Расчёт аспирации" каталога "Чертежи, схемы, рисунки сайта".

Тип пылеотделителя выбрать с учётом характеристики пыли, планируемой (желаемой) эффективности очистки воздуха, эксплуатационной надёжности, сложности конструкции. Пропускную производительность пылеотделителя определить сложив расходы всех аспирируемых точек и прибавив 5%. Если в сети есть точки временно отключаемые (перекрытые) клапанами, на каждую добавить ещё по 100 м³/час подсоса к общему расходу.
Потери давления (сопротивление) в пылеотделителе принять из его технической характеристики.

Место установки вентилятора и воздухоочистителя выбрать с учётом их габаритов и размеров присоединяемых к ним фасонных деталей воздуховодов. Предусмотреть возможность отвода пыли и отходов, компактность сети воздуховодов, удобство обслуживания и ремонта. Учесть рекомендации по их расположению в сети. Например, всасывающий фильтр устанавливают дальше от машины с самым большим сопротивлением, чтобы создать в нём необходимый вакуум для обратной продувки ткани. Перед входом в циклон, особенно батарейный, должен быть прямой участок длиной не менее двух диаметров воздуховода. Расположение вентилятора предпочтительнее после пылеотделителя по ходу сети, т.е. на очищенном воздухе.
Намечая трассу воздуховодов, предпочтение отдавать вертикальным или сильнонаклонным, если они не нарушают промышленную эстетику. По возможности уменьшать протяжённость горизонтальных участков, количество поворотов (отводов). Избегать участков с запылённым воздухом на нагнетающей стороне вентилятора, особенно в помещениях.

Нарисовать расчётную схему аспирационной сети. Разделить сеть на участки:
-от машин до точек объединения включая тройник;
-от точки объединения до следующего тройника включительно;
-от точки последнего объединения до пылеотделителя (или вентилятора);
-участок между пылеотделителем и вентилятором;
-выхлопной участок с выхлопом.
На схеме указать расходы воздуха и потери давления в аспирируемом оборудовании. Посчитать и указать расходы воздуха на каждом участке. Указать длину каждого участка воздуховодов, включая длину всех его фасонных частей. Указать потери давления (сопротивление) пылеотделителя.

Диаметры воздуховодов каждого участка подобрать по принятой скорости v (м/сек) и расходу воздуха Q (м³/час) в "таблице данных для расчёта круглых стальных воздухопроводов", которая есть в справочной литературе по аспирации. Один из вариантов дан в разделе "Расчёт аспирации" каталога "Чертежи, схемы, рисунки сайта". Из этой же "таблицы" взять динамическое давление Нд (Па) и R - потери давления на 1 метр длины (Па/м) для этого участка. Эти данные нанести на схему или в специальную расчётную таблицу. Для подбора диаметров и расчёта воздуховодов можно пользоваться специальными .

Как правило, технологическое и транспортное оборудование поставляется в комплекте с отсасывающим патрубком. В паспорте оборудования приводятся данные о режиме аспирации.
Размеры и конфигурация отсасывающих патрубков, рекомендуемые входные скорости для различных материалов приведены в справочниках по аспирации и пневмотранспорту.
Площадь сечения входного отверстия патрубка (конфузора, "перехода") вычисляется делением расхода воздуха на входную скорость .
Для уменьшения уноса продукта и пыли, для предотвращения взрывоопасных концентраций в воздуховодах, для снижения пылевой нагрузки на фильтр, входная скорость принимается минимально возможной и зависит от вида пыли и свойств основного продукта. Открытые источники пылевыделения аспирируют верхними или боковыми отсосами. Оптимальный угол сужения конфузора 45 градусов.

На каждом участке определить сумму коэффициентов его местных сопротивлений (фасонных частей): отсасывающий патрубок (конфузор), отводы, расширения-сужения, тройник и т. п. Коэффициенты всех видов сопротивлений известны и легко находятся в нормативных таблицах.
Посчитать потери давления при прохождении воздуха через местные сопротивления: умножив динамическое давление на сумму коэффициентов участка.
Посчитать потери давления на трение воздуха по длине участка: умножив потерю в 1 метре на всю длину участка.
СЛОЖИТЬ: потери давления в аспирируемой машине + потери на местные сопротивления + потери по длине участка. Полученную СУММУ потерь каждого участка нанести на схему и в расчётную таблицу.
Потери давления в участках между тройниками считать от точки объединения (не включая тройник) до следующего объединения включая тройник.

Выравнивание давлений.
За главную магистраль принять последовательность участков, создающих наибольшие потери давления по пути движения воздуха.
К потерям давления каждого участка главной магистрали прибавить потери всех предыдущих участков главной магистрали (только главной) и указать эту сумму в точке объединения с боковым.

В каждой точке объединения (тройниках) сравнить потери давления главной магистрали с потерями в присоединяемом боковом участке. Для правильного распределения воздуха эти потери надо сделать одинаковыми. Допустимая разница - 10%. При больших расхождениях следует уменьшить диаметр участка с меньшим сопротивлением (обычно бокового), это повысит в нём скорость (при прежнем расходе!) , динамическое давление и все потери. Пересчитать новое сопротивление бокового участка и снова сравнить с магистральным в точке объединения. Уменьшать диаметр меньше 80 мм нельзя.

Если таким способом не удаётся выровнить давления, то принять вариант с наиболее близкими значениями, а в участок с меньшими потерями давления установить дополнительное местное сопротивление: диафрагму между двумя фланцами, но лучше - регулировочную задвижку. - по таблицам местных сопротивлений или по расчёту.

Выбор вентилятора.
Производительность вентилятора равна производительности пылеотделителя плюс подсос воздуха в герметизирующем устройстве пылеотделителя. Подсосы во всасывающих фильтрах принимают 15% от полезного расхода сети, или по нормам. Подсосы в циклонах учитывают, если они установлены на всасывающей стороне вентилятора: для ЦОЛ, 4БЦш, однорядного УЦ принять 150 м³/час, для двухрядного УЦ - 250 м³/час.
Давление, которое должен развивать вентилятор, равно общему сопротивлению сети по главной магистрали плюс 10% запаса.
Общее сопротивление сети - это сумма потерь давления участков только главной магистрали , включая: сопротивление первой аспирируемой машины, потери давления в воздуховодах каждого участка гл. магистрали, сопротивление пылеотделителя, потери давления на участке между пылеотделителем и вентилятором, потери давления в выхлопном участке и сопротивление выхлопа.

По давлению и расходу из всех номеров и типов пылевых вентиляторов подбирают тот, на аэродинамической характеристике которого пересечение этих параметров даёт точку наибольшего к.п.д. Можно выбирать по каталогам и рекомендациям заводов-изготовителей и торгующих организаций вентиляционной техники и оборудования.
Частоту вращения рабочего колеса вентилятора определяют по его аэродинамической характеристике. Мощность на валу вентилятора (квт): Nв. = (QH)/1000кпд где Q - производительность вентилятора в м³/сек, т. е. м³/час надо разделить на 3600; H - давление вентилятора в Па; кпд - коэффициент полезного действия вентилятора.
Мощность электродвигателя, квт: Nэ = (k·Nв)/n·п где n = 0,98 - кпд подшипников; п - кпд передачи: при посадке рабочего колеса вентилятора на вал электродвигателя п = 1, при передаче через муфту п = 0,98, при клиноремённой передаче п = 0,95. Коэффициент запаса мощности электродвигателя k = 1,15 для электродвигателей мощностью до 5 квт; k = 1,1 для электродвигателей мощностью более 5 квт. Практический пример подбора вентилятора к конкретной аспирационной сети дан на странице "Выбор и расчёт вентилятора".

Таким способом можно рассчитать вентиляционную установку для аспирации или пневмотранспорта пылевидных, мелкосыпучих материалов в низкой концентрации аэросмеси на предприятиях по хранению и переработке зерна, для очистки от примесей и обогащения крупы, на мукомольном и комбикормовом производстве, в деревообрабатывающем для удаления опилок и стружки от станков, в пищевой, текстильной промышленности и других, где есть источники выделения пыли. Низкой концентрацией считается содержание пыли или отходов не более 0,01 кг в 1 кг воздуха. Потери давления в воздуховодах с большей запылённостью рассчитываются .

Отдельные страницы посвящены аспирации приёма, хранения и очистки зерна: расчёт аспирационной установки зерноочистительного отделения, башни или пункта хлебоприёмного предприятия, системы аспирации этажей рабочего здания и силосного корпуса элеватора.

Введение

Местная вытяжная вентиляция играет наиболее активную роль в комплексе инженерных средств нормализации санитарно-гигиенических условий труда в производственных помещениях. На предприятиях, связанных с переработкой сыпучих материалов, эту роль выполняют аспирационные системы (АС), обеспечивающие локализацию пыли в местах её образования. Общеобменная вентиляция до настоящего времени играла вспомогательную роль – обеспечивала компенсацию воздуха, удаляемого АС. Исследованиями кафедры МОПЭ БелГТАСМ показано, что общеобменная вентиляция является составной частью комплекса систем обеспыливания (аспирация, системы борьбы с вторичным пылеобразованием – гидросмыв или сухая вакуумная пылеуборка, общеобменная вентиляция).

Несмотря на длительную историю развития, аспирация получила фундаментальную научно–техническую основу лишь в последние десятилетия. Этому способствовало развитие вентиляторостроения и совершенствование техники очистки воздуха от пыли. Росла и потребность аспирации со стороны быстро развивающихся отраслей металлургической строительной индустрии. Возник ряд научных школ направленных на решение возникающих экологических проблем. В области аспирации стали известными уральская (Бутиков С.Е. , Гервасьев A.M. , Глушков Л.А. , Камышенко М.Т. , Олифер В.Д. и др.), криворожская (Афанасьев И.И. , Бошняков Е.Н. , Нейков О.Д. , Логачев И.Н. , Минко В.А. , Серенко А.С. , Шелекетин A.В. и американская (Хемеон В. , Принг Р. ) школы, создавшие современные основы конструирования и методики расчета локализаций пылевыделений с помощью аспирации. Разработанные на их основе технические решения в области проектирования систем аспирации закреплены в ряде нормативных и научно–методических материалов .

Настоящие методические материалы обобщают накопленные знания в области проектирования аспирационных систем и систем централизованной вакуумной пылеуборки (ЦПУ). Применение последних расширяется особенно в производстве, где гидросмыв недопустим по технологическим и строительным соображениям. Предназначенные для подготовки инженеров–экологов методические материалы дополняют курс «Промышленная вентиляция» и предусматривают развитие практических навыков у студентов старших курсов специальности 17.05.09. Эти материалы нацелены на то, чтобы студенты умели:

Определить необходимую производительность местных отсосов АС и насадков ЦПУ;

Выбрать рациональные и надёжные системы трубопроводов с минимальными потерями энергии;

Определить необходимую мощность аспирационной установки и выбрать соответствующие тягодутьевые средства

И знали:

Физическую основу расчета производительности местных отсосов АС;

Принципиальное отличие гидравлического расчета систем ЦПУ и сети воздуховодов АС;

Конструктивное оформление укрытий перегрузочных узлов и насадков ЦПУ;

Принципы обеспечения надежности работы АС и ЦПУ;

Принципы подбора вентилятора и особенности его работы на конкретную систему трубопроводов.

Методические указания ориентированы на решение двух практических задач: «Расчет и выбор аспирационного оборудования (практическое задание №1), «Расчет и выбор оборудования вакуумной системы уборки пыли и просыпи (практическое задание №2)».

Апробация этих задач осуществлена в осеннем семестре 1994 года на практических занятиях групп АГ-41 и АГ-42, студентам которых составители выражают признательность за выявленные ими неточности и технические погрешности. Внимательное изучение материалов студентами Титовым В.А., Сероштаном Г.Н., Ереминой Г.В. дали нам основание внести изменения в содержание и редакцию методических указаний.


1. Расчет и выбор аспирационного оборудования

Цель работы: определение необходимой производительности аспирационной установки, обслуживающей систему аспирационных укрытий мест загрузки ленточных конвейеров, выбор системы воздуховодов, пылеуловителя и вентилятора.

Задание включает:

А. Расчет производительности местных отсосов (объемов аспирации).

Б. Расчет дисперсного состава и концентрации пыли в аспирируемом воздухе.

В. Выбор пылеуловителя.

Г. Гидравлический расчет аспирационной системы.

Д. Выбор вентилятора и электродвигателя к нему.

Исходные данные

(Численные значения исходных величин определяются номером варианта N. В скобках указаны значения для варианта N = 25).

1. Расход транспортируемого материала

G м =143,5 – 4,3N, (G м =36 кг/с)

2. Плотность частиц сыпучего материала

2700 + 40N, (=3700 кг/м 3).

3. Исходная влажность материала

4,5 – 0,1 N, (%)

4. Геометрические параметры перегрузочного желоба, (рис 1):


h 1 =0,5+0,02N, ()

h 3 =1–0,02N,

5. Типы укрытий места загрузки ленточного конвейера:

0 – укрытия с одинарными стенками (для четных N),

Д – укрытия с двойными стенками (для нечетных N),

Ширина ленты конвейера B, мм;

1200 (для N=1…5); 1000 (для N= 6…10); 800 (для N= 11…15),

650 (для N = 16…20); 500 (для N= 21…26).

S ж – площадь поперечного сечения желоба.

Рис. 1. Аспирация перегрузочного узла: 1 – верхний конвейер; 2 – верхнее укрытие; 3 – перегрузочный желоб; 4 – нижнее укрытие; 5 – аспирационная воронка; 6 – боковые наружные стенки; 7 – боковые внутренние стенки; 8 – жесткая внутренняя перегородка; 9 – лента конвейера; 10 – торцовые наружные стенки; 11 – торцовая внутренняя стенка; 12 – нижний конвейер


Таблица 1. Геометрические размеры нижнего укрытия, м

Ширина ленты конвейера В, м b H L c h
0,50 1,5 0,60 0,40 0,60 0,25 0,40 0,12
0,65 1,9 0,80 0,50 0,80 0,30 0,50 0,16
0,80 2,2 0,95 0,60 0,95 0,35 0,60 0,20
1,00 2,7 1,20 0,75 1,2 0,40 0,75 0,25
1,20 3,3 1,40 0,90 1,45 0,45 0,90 0,30

Таблица 2. Гранулометрический состав транспортируемого материала

Номер j фракции, j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9
Размер отверстий смежных сит, мм 10 5 5 2,5 2,5 1,25 " 1,25 0,63 0,63 0,4 0,1 0

Средний диаметр фракции d j , мм

15 7,5 3,75 1,88. 0,99 0,515 0,3 0,15 0,05

* z =100(1 – 0,15 ).

2 31 25 24 8 2 3 3 2
30 232,5 93,75 45,12. 7,92 1,03 0,9 0,45 0,1
Интегральная сумма mj 100 98 67 42 18 10 8 5 2

Таблица 3. Длина участков аспирационной сети

Длина участков аспирационной сети Схема 1 Схема 2
для нечетных N для N=25, м для четных N
10
5
4

Рассмотрим принципиальные аспирационные транспортно–технологические системы предприятий стройиндустрии. Состав оборудования линии приемки сыпучего сырья включает бункер, конвейер, норию, конвейер. Пылевоздушные потоки образуются в основном на следующих участках: бункер – конвейер, конвейер – нория, нория - самотечном трубопроводе на участе нория - цепной конвейер. Соответственно этому в укрытиях образуются зоны повышенного и пониженного давления воздуха.

На Рис. 2.3 показана схема подключения к аспирационной системе оборудования участка приема супучего сырья.

Отсос воздуха можно осуществлять двумя способами: первый – подключить к аспирационной сети все места повышенного давления: бункер, конвейер, норию, цепной конвейер; второй - подключить к аспирационной сети бункер, башмак и головку нории, конвейер. При втором способе протяженность воздуховодов существенно уменьшается, а количество пыли, увлекаемой аспирационным воздуховодом, снижается, что обуславливает предпочтительность вторго способа.

Для нашего примера площадь живого селения решетки над приемным бункером дожна бать минимальной. Открытыми должны бать только те участки через которые сыпучий материал из транспортних средств поступает в приемный бункер. Для уменьшения площади контакта падающего потока материала с воздухом и уменьшением объема эжектируемого воздуха следует применять откидные уплотнительные щиты.

Рис.2.3 Схема подключения к аспирационной системе оборудования участка разгрузки железнонодрожного вагона: 1- железнонодрожный вагон; 2 - бункер; 3 – конвейер; 4 – нория; 5 - цепной конвейер; 6 - аспирационная сеть; 7- уплотнительные щиты.

Объем аспирируемого воздуха из приемного бункера определяют по формуле баланса прихода и расхода воздуха

При максимальном массовом расходе материала 100т/ч и высоте падения 2м см. Табл. 2.1 Lэ = 160 м³/ч; vн - скорость воздуха в отверствиях, 0.2м/с; Fн–площадь неплотностей приемного бункера, 3м²; Gм – объемная масса материала, 46м³; t – время разгрузки, 180с; получим:

Lа бун = 160 + ((0,2 * 3)*3600) + ((46 / 180)*3600) = 3240 м³/ч

Значения объемов аспирируемого воздуха из нории НЦ-100 (рабочая и холостая трубы) и цепногно конвейера ТСЦ-100 получены из нормативной документации :

Lа нор. раб.= 450 м³/ч; Lа нор. хол.= 450 м³/ч; Lа цеп = 420 м³/ч;

Для всей аспирационной системы:

Lа = 3240 + 450 + 450 + 420 = 4560 м³/ч;

Величина давления в аспирационном патрубке приемного бункера с учетом ежекционного давления создаваемого сыпучим материалом при высоте падения 2м и насыпном лотке составляет:

На бун = 50 + 50 = 100Па

Давление в каждом из аспирационных патрубков нории с учетом ежекционного давления в сбрасывающей коробке конвейера составляет:

На нор = 30 + 50 = 80Па

Давление в аспирационного патрубка цепного конвейера с учетом ежекционного давления в наклонном самотеке до 2м и разряжении в бункере составляет:

На цеп = 50 + 50 + 30 = 130Па

Получив исходные данные и скомпоновав аспирационную систему выполним аэродинамический расчет системы производительностью

Lа = 4560 м³/ч; см. рис. 2.3, которую отображаем на плане цеха в такой последовательности:

1. Производится нанесение воздуховодов и других элементов системы аспирации на план помещения, с последующим конструированием пространственной (аксонометрической) схемы аспирации.

2. Выбирается магистральное направление движения воздуха. Магистральным считается наиболее протяженное или нагруженное направление от вентилятора до начальной точки первого участка системы.

3. Разбивается система на участки с постоянным расходом воздуха, участки нумеруются, начиная с наиболее отдалённого от вентилятора, вначале по магистрали, а затем по ответвлениям. Определяют длину участков и расход воздуха и вносят эти значения в таблицу 2.3 графы 1, 2, 3.

4. Предварительно задаёмся ориентировочной скоростью воздуха v ор, м/с, на участке 1 воздуховода (в зависимости от скорости движения воздуха для заданной пыли см. табл. 2.4). Исходя из планировочных требований принимаем форму воздуховода и материал, из которого он изготовлен (круглый, из оцинкованной стали). Потери давления в цепном конвейере, присоединенного к участку 1, заносим в табл. 2.3 первой строкой. Для определения потерь давления в участке 1 соединяем прямой линией по номограмме рис. 2.5 точки Lцеп=420 м³/ч и v =10,5 м/с на пересечении этой прямой со шкалой D находим ближайший меньший рекомендуемый диаметр D=125 мм, величины v =10,5 м/с, Hд =67 Па, λ/D=0,18 заносим в графы 3, 6, 8.

5. Производим суммирование коэффициентов местных сопротивлений на участке (тройники, отводы. и т.д.) выбранных по . Полученный результат Σ ζ записываем в графу 5.

6. Производим умножение, (1 * λ/D) заполняем графу 9, сложение (1 * λ/D + Σ ζ) заполняем графу 10 . Графу 11 (общие потери на участке) находим как произведение величин, записанных в графах 6 и 10. В графу 12 записываем сумму общих потерь на 1 участке и потерь давления в в цепном конвейере.

Аналогично проводим расчеты остальных магистральных участков.

7. По окончании расчётов суммируем полученные величины и получаем суммарные потери давления в сети, которые служат критерием для подбора вентилятора.

8. Рассчитав потери давления по магистрали, приступаем к расчёту потерь давления на ответвлениях. При расчёте которых необходимо осуществить увязку, расхождение допускается не более 10 % .

9. Увеличивать потери давления в ответвлениях можно двумя способами. Первый способ – установка в ответвлении дополнительного местного сопротивления (задвижки, диафрагмы, шайбы). Второй способ – уменьшение диаметра ответвления.

В рассматриваемом примере следует повысить сопротивление 7-го участка на величину Нс = 237- 186,7 = 50,3 Па, а 8-го на – Нс = 373 - 187,7 =185,3 Па, а 9-го на – Нс = 460 - 157,8 = 302,2 Па. На 7 и 8 участках это можно осуществить установив дополнительно местные сопротивления т.к. диаметр трубы уже 125 мм. Величину коэффициента сопротивления диафрагмы, установленной на участке 7 определяем по выражению:

ζд7 = Нс / Нд7 = 50,3 / 74,1 = 0,68 (2.10)

По этой величине на рис. 2.4 определяем глубину погружения диафрагмы в воздуховод к его диаметру – а / D = 0,36, при D =125 мм а = 43.75мм. Аналогично для участков 8 и 9: ζд8 = Нс / Нд8 = 185,3 / 74,1 = 2,5 по рис. 5.3 определяем - а / D = 0,53, при D =125 мм а = 66,3мм; ζд9 = Нс / Нд9 = 302,2 74,1 = 4.1 по рис. 2.3 определяем - а / D = 0,59, при D =315 мм а = 186мм;

Рис. 2.4 Односторонняя диафрагма (а) и сдвоенная шкала для расчета размеров (б)

Рис.2.5 Номограмма А.В.Панченко для расчета воздуховодов.

Таблица 2.3

Аэродинамический расчет воздуховодов.

Магистральные участки

Номер участка и наим. машин L м³/с v м/с l , м Σ ζ Hд, Па D, мм λ/D l * λ/D l * λ/D+Σζ Прир. пол-ного давле-ния уч-ка, Па Пол-ное давле-ние участка, Па
Цепной конв. 0,12 - - - - - - - -
Уч-к 1 0,12 10,5 0,7 0,18 0,9 1,6
Уч-к 2 0,242 10,5 0,3 0,12 0,36 0,69
Уч-к 3 0,37 0,6 74,1 0,09 0,63 1,18 87,4 460,4
Уч-к 4 1,27 11,8 0,1 88,2 0,04 0,31 0.4 34,8 495,2
Уч-к 5 1,27 11,8 0,6 88,5 0,04 0,36 0.57 50,5 545,6
Нагнетающий Уч-к 6 1,27 11,8 88,5 0,04 0,31 1,32 116,4 116,4
ответвления
Нория 0,125 - - - - - - - -
Участок 7 0,125 0,23 74,1 0,17 1,21 1,44 106,7 186,7
Нория 0,125 - - - - - - - -
Участок 8 0,125 0,2 74,1 0,17 1,25 1,45 107,7 187,7
Приёмный бункер 0,9 - - - - - - - -
Участок 9 0,9 0,18 74,1 0,06 0,6 0,78 557,8 157,8

Таблица 2.4 Значения величин для проектирования систем аспирации и пневмотранспорта

Транспортируемый материал ϒ, кг/м 3 Скорость движения воздуха в воздуховодах v, м/с Максимальная массовая концентрация смеси μ кг/кг Опытный коэфициент К
вертикальных горизонтальных
Земляная и песочная пыль, оборотная (горелая) земля, формовочная земля 0,8 0,7
Земля и песок влажные
Глина молотая 0,8 0,6
Шамот 0,8 0,6
Пыль мелкая минеральная
Пыль от матерчатых полировальных кругов
Пыль угольная 900‒1000
Пыль наждачная минеральная 15,5
Гипс, тонкомолотая известь
Шерсть:
замасленная
незамасленная
искусственная
мериносовая (замасленная и незамасленная) 0,1‒0,2
лоскут
разрыхленная и крупные очёсы
Лён:
короткое волокно
льняная костра
Снопы тресты 0,5
Хлопок-сырец, разрыхленный хлопок, крупные очесы хлопка 0,5
Опилки:
чугунные 0,8 0,85
стальные 0,8
Шлак угля с размером частиц 10‒15 мм 0,5
© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции