Вконтакте Facebook Twitter Лента RSS

Отношение длины волны к показателю преломления. От чего зависит показатель преломления вещества. Относительный показатель преломления

Преломления называют некое отвлеченное число, которое характеризует преломляющую способность какой-либо прозрачной среды. Обозначать ее принято n. Различают абсолютный показатель преломления и коэффициент относительный.

Первый рассчитывается по одной из двух формул:

n = sin α / sin β = const (где sin α - синус угла падения, а sin β - синус луча света, входящего в рассматриваемую среду из пустоты)

n = c / υ λ (где с - скорость света в пустоте, υ λ - скорость света в исследуемой среде).

Здесь расчет показывает, во сколько раз свет изменяет скорость своего распространения в момент перехода из вакуума в прозрачную среду. Таким образом определяется показатель преломления (абсолютный). Для того чтобы узнать относительный, используют формулу:

То есть при этом рассматриваются абсолютные показатели преломления веществ разной плотности, например воздуха и стекла.

Если говорить в общем, то абсолютные коэффициенты любых тел, будь то газообразных, жидких или твердых, всегда больше 1. В основном их значения колеблются от 1 до 2. Выше 2 эта величина может быть только в исключительных случаях. Значение данного параметра для некоторых сред:


Эта величина в применении к самому твердому природному веществу на планете, алмазу, составляет 2,42. Очень часто при проведении научных изысканий и т. д. требуется знать показатель преломления воды. Этот параметр составляет 1,334.

Поскольку длина волны - показатель, разумеется, непостоянный, к букве n приписывается индекс. Его значение и помогает понять, к какой волне спектра данный коэффициент относится. При рассмотрении одного и того же вещества, но с увеличением длины световой волны, показатель преломления будет уменьшаться. Этим обстоятельством и вызвано разложение света на спектр при прохождении через линзу, призму и т. д.

По величине коэффициента преломления можно определить, к примеру, сколько одного вещества растворено в другом. Это бывает полезным, допустим, в пивоварении или когда необходимо узнать концентрацию сахара, фруктов или ягод в соке. Данный показатель важен и при определении качества нефтепродуктов, и в ювелирном деле, когда нужно доказать подлинность камня и т. д.

Без использования какого-либо вещества шкала, видимая в окуляре прибора, будет полностью окрашена в голубой цвет. Если капнуть на призму обычной дистиллированной воды, при правильной калибровке инструмента граница синего и белого цветов будет проходить строго по нулевой отметке. При исследовании другого вещества она сместится по шкале согласно тому, какой показатель преломления ему свойственен.

Глава 31

КАК ВОЗНИКАЕТ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ


§ 1. Показатель преломления

§ 2. Поле, излучае­мое средой

§ 3. Дисперсия

§ 4. Поглощение

§ 5. Энергия световой волны


§ 1. Показатель преломления

Мы уже говорили, что свет в воде движется медленнее, чем в воздухе, а в воздухе чуть мед­леннее, чем в вакууме. Этот факт учитывается введением показателя преломления п. Попро­буем теперь понять, как возникает уменьшение скорости света. В частности, особенно важно проследить связь этого факта с некоторыми физическими предположениями или законами, которые были ранее высказаны и сводятся к следующему:

а) полное электрическое поле при любых физических условиях может быть пред­ставлено в виде суммы полей от всех зарядов во Вселенной;

б) поле излучения каждого отдельного за­ряда определяется его ускорением; уско­рение берется с учетом запаздывания, возникающего из-за конечной скорости распространения, всегда равной c. Но вы, наверное, приведете сразу в каче­стве примера кусок стекла и воскликнете: «Ерунда, это положение здесь не годится. Нужно говорить, что запаздывание отвечает скорости c/n». Однако это неправильно; по­пробуем разобраться, почему это неправильно. Наблюдателю кажется, что свет или любая другая электрическая волна распространяется сквозь вещество с показателем преломления n со скоростью с/n. И это с некоторой точностью так и есть. Но на самом деле поле создается движением всех зарядов, включая и заряды, движущиеся в среде, а все составные части поля, все его слагаемые распространяются с максимальной скоростью c. Задача наша со­стоит в том, чтобы понять, как возникает кажущаяся меньшая скорость.

Фиг. 31.1. Прохождение электрических волн сквозь слой прозрачного вещества.

Попробуем понять это явление на очень простом примере. Пусть источник (назовем его «внешним источником») помещен на большом расстоянии от тонкой прозрачной пластинки, ска­жем стеклянной. Нас интересует поле по другую сторону пла­стинки и достаточно далеко от нее. Все это схематично представ­лено на фиг. 31.1; точки S и Р здесь предполагаются удаленными на большое расстояние от плоскости. Согласно сформулирован­ным нами принципам, электрическое поле вдали от пластинки представляется (векторной) суммой полей внешнего источника (в точке S) и полей всех зарядов в стеклянной пластинке, причем каждое поле берется с запаздыванием при скорости с. Напомним, что поле каждого заряда не меняется от присутствия других зарядов. Это наши основные принципы. Таким образом, поле в точке Р

может быть записано в виде


где E s - поле внешнего источника; оно совпадало бы с иско­мым полем в точке Р, если бы не было пластинки. Мы ожидаем, что в присутствии любых движущихся зарядов поле в точке Р будет отлично от E r

Откуда берутся движущиеся заряды в стекле? Известно, что любой предмет состоит из атомов, содержащих электроны. Электрическое поле внешнего источника действует на эти атомы и раскачивает электроны взад и вперед. Электроны в свою оче­редь создают поле; их можно рассматривать как новые излуча­тели. Новые излучатели связаны с источником S, поскольку именно поле источника заставляет их колебаться. Полное поле содержит вклад не только от источника S, но и дополнительные вклады от излучения всех движущихся зарядов. Это значит, что поле в присутствии стекла изменяется, причем таким образом, что внутри стекла его скорость распространения кажется иной. Именно эту идею мы используем при количественном рассмот­рении.

Однако точный расчет очень сложен, потому что наше утверж­дение, что заряды испытывают только действие источника, не совсем правильно. Каждый данный заряд «чувствует» не только источник, но, подобно любому объекту во Вселенной, он чув­ствует и все остальные движущиеся заряды, в частности и заря­ды, колеблющиеся в стекле. Поэтому полное поле, действующее на данный заряд, представляет собой совокупность полей от всех остальных зарядов, движение которых в свою очередь зависит от движения данного заряда! Вы видите, что вывод точной фор­мулы требует решения сложной системы уравнений. Эта система очень сложна, и вы будете изучать ее значительно позднее.

А сейчас обратимся к совсем простому примеру, чтобы отчет­ливо понять проявление всех физических принципов. Предпо­ложим, что действие всех остальных атомов на данный атом мало по сравнению с действием источника. Иными словами, мы изучаем такую среду, в которой полное поле мало меняется из-за движения находящихся в ней зарядов. Такая ситуация ха­рактерна для материалов с показателем преломления, очень близким к единице, например для разреженных сред. Наши формулы будут справедливы для всех материалов с показателем преломления, близким к единице. Таким путем мы сможем из­бежать трудностей, связанных с решением полной системы урав­нений.

Вы могли по ходу дела заметить, что движение зарядов в пла­стинке вызывает еще один эффект. Это движение создает волну, распространяющуюся назад в направлении источника S. Такая обратно движущаяся волна есть не что иное, как луч света, отраженный прозрачным материалом. Приходит он не только с поверхности. Отраженное излучение генерируется во всех точках внутри материала, но суммарный эффект эквивалентен отражению с поверхности. Учет отражения лежит за границами применимости настоящего приближения, в котором показатель преломления считается настолько близким к единице, что от­раженным излучением можно пренебречь.

Прежде чем перейти к изучению показателя преломления, следует подчеркнуть, что в основе явления преломления лежит тот факт, что кажущаяся скорость распространения волны раз­лична в разных материалах. Отклонение луча света есть след­ствие изменения эффективной скорости в разных материалах.


Фиг. 31.2. Связь между прелом­лением и изменением скорости.


Чтобы пояснить этот факт, мы отметили на фиг. 31.2 ряд после­довательных максимумов в амплитуде волны, падающей из ва­куума на стекло. Стрелка, перпендикулярная указанным мак­симумам, отмечает направление распространения волны. Всюду в волне колебания происходят с одной и той же частотой. (Мы видели, что вынужденные колебания имеют ту же частоту, что и колебания источника.) Отсюда следует, что расстояния между максимумами волн по обе стороны поверхности совпадают вдоль самой поверхности, поскольку волны здесь должны быть согла­сованы и заряд на поверхности колеблется с одной частотой. Наименьшее расстояние между гребнями волн есть длина волны, равная скорости, деленной на частоту. В вакууме длина волны равна l 0 =2pс/w, а в стекле l=2pv/w или 2pс/wn, где v=c/n- скорость волны. Как видно из фиг. 31.2, единственный способ «сшить» волны на границе состоит в изменении направления движения волны в материале. Простое геометрическое рассуж­дение показывает, что условие «сшивания» сводится к равен­ству l 0 /sin q 0 =l/sinq, или sinq 0 /sinq=n, а это и есть закон Снелла. Пусть сейчас вас больше не волнует само отклонение све­та; нужно только выяснить, почему же в самом деле, эффектив­ная скорость света в материале с показателем преломления n равна с/n?

Вернемся снова к фиг. 31.1. Из сказанного ясно, что нужно вычислить поле в точке Р от осциллирующих зарядов стеклян­ной пластинки. Обозначим эту часть поля, которая представ­ляется вторым членом в равенстве (31.2), через Е а. Добавляя к ней поле источника E s , получаем полное поле в точке Р.

Стоящая перед нами здесь задача, пожалуй, самая сложная из тех, которыми мы будем заниматься в этом году, но сложность ее заключается только в большом количестве складываемых членов; каждый член сам по себе очень прост. В отличие от дру­гих случаев, когда мы обычно говорили: «Забудь вывод и смотри только на результат!», теперь для нас вывод гораздо важнее результата. Другими словами, нужно понять всю физическую «кухню», с помощью которой вычисляется показатель прелом­ления.

Чтобы понять, с чем мы имеем дело, найдем, каким должно быть «поправочное поле» Е а, чтобы полное поле в точке Р вы­глядело как поле источника, замедлившееся при прохождении через стеклянную пластинку. Если бы пластинка никак не влияла на поле, волна распространялась бы направо (по оси

2) по закону

или, используя экспоненциальную запись,


А что произошло бы, если бы волна проходила через пластин­ку с меньшей скоростью? Пусть толщина пластинки есть Dz. Если бы пластинки не было, то волна прошла бы расстояние Dz за время Dz/c. А поскольку кажущаяся скорость распростра­нения есть c/n, то потребуется время nDz/c, т. е. больше на не­которое добавочное время, равное Dt=(n-l) Dz/c. За пластин­кой волна снова движется со скоростью с. Учтем добавочное вре­мя на прохождение через пластинку, заменив t в уравнении (31.4) на (t-Dt), т. е. . Таким образом, если по­ставить пластинку, то формула для волны должна приобрести

Эту формулу можно переписать еще и по-другому:

откуда заключаем, что поле за пластинкой получается умноже­нием поля, которое было бы при отсутствии пластинки (т. е. E s), на ехр[-iw(n-1)Dz/c]. Как мы знаем, умножение осцилли­рующей функции типа e i w t на е i q означает изменение фазы коле­баний на угол q, возникающее из-за задержки при прохождении пластинки. Фаза запаздывает на величину w(n-1)Dz/c (именно запаздывает, поскольку в экспоненте стоит знак минус).

Мы говорили раньше, что пластинка добавляет поле Е а к первоначальному полю E S =E 0 ехр, а вместо этого нашли, что действие пластинки сводится к умножению поля на фактор, сдвигающий фазу колебаний. Однако здесь нет противоречия, поскольку тот же результат можно получить, приба­вив подходящее комплексное число. Это число особенно просто найти для малых Dz, так как е х при малых x с большой точностью равно (1+x).



Фиг. 31.3. Построение вектора поля прошедшей через материал волны при некоторых значениях t и z.


Тогда можно записать

Подставляя это равенство в (31 6), получаем

Первый член в этом выражении есть просто поле источника, а второй следует приравнять Е а - полю, создаваемому осцилли­рующими зарядами пластинки справа от нее. Поле Е а выражено здесь через показатель преломления n; оно, разумеется, зависит от напряженности поля источника.

Смысл сделанных преобразований легче всего понять с по­мощью диаграммы комплексных чисел (см. фиг. 31.3). Отло­жим сперва E s (z и t выбраны на рисунке такими, что E s лежит на действительной оси, но это не обязательно). За­держка при прохождении пластинки приводит к запаздыва­нию фазы E s , т. е. поворачивает E s на отрицательный угол. Это все равно, что добавить малый вектор Е а, направленный почти под прямым углом к E s . Именно такой смысл имеет множитель (-i) во втором члене (31.8). Он означает, что при действитель­ном E s величина Е а отрицательная и мнимая, а в общем случае E s и Ё а образуют прямой угол.

§ 2. Поле, излучаемое средой

Мы должны теперь выяснить, имеет ли поле осциллирующих зарядов в пластинке тот же вид, что и поле Е а во втором члене (31.8). Если это так, то тем самым мы найдем и показатель пре­ломления n [поскольку n - единственный фактор в (31.8), не выражающийся через фундаментальные величины]. Вернемся теперь к вычислению поля Е а, создаваемого зарядами пластин­ки. (Для удобства мы выписали в табл. 31.1 обозначения, которы­ми мы уже пользовались, и те, которые нам понадобятся в дальнейшем.)

ПРИ ВЫЧИСЛЕНИИ _______

E s поле, создаваемое источником

Е а поле, создаваемое зарядами пластинки

Dz толщина пластинки

z расстояние по нормали к пластинке

n показатель преломления

w частота (угловая) излучения

N число зарядов в единице объема пластинки

h число зарядов на единицу площади пластинки

q е заряд электрона

m масса электрона

w 0 резонансная частота электрона, связанного в атоме


Если источник S (на фиг. 31.1) находится слева на достаточно большом расстоянии, то поле E s имеет одинаковую фазу по всей длине пластинки, и вблизи пластинки его можно записать в виде

На самой пластинке в точке z=0 мы имеем

Это электрическое поле воздействует на каждый электрон в атоме, и они под действием электрической силы qE будут коле­баться вверх и вниз (если e0 направлено вертикально). Чтобы найти характер движения электронов, представим атомы в виде маленьких осцилляторов, т. е. пусть электроны упруго соеди­нены с атомом; это значит, что смещение электронов из нормаль­ного положения под действием силы пропорционально величине силы.


Если вы слышали о модели атома, в которой электроны вращаются по орбите вокруг ядра, то эта модель атома вам покажется просто смешной. Но это лишь упрощенная модель. Точная теория атома, основанная на квантовой механике, утверждает, что в процессах с участием света электроны ведут себя так, как будто они закреплены на пружинах. Итак, предположим, «что на электроны действует линейная возвращающая сила, и поэтому они ведут себя как осцилляторы с массой m и резонансной частотой w 0 . Мы уже занимались изучением таких осцилляторов и знаем уравнение движения, которому они под­чиняются:


(здесь F - внешняя сила).


В нашем случае внешняя сила создается электрическим полем волны источника, поэтому можно написать

где q e - заряд электрона, а в качестве E S мы взяли значение Е S = Е 0 е i w t из уравнения (31.10). Уравнение движения элект­рона приобретает вид

Решение этого уравнения, найденное нами раньше, выглядит следующим образом:

Мы нашли то, что хотели,- движение электронов в пластинке. Оно одинаково для всех электронов, и только среднее положение («нуль» движения) у каждого электрона свое.


Теперь мы в состоянии определить поле Е а, создаваемое атомами в точке Р, поскольку поле заряженной плоскости было найдено еще раньше (в конце гл. 30). Обращаясь к уравнению (30.19), мы видим, что поле Е а в точке Р есть скорость заряда, за­паздывающая по времени на величину z/c, умноженная на отри­цательную константу. Дифференцируя х из (31.16), получаем скорость и, введя запаздывание [или же просто подставляя х 0 из (31.15) в (30.18)], приходим к формуле

Как и следовало ожидать, вынужденное колебание электронов привело к новой волне, распространяющейся вправо (на это указывает множитель ехр); амплитуда волны про­порциональна числу атомов на единице площади пластинки (множитель h), а также амплитуде поля источника (Е 0). Кроме того, возникают и другие величины, зависящие от свойств ато­мов (q e , m , w 0).

Самый важный момент, однако, заключается в том, что фор­мула (31.17) для Е a очень похожа на выражение Е а в (31.8), полученное нами с помощью введения запаздывания в среде с показателем преломления n. Оба выражения совпадают, если положить



Заметьте, что обе стороны этого равенства пропорциональны Dz, поскольку h - число атомов на единицу площади - равно NDz, где N - число атомов на единицу объема пластинки. Под­ставляя NDz вместо hи сокращая на Dz, получаем наш основ­ной результат - формулу для показателя преломления, выра­женную через константы, зависящие от свойств атомов, и часто­ту света:

Эта формула «объясняет» показатель преломления, к чему мы и стремились.

§ 3. Дисперсия

Полученный нами результат очень интересен. Он дает не только показатель преломления, выраженный через атомные постоянные, но указывает, как меняется показатель преломления с частотой света w. С помощью простого утверждения «свет дви­жется с меньшей скоростью в прозрачной среде» мы никогда бы не смогли прийти к этому важному свойству. Нужно, конечно, еще знать число атомов в единице объема и собственную частоту атомов w 0 . Мы еще не умеем определять эти величины, поскольку они разные для разных материалов, а общую теорию по данному вопросу мы сейчас изложить не можем. Общая теория свойств различных веществ - их собственных частот и

т. п.- форму­лируется на основе квантовой механики. Кроме того, свойства различных материалов и величина показателя преломления сильно меняются от материала к материалу, и поэтому вряд ли можно надеяться, что вообще удастся получить общую форму­лу, пригодную для всех веществ.

Тем не менее попробуем применить нашу формулу к разным средам. Прежде всего, для большинства газов (например, для воздуха, большей части бесцветных газов, водорода, гелия и т. д.) собственные частоты колебаний электронов соответствуют уль­трафиолетовому свету. Эти частоты много больше частот види­мого света, т. е. w 0 много больше w, и в первом приближении можно пренебречь w 2 по сравнению с w 0 2 . Тогда показатель преломления получается почти постоянным. Итак, для газов показатель преломления можно считать константой. Этот вывод справедлив также и для большинства других прозрачных сред, например для стекла. Взглянув более внимательно на наше выражение, можно заметить, что при увеличении со знамена­тель уменьшается, а, следовательно, показатель преломления растет. Таким образом, n медленно увеличивается с ростом час­тоты. Для синего света показатель преломления больше, чем для красного. Именно поэтому синие лучи сильнее отклоняются призмой, чем красные.

Сам факт зависимости показателя преломления от частоты называется дисперсией, так как именно из-за дисперсии свет «диспергирует», раскладывается призмой в спектр. Формула, выражающая показатель преломления как функцию частоты, называется формулой дисперсии. Итак, мы нашли дисперсион­ную формулу. (За последние несколько лет «дисперсионные фор­мулы» стали использоваться в теории элементарных частиц.)

Наша дисперсионная формула предсказывает ряд новых инте­ресных эффектов. Если частота w 0 лежит в области видимого света или если измерять показатель преломления вещества, например стекла, для ультрафиолетовых лучей (где w близко к w 0), то знаменатель стремится к нулю, а показатель преломления становится очень большим. Пусть, далее, w больше w 0 . Такой случай возникает, например, если облучать вещества типа стекла рентгеновскими лучами. Кроме того, многие вещества, непро­зрачные для обычного света (скажем, уголь), прозрачны для рентгеновских лучей, поэтому можно говорить о показателе преломления этих веществ для рентгеновских лучей. Собствен­ные частоты атомов углерода гораздо меньше частоты рентгенов­ских лучей. Показатель преломления в этом случае дается нашей дисперсионной формулой, если положить w 0 =0 (т. е. мы прене­брегаем w 0 2 по сравнению с w 2).

Аналогичный результат получается при облучении газа сво­бодных электронов радиоволнами (или светом). В верхних слоях атмосферы ультрафиолетовое излучение Солнца выбивает элек­троны из атомов, в результате чего образуется газ свободных электронов. Для свободных электронов w 0 =0 (упругой возвращающей силы нет). Полагая в нашей дисперсионной формуле w 0 =0, получаем разумную формулу для показателя преломления радиоволн в стратосфере, где N теперь означает плотность сво­бодных электронов (число на единицу объема) в стратосфере. Но, как видно из формулы, при облучении вещества рентгеновскими лучами или электронного газа радиоволнами член (ш02-ш 2) ста­новится отрицательным, откуда следует, что n меньше единицы. Это значит, что эффективная скорость электромагнитных волн в веществе больше c! Может ли так быть?

Может. Хотя мы и говорили, что сигналы не могут распро­страняться быстрее скорости света, тем не менее показатель преломления при некоторой частоте может быть как больше, так и меньше единицы. Это просто означает, что сдвиг фазы за счет рассеяния света либо положителен, либо отрицателен. Кроме того, можно показать, что скорость сигнала определяется показателем преломления не при одном значении частоты, а при многих частотах. Показатель преломления указывает на ско­рость движения гребня волны. Но гребень волны не составляет еще сигнала. Чистая волна без всяких модуляций, т. е. состоя­щая из бесконечно повторяющихся правильных осцилляции, не имеет «начала», и ее нельзя использовать для посылки сигна­лов времени. Чтобы послать сигнал, волну нужно видоизменить, сделать на ней отметку, т. е. сделать ее кое-где потолще или по­тоньше. Тогда волна будет содержать не одну частоту, а целый ряд частот, и можно показать, что скорость распространения сигнала зависит не от одного значения показателя преломления, а от характера изменения показателя с частотой. Мы пока от­ложим этот вопрос. В гл. 48 (вып. 4) мы вычислим скорость рас­пространения сигналов в стекле и убедимся, что она не превышает скорости света, хотя гребни волны (понятия чисто математиче­ские) движутся быстрее скорости света.

Несколько слов по поводу механизма этого явления. Главная трудность здесь связана с тем фактом, что вынужденное движе­ние зарядов противоположно по знаку направлению поля. Дей­ствительно, в выражении (31.16) для смещения заряда х множи­тель (w 0 -w 2) отрицателен для малых w 0 и смещение имеет обратный знак по отношению к внешнему полю. Получается, что, когда поле действует с некоторой силой в одном направлении, заряд движется в противоположном направлении.

Как случилось, что заряд стал двигаться в сторону, проти­воположную силе? В самом деле, при включении поля заряд движется не противоположно силе. Сразу после включения поля возникает переходный режим, затем колебания устанавливаются и только после этого колебания заряды направлены про­тивоположно внешнему полю. Одновременно результирующее поле начинает опережать по фазе поле источника. Когда мы го­ворим, что «фазовая скорость», или скорость гребней волны, больше с, то мы имеем в виду именно опережение по фазе.

На фиг. 31.4 показан примерный вид волн, возникающих при резком включении волны источника (т. е. при посылке сигнала).


Фиг. 31.4. Волновые «сигналы».


Фиг. 31.5. Показатель преломления как функция частоты.

Из рисунка видно, что для волны, проходящей в среде с опере­жением по фазе, сигнал (т. е. начало волны) не опережает по времени сигнал источника.

Обратимся теперь снова к дисперсионной формуле. Следует помнить, что полученный нами результат несколько упрощает истинную картину явления. Чтобы быть точными, в формулу необходимо внести некоторые поправки. Прежде всего, в нашу модель атомного осциллятора следует ввести затухание (иначе осциллятор, раз начав, будет колебаться до бесконечности, что неправдоподобно). Движение затухающего осциллятора мы уже изучали в одной из прошлых глав [см. уравнение (23.8)]. Учет затухания приводит к тому, что в формулах (31.16), а поэтому и

в (31.19), вместо (w 0 2 -w 2) появляется (w 0 2 -w 2 +igw)" где g - коэффициент затухания.

Вторая поправка к нашей формуле возникает потому, что каждый атом обычно имеет несколько резонансных частот. Тогда вместо одного вида осцилляторов, нужно учесть действие не­скольких осцилляторов с разными резонансными частотами, ко­лебания которых происходят независимо друг от друга, и сло­жить вклады от всех осцилляторов.

Пусть в единице объема содержится N k электронов с соб­ственной частотой (w k и коэффициентом затухания g k . Наша дисперсионная формула примет в результате вид


Это окончательное выражение для показателя преломления справедливо для большого числа веществ. Примерный ход показателя преломления с частотой, даваемый формулой (31.20), приведен на фиг. 31.5.

Вы видите, что всюду, за исключением области, где w очень близко к одной из резонансных частот, наклон кривой положи­телен. Такая зависимость носит название «нормальной» диспер­сии (потому что этот случай встречается наиболее часто). Вблизи резонансных частот кривая имеет отрицательный наклон, и в этом случае говорят об «аномальной» дисперсии (имея в виду «ненормальную» дисперсию), потому что она была наблюдена задолго до того, как узнали об электронах, и казалась в то время необычной, С нашей точки зрения, оба наклона вполне «нор­мальны»!

§ 4 Поглощение


Вы уже, наверное, заметили нечто странное в последней фор­ме (31.20) нашей дисперсионной формулы. Из-за члена ig, учи­тывающего затухание, показатель преломления стал комплексной величиной! Что это означает? Выразим n через действительную и мнимую части:

причем n" и n" вещественны. (Перед in" стоит знак минус, а само n", как легко убедиться, положительно.)


Смысл комплексного показателя преломления легче всего понять, вернувшись к уравнению (31.6) для волны, проходящей сквозь пластинку с показателем преломления n. Подставив сюда комплексное n и произведя перегруппировку членов, получаем


Множители, обозначенные буквой В, имеют прежний вид и, как и раньше, описывают волну, фаза которой после прохожде­ния пластинки запаздывает на угол w (n"-1)Dz/c. Множитель А (экспонента с действительным показателем) представляет нечто новое. Показатель экспоненты отрицателен, следователь­но, А вещественно и меньше единицы. Множитель А уменьшает амплитуду поля; с ростом Dz величина А, а следовательно, и вся амплитуда падает. При прохождении через среду электро­магнитная волна затухает. Среда «поглощает» часть волны. Волна выходит из среды, потеряв часть своей энергии. Этому не следует удивляться, потому что введенное нами затухание осцилляторов обусловлено силой трения и непременно приводит к потере энергии. Мы видим, что мнимая часть комплексного показателя преломления n" описывает поглощение (или «ослаб­ление») электромагнитной волны. Иногда n" называют еще «ко­эффициентом поглощения».

Заметим также, что появление мнимой части n отклоняет стрелку, изображающую Е а на фиг. 31.3, к началу координат.

Отсюда ясно, почему поле ослабевает при прохождении через среду.

Обычно (как, например, у стекла) поглощение света очень мало. Именно так и получается по нашей формуле (31.20), по­тому что мнимая часть знаменателя ig k w много меньше дейст­вительной части (w 2 k -w 2). Однако когда частота w близка к w k , резонансный член (w 2 k -w 2) оказывается мал по сравнению с ig k w и показатель преломления становится почти чисто мнимым. Поглощение в этом случае определяет основной эффект. Именно поглощение дает в солнечном спектре темные линии. Свет, излу­чаемый поверхностью Солнца, проходит сквозь солнечную атмос­феру (а также через атмосферу Земли), и частоты, равные резо­нансным частотам атомов в атмосфере Солнца, сильно поглощаются.

Наблюдение подобных спектральных линий солнечного света позволяет установить резонансные частоты атомов, а следова­тельно, и химический состав солнечной атмосферы. Точно так же по спектру звезд узнают состав звездного вещества. С по­мощью этих методов обнаружили, что химические элементы на Солнце и звездах не отличаются от земных.

§ 5. Энергия световой волны

Как мы видели, мнимая часть показателя преломления ха­рактеризует поглощение. Попробуем теперь вычислить энергию, переносимую световой волной. Мы высказали соображения в пользу того, что энергия световой волны пропорциональна Е 2 , среднему по времени от квадрата электрического поля волны. Ослабление электрического поля за счет поглощения волны должно приводить к потере энергии, переходящей в какое-то трение электронов и в конечном счете, как нетрудно догадаться, в тепло.

Взяв часть световой волны, падающую на единичную пло­щадку, например на квадратный сантиметр поверхности нашей пластинки на фиг. 31.1, можно записать энергетический баланс в следующей форме (мы предполагаем, что энергия сохраняется!):

Падающая энергия в 1 сек = Выходящая энергия в 1 сек+Работа, совершаемая в1 сек. (31.23)

Вместо первого члена можно написать аЕ2s, где а - коэффициент пропорциональности, связывающий среднее значение Е 2 с энер­гией, переносимой волной. Во втором члене необходимо вклю­чить поле излучения атомов среды, т. е. мы должны записать

а (Еs+E a) 2 или (раскладывая квадрат суммы) a (E2s+2E s E a +-Е2а).

Все наши вычисления проводились в предположении, что

толщина слоя материала мала и показатель преломления его

незначительно отличается от единицы, тогда Е а оказывается много меньше E s (это было сделано с единственной целью - упростить вычисления). В рамках нашего приближения член

Е2а следует опустить, пренебрегая им по сравнению с E s E a . Вы можете на это возразить: «Тогда нужно отбросить и E s E a , потому что этот член много меньше El». Действительно, E s E a

много меньше Е2s, но если мы выбросим этот член, то получим приближение, в котором эффекты среды не учитываются совсем! Правильность наших вычислений в рамках сделанного прибли­жения проверяется тем, что мы всюду оставляли члены, пропор­циональные -NDz (плотности атомов в среде), но выбрасывали члены порядка (NDz) 2 и более высоких степеней по NDz. Наше приближение можно было бы назвать «приближением малой плотности».

Заметим, кстати, что наше уравнение баланса энергии не содержит энергии отраженной волны. Но так и должно быть, потому что амплитуда отраженной волны пропорциональна NDz, а энергия пропорциональна (NDz) 2 .


Чтобы найти последний член в (31.23), нужно вычислить работу, совершаемую падающей волной над электронами за 1 сек. Работа, как известно, равна силе, умноженной на расстоя­ние; отсюда работа в единицу времени (называемая также мощ­ностью) дается произведением силы на скорость. Точнее, она равна F·v, но в нашем случае сила и скорость имеют одинако­вое направление, поэтому произведение векторов сводится к обычному (с точностью до знака). Итак, работа, совершаемая в 1 сек над каждым атомом, равна q e E s v. Поскольку на единичную площадку приходится NDz атомов, последний член в уравнении (31.23) оказывается равным NDzq e E s v. Уравнение баланса энер­гии принимает вид

Члены aE 2 S сокращаются, и мы получаем

Возвращаясь к уравнению (30.19), находим Е а для больших z:

(напомним, что h=NDz). Подставляя (31.26) в левую часть равенства (31.25), получаем


Ho E s (в точке z) равно E s (в точке атома) с запаздыванием на z/c. Поскольку среднее значение не зависит от времени, оно не изменится, если временной аргумент запаздывает на z/c, т. е. оно равно E s (в точке атома)·v, но точно такое же среднее значение стоит и в правой части (31.25). Обе части (31.25) будут равны, если выполняется соотношение

Таким образом, если справедлив закон сохранения энергии, то количество энергии электрической волны, приходящееся на единичную площадку в единицу времени (то, что мы называем интенсивностью), должно быть равно e 0 сЕ 2 . Обозначив интен­сивность через S, получим

где черта означает среднее по времени. Из нашей теории показа­теля преломления получился замечательный результат!

§ 6. Дифракция света на непрозрачном экране

Теперь наступил удобный момент, чтобы применить методы настоящей главы к решению задачи другого рода. В гл. 30 мы говорили, что распределение интенсивности света - дифрак­ционную картину, возникающую при прохождении света через отверстия в непрозрачном экране,- можно найти, равномерно распределив источники (осцилляторы) по площади отверстий. Другими словами, дифрагированная волна выглядит так, как будто источником служит дырка в экране. Мы должны выяснить причину этого явления, ведь на самом деле именно в дырке нет источников, нет никаких зарядов, движущихся с ускорением.

Ответим сначала на вопрос: что такое непрозрачный экран? Пусть между источником S и наблюдателем Р находится совер­шенно непрозрачный экран, как показано на фиг. 31.6, а. Раз экран «непрозрачный», поле в точке Р отсутствует. Почему? Согласно общим принципам, поле в точке Р равно полю E s , взятому с некоторым запаздыванием, плюс поле всех остальных зарядов. Но, как было показано, поле E s приводит заряды экра­на в движение, а они в свою очередь создают новое поле, и, если экран непрозрачный, это поле зарядов должно в точности по­гасить поле E s с задней стенки экрана. Тут вы можете возра­зить: «Каким чудом они в точности погасятся! А что, если по­гашение неполное?» Если бы поля гасились не полностью (на­помним, что экран имеет некоторую толщину), поле в экране вблизи от задней стенки было бы отлично от нуля.



Фиг. 31.6. Дифракция на непрозрачном экране.

Но тогда оно приводило бы в движе­ние другие электроны экра­на, создавая тем самым но­вое поле, стремящееся ском­пенсировать первоначальное поле. Если экран толстый, в нем имеется достаточно много возможностей, чтобы свести остаточное поле к нулю. Пользуясь нашей термино­логией, можно сказать, что непрозрачный экран обладает большим и чисто мнимым показателем преломления и поэтому волна в нем экспоненциально затухает. Вам, наверное, извест­но, что тонкие слои большинства непрозрачных материалов, даже золота, прозрачны.

Посмотрим теперь, какая возникнет картина, если взять такой непрозрачный экран с отверстием, какой изображен на фиг. 31.6, б. Каким будет поле в точке P? Поле в точке Р слагает­ся из двух частей - поля источника S и поля экрана, т. е. поля от движения зарядов в экране. Движение зарядов в экра­не, по-видимому, очень сложное, но создаваемое ими поле на­ходится довольно просто.


Возьмем тот же самый экран, но закроем отверстия крышка­ми, как показано на фиг. 31.6, в. Пусть крышки сделаны из того же материала, что и экран. Заметьте, что крышки поставлены в тех местах, где на фиг. 31.6, б показаны отверстия. Давайте вычислим теперь поле в точке Р. Поле в точке Р в случае, по­казанном на фиг. 31.6, в, разумеется, равно нулю, но, с другой стороны, оно также равно полю источника плюс поле электронов экрана и крышек. Мы можем написать следующее равенство:


Штрихи относятся к случаю, когда отверстия закрыты крышками; значение E s в обоих случаях, конечно, одно и то же. Вычитая одно равенство из другого, получаем

Если отверстия не слишком малы (например, шириной во много длин волн), то присутствие крышек не должно повлиять на поле у экрана, исключая, быть может, узкую область вблизи краев отверстий. Пренебрегая этим малым эффектом, можно написать


E стенки =E" стенки и, следовательно,

Мы приходим к выводу, что поле в точке Р при открытых от­верстиях (случай б) равно (с точностью до знака) полю, созда­ваемому той частью сплошного экрана, которая находится на месте отверстий! (Знак нас не интересует, поскольку обычно имеют дело с интенсивностью, пропорциональной квадрату по­ля.) Этот результат не только справедлив (в приближении не очень малых отверстий), но и важен; кроме всего прочего, он подтверждает справедливость обычной теории дифракции:

Поле E"крышки вычисляется при условии, что движение за­рядов всюду в экране создает именно такое поле, которое гасит поле E s на задней поверхности экрана. Определив движение зарядов, мы складываем поля излучения зарядов в крышках и находим поле в точке Р.

Напомним еще раз, что наша теория дифракции приближен­ная и справедлива в случае не слишком малых отверстий. Если размер отверстий мал, член E"крышки также мал и разность E" стенки -E стенки (которую мы считали равной нулю) может быть сравнима и даже много больше ё" крышки. Поэтому наше прибли­жение оказывается негодным.

* Такая же формула получается и с помощью квантовой механики, однако интерпретация ее в этом случае иная. В квантовой механике даже одноэлектронный атом, например водород, имеет несколько резонансных частот. Поэтому вместо числа электронов N k с частотой w k появляется мно­житель Nf k где N - число атомов в единице объема, а число f k (называе­мое силой осциллятора) указывает, с каким весом входит данная резонансная частота w k .

При решении задач по оптике часто требуется знать показатель преломления стекла, воды или другого вещества. Причем в разных ситуациях могут быть задействованы как абсолютные, так и относительные значения этой величины.

Два вида показателя преломления

Сначала о том, что это число показывает: как изменяет направление распространения света та или иная прозрачная среда. Причем электромагнитная волна может идти из вакуума, и тогда показатель преломления стекла или другого вещества будет называться абсолютным. В большинстве случаев его величина лежит в пределах от 1 до 2. Только в очень редких случаях показатель преломления оказывается больше двух.

Если же перед предметом находится более плотная, чем вакуум, среда, то говорят уже об относительном значении. И рассчитывается он как отношение двух абсолютных величин. Например, относительный показатель преломления вода-стекло будет равен частному абсолютных величин для стекла и воды.

В любом случае она обозначается латинской буквой «эн» - n. Эта величина получается путем деления друг на друга одноименных величин, поэтому является просто коэффициентом, у которого нет наименования.

По какой формуле можно сосчитать показатель преломления?

Если принять угол падения за «альфа», а угол преломления обозначить «бэта», то формула абсолютного значения коэффициента преломления выглядит так: n = sin α/sin β. В англоязычной литературе часто можно встретить другое обозначение. Когда угол падения оказывается i, а преломления — r.

Существует еще другая формула того, как можно вычислить показатель преломления света в стекле и прочих прозрачных средах. Она связана со скоростью света в вакууме и ею же, но уже в рассматриваемом веществе.

Тогда она выглядит так: n = c/νλ. Здесь с — скорость света в вакууме, ν — его скорость в прозрачной среде, а λ — длина волны.

От чего зависит показатель преломления?

Он определяется той скоростью, с которой свет распространяется в рассматриваемой среде. Воздух в этом отношении очень близок к вакууму, поэтому световые волны в нем распространяются практически не отклоняются от своего первоначального направления. Поэтому, если определяется показатель преломления стекло-воздух или какое-либо другое вещество, граничащее с воздухом, то последний условно принимается за вакуум.

Любая другая среда имеет свои собственные характеристики. У них разные плотности, они имеют собственную температуру, а также упругие напряжения. Все это сказывается на результате преломления света веществом.

Не последнюю роль в изменении направления распространения волн играют характеристики света. Белый свет состоит из множества цветов, от красного до фиолетового. Каждая из частей спектра преломляется по-своему. Причем значение показателя для волны красной части спектра всегда будет меньше, чем у остальных. К примеру, показатель преломления стекла марки ТФ-1 изменяется от 1,6421 до 1,67298 соответственно от красной до фиолетовой части спектра.

Примеры значений для разных веществ

Здесь приведены значения абсолютных величин, то есть коэффициент преломления при прохождении луча из вакуума (что приравнивается к воздуху) через другое вещество.

Эти цифры потребуются, если нужно будет определить показатель преломления стекла относительно других сред.

Какие еще величины используются при решении задач?

Полное отражение. Оно наблюдается при переходе света из более плотной среды в менее плотную. Здесь при определенном значении угла падения преломление происходит под прямым углом. То есть луч скользит вдоль границы двух сред.

Предельный угол полного отражения — это его минимальное значение, при котором свет не выходит в менее плотную среду. Меньше него — происходит преломление, а больше — отражение в ту же среду, из которой свет перемещался.

Задача № 1

Условие. Показатель преломления стекла имеет значение 1,52. Необходимо определить предельный угол, на который полностью отражается свет от раздела поверхностей: стекла с воздухом, воды с воздухом, стекла с водой.

Потребуется воспользоваться данными показателем преломления для воды, данным в таблице. Он же для воздуха принимается равным единице.

Решение во всех трех случаях сводится к расчетам по формуле:

sin α 0 /sin β = n 1 /n 2 , где n 2 относится к той среде, из которой распространяется свет, а n 1 куда проникает.

Буквой α 0 обозначен предельный угол. Значение угла β равно 90 градусам. То есть его синус будет единицей.

Для первого случая: sin α 0 = 1 /n стекла, тогда предельный угол оказывается равным арксинусу от 1 /n стекла. 1/1,52 = 0,6579. Угол равен 41,14º.

Во втором случае при определении арксинуса нужно подставить значение показателя преломления воды. Дробь 1 /n воды примет значение1/1,33 = 0, 7519. Это арксинус угла 48,75º.

Третий случай описывается отношением n воды и n стекла. Арксинус потребуется вычислить для дроби: 1,33/1,52, то есть числа 0,875. Находим значение предельного угла по его арксинусу: 61,05º.

Ответ: 41,14º, 48,75º, 61,05º.

Задача № 2

Условие. В сосуд с водой погружена стеклянная призма. Ее показатель преломления равен 1,5. В основе призмы лежит прямоугольный треугольник. Больший катет расположен перпендикулярно дну, а второй — ему параллелен. Луч света падает нормально на верхнюю грань призмы. Каким должен быть наименьший угол между горизонтально расположенным катетом и гипотенузой, чтобы свет достиг катета, расположенного перпендикулярно к дну сосуда, и вышел из призмы?

Для того, чтобы луч вышел из призмы описанным образом, ему необходимо упасть под предельным углом на внутреннюю грань (ту, которая в сечении призмы является гипотенузой треугольника). Этот предельный угол оказывается по построению равным искомому углу прямоугольного треугольника. Из закона преломления света получается, что синус предельного угла, деленный на синус 90 градусов, равен отношению двух показателей преломления: воды к стеклу.

Расчеты приводят к такому значению для предельного угла: 62º30´.

Вещества — величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде . Также о показателе преломления говорят для любых других волн, например, звуковых.

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решётки, а также вещества, подвергнутые механической деформации.

Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды

(надо при этом учитывать, что значения магнитной проницаемости и диэлектрической проницаемости для интересующего диапазона частот — например, оптического, могут очень сильно отличаться от статических значений этих величин).

Для измерения показателя преломления используют ручные и автоматические рефрактометры .

Отношение показателя преломления одной среды к показателю преломления второй называют относительным показателем преломления первой среды по отношению к второй. Для выполняется:

где и — фазовые скорости света в первой и второй средах соответственно. Очевидно, что относительным показателем преломления второй среды по отношению к первой является величина, равная .

Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды, преломляется сильнее, чем при падении на неё из другой среды; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.

К ЛЕКЦИИ №24

«ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА»

РЕФРАКТОМЕТРИЯ.

Литература:

1. В.Д. Пономарёв «Аналитическая химия» 1983год 246-251

2. А.А. Ищенко «Аналитическая химия» 2004 год стр 181-184

РЕФРАКТОМЕТРИЯ.

Рефрактометрия является одним их самых простых физических методов анализа с затратой минимального количества анализируемого вещества и проводится за очень короткое время.

Рефрактометрия - метод, основанный на явлении преломления или рефракции т.е. изменении направления распространения света при переходе из одной среды в другую.

Преломление, так же как и поглощение света, является следствием взаимодействия его со средой. Слово рефрактометрия означает измерение преломления света, которое оценивается по величине показателя преломления.

Величина показателя преломления n зависит

1)от состава веществ и систем,

2) от того, в какой концентрации и какие молекулы встречает световой луч на своем пути, т.к. под действием света молекулы разных веществ поляризуются по-разному. Именно на этой зависимости и основан рефрактометрический метод.

Метод этот обладает целым рядом преимуществ, в результате чего он нашел широкое применение как в химических исследованиях, так и при контроле технологических процессов.

1)Измерение показатели преломления являются весьма простым процессом, который осуществляется точно и при минимальных затратах времени и количества вещества.

2) Обычно рефрактометры обеспечивают точность до 10% при определении показателя преломления света и содержания анализируемого вещества

Метод рефрактометрии применяют для контроля подлинности и чистоты, для идентификации индивидуальных веществ, для определения строения органических и неорганических соединений при изучении растворов. Рефрактометрия находит применение для определения состава двухкомпонентных растворов и для тройных систем.

Физические основы метода

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ.

Отклонение светового луча от первоначального направления при переходе его из одной среды в другую тем больше, чем больше разница в скоростях распространения света в двух



данных средах.

Рассмотрим преломление светового луча на границе каких-либо двух прозрачных сред I и II(См. Рис.). Условимся, что среда II обладает большей преломляющей способностью и, следовательно, n 1 и n 2 - показывает преломление соответствующих сред. Если среда I -это не вакуум и не воздух, то отношение sin угла падения светового луча к sin угла преломления даст величину относительного показателя преломления n отн. Величина n отн. может быть так же определена как отношение показателей преломления рассматриваемых сред.

n отн. = ----- = ---

Величина показателя преломления зависит от

1) природы веществ

Природу вещества в данном случае определяет степень деформируемости его молекул под действием света - степень поляризуемости. Чем интенсивней поляризуемость, тем сильнее преломление света.

2)длины волны падающего света

Измерение показателя преломления проводится при длине волны света 589,3 нм (линия D спектра натрия).

Зависимость показателя преломления от длины световой волны называется дисперсией. Чем меньше длина волны, тем значительнее преломление . Поэтому, лучи разных длин волн преломляются по-разному.

3)температуры , при которой проводится измерение. Обязательным условием определения показателя преломления является соблюдение температурного режима. Обычно определение выполняется при 20±0,3 0 С.

При повышении температуры величина показателя преломления уменьшается, при понижении - увеличивается .

Поправку на влияние температуры рассчитывают по следующей формуле:

n t =n 20 + (20-t) ·0,0002, где

n t – показатель преломления при данной температуре,

n 20 -показатель преломления при 20 0 С

Влияние температуры на значения показателей преломления газов и жидких тел связано с величинами их коэффициентов объемного расширения. Объем всех газов и жидких тел при нагревании увеличивается, плотность уменьшается и,следовательно, уменьшается показатель

Показатель преломления, измеренный при 20 0 С и длине волны света 589,3 нм, обозначается индексом n D 20

Зависимость показателя преломления гомогенной двухкомпонентной системы от ее состояния устанавливается экспериментально, путем определения показателя преломления для ряда стандартных систем(например,растворов), содержание компонентов в которых известно.

4)концентрации вещества в растворе.

Для многих водных растворов веществ показатели преломления при разных концентрациях и температурах надежно измерены, и в этих случаях можно пользоваться справочными рефрактометрическими таблицами . Практика показывает, что при содержании растворенного вещества, не превышающем 10-20%, наряду с графическим методом в очень многих случаях можно пользоваться линейным уравнением типа:

n=n о +FC,

n- показатель преломления раствора,

- показатель преломления чистого растворителя,

C - концентрация растворенного вещества,%

F -эмпирический коэффициент, величина которого найдена

путем определения коэффициентов преломления растворов известной концентрации.

РЕФРАКТОМЕТРЫ.

Рефрактометрами называют приборы, служащие для измерения величины показателя преломления. Существует 2 вида этих приборов: рефрактометр типа Аббе и типа Пульфриха. И в тех и в др. измерения основаны на определении величины предельного угла преломления. На практике применяются рефрактометры различных систем: лабораторный-РЛ, универсальный РЛУ и др.

Показатель преломления дистиллированной воды n 0 =1,33299, практически же этот показатель принимает в качестве отсчетного как n 0 =1,333.

Принцип работы на рефрактометрах основан на определении показателя преломления методом предельного угла (угол полного отражения света).

Ручной рефрактометр

Рефрактометр Аббе

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции