Вконтакте Facebook Twitter Лента RSS

Что может атом. Как устроена атомная оболочка. Модели строения атома

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома - сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент - вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .


Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако - часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия "атомная орбиталь" и "электронное облако" не различают, называя и то, и другое "атомной орбиталью".

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный ("энергетический") уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули - на одной орбитали не может быть больше двух электронов.

3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев ("электронная схема").

Примеры электронного строения атомов:

Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система - графическое выражение периодического закона.

Естественный ряд химических элементов - ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем "разрезания" естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ ("неметалличность"),
  • ослабевают восстановительные свойства простых веществ ("металличность"),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах),
  • усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Задачи и тесты по теме "Тема 9. "Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)"."

  • Периодический закон - Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n - номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p - и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Атом (от греч. «неделимый») - некогда мельчайшая частица вещества микроскопических размеров, наименьшая часть химического элемента, которая носит его свойства. Составляющие атома - протоны, нейтроны, электроны - этих свойств уже не имеют и образуют их в совокупности. Ковалентные атомы образуют молекулы. Ученые изучают особенности атома, и хотя они уже довольно неплохо изучены, не упускают возможности найти что-то новое - в частности, в области создания новых материалов и новых атомов (продолжающих таблицу Менделеева). 99,9% массы атома приходится на ядро.

Ученые из Университета Рэдбуда обнаружили новый механизм магнитного хранения информации в мельчайшей единице вещества: одном атоме. Несмотря на то, что доказательство принципа было продемонстрировано при очень низких температурах, этот механизм обещает функционировать и при комнатной температуре. Таким образом, можно будет хранить в тысячи раз больше информации, чем сейчас на жестких дисках. Результаты работы были опубликованы в Nature Communications.

АТОМ [французский atome, от латинского atomus, от греческого?τομος (ουσ?α) - неделимая (сущность)], частица вещества, наименьшая часть химического элемента, являющаяся носителем его свойств. Атомы каждого элемента индивидуальны по строению и свойствам и обозначаются химическими символами элементов (например, атом водорода - Н, железа - Fe, ртути - Hg, урана - U и т. д.). Атомы могут существовать как в свободном состоянии, так и в связанном (смотри Химическая связь). Всё многообразие веществ обусловлено различными сочетаниями атомов между собой. Свойства газообразных, жидких и твёрдых веществ зависят от свойств составляющих их атомов. Все физические и химические свойства атома определяются его строением и подчиняются квантовым законам. (Об истории развития учения об атоме смотри в статье Атомная физика.)

Общая характеристика строения атомов . Атом состоит из тяжёлого ядра, обладающего положительным электрическим зарядом, и окружающих его лёгких электронов с отрицательными электрическими зарядами, образующих электронные оболочки атома. Размеры атома определяются размерами его внешней электронной оболочки и велики по сравнению с размерами ядра атома. Характерные порядки диаметров, площадей поперечного сечения и объёмов атома и ядра составляют:

Атом 10 -8 см 10 -16 см 2 10 -24 см 3

Ядро 10 -12 см 10 -24 см 2 10 -36 см 3

Электронные оболочки атома не имеют строго определённых границ, и значения размеров атома в большей или меньшей степени зависят от способов их определения.

Заряд ядра - основная характеристика атома, обусловливающая его принадлежность определённому элементу. Заряд ядра всегда является целым, кратным положительному элементарному электрическому заряду, равному по абсолютному значению заряду электрона -е. Заряд ядра равен +Ze, где Z - порядковый номер (атомный номер). Z= 1, 2, 3,... для атомов последовательных элементов в периодической системе химических элементов, то есть для атомов Н, Не, Li, .... В нейтральном атоме ядро с зарядом +Ze удерживает Z электронов с общим зарядом -Ze. Атом может потерять или присоединить к электронов и стать положительным или отрицательным ионом (к = 1, 2, 3, ... - кратность его ионизации). К атому определённого элемента часто относят и его ионы. При написании ионы отличают от нейтрального атома индексом к + и к - ; например, О - нейтральный атом кислорода, О + , О 2+ , О 3+ , ..., О 8+ , О - , О 2- - его положительные и отрицательные ионы. Совокупность нейтрального атома и ионов других элементов с тем же числом электронов образует изоэлектронный ряд, например ряд водородоподобных атомов Н, Не + , Li 2+ , Ве 3+ ,... .

Кратность заряда ядра атома элементарному заряду е получила объяснение на основании представлений о строении ядра: Z равно числу протонов в ядре, заряд протона равен +е. Масса атома возрастает с увеличением Z. Масса ядра атома приближённо пропорциональна массовому числу А - общему числу протонов и нейтронов в ядре. Масса электрона (0,91 · 10 -27 г) значительно меньше (примерно в 1840 раз) массы протона или нейтрона (1,67?10 -24 г), поэтому масса атома в основном определяется массой его ядра.

Атомы данного элемента могут отличаться массой ядра (число протонов Z постоянно, число нейтронов А-Z может меняться); такие разновидности атомов одного и того же элемента называются изотопами. Различие массы ядра почти не сказывается на строении электронных оболочек данного атома, зависящем от Z, и свойствах атома. Наибольшие отличия в свойствах (изотопные эффекты) получаются для изотопов водорода (Z = 1) из-за большой разницы в массах обычного лёгкого атома водорода (А = 1), дейтерия (А = 2) и трития (А= 3).

Масса атома изменяется от 1,67 ?10 -24 г (для основного изотопа атом водорода, Z=1, А=1) до примерно 4?10 -22 г (для атомов трансурановых элементов). Наиболее точные значения масс атомов могут быть определены методами масс-спектроскопии. Масса атома не равна в точности сумме массы ядра и масс электронов, а несколько меньше - на дефект массы ΔM = W/c 2 , где W - энергия образования атома из ядра и электронов (энергия связи), с - скорость света. Эта поправка порядка массы электрона m e для тяжёлых атомов, а для лёгких пренебрежимо мала (порядка 10 -4 m e).

Энергия атома и её квантование . Благодаря малым размерам и большой массе атомное ядро можно приближённо считать точечным и покоящимся в центре масс атома (общий центр масс ядра и электронов находится вблизи ядра, а скорость движения ядра относительно центра масс атома мала по сравнению со скоростями движения электронов). Соответственно атом можно рассматривать как систему, в которой N электронов с зарядами — е движутся вокруг неподвижного притягивающего центра. Движение электронов в атоме происходит в ограниченном объёме, то есть является связанным. Полная внутренняя энергия атома Е равна сумме кинетических энергий Т всех электронов и потенциальной энергии U - энергии притяжения их ядром и отталкивания друг от друга.

Согласно теории атома, предложенной в 1913 году Нильсом Бором, в атоме водорода один электрон с зарядом -е движется вокруг неподвижного центра с зарядом +е. В соответствии с классической механикой кинетическая энергия такого электрона равна

где v - скорость, p = m e v - количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии кулоновского притяжения электрона ядром) равна

и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой, неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U(r) при r→∞ принято за нуль. При отрицательных значениях полной энергии Е = Т + U < 0 движение электрона является связанным: оно ограничено в пространстве значениями r=r мaкc . При положительных значениях полной энергии Е = Т + U > 0 движение электрона является свободным - он может уйти на бесконечность с энергией Е = Т = (1/2)m е v 2 , что соответствует ионизованному атому водорода Н + . Таким образом, нейтральный атом водорода - система электростатически связанных ядра и электрона с энергией Е< 0.

Полная внутренняя энергия атома Е - его основная характеристика как квантовой системы (смотри Квантовая механика). Атом может длительно находиться лишь в состояниях с определённой энергией - стационарных (неизменных во времени) состояниях. Внутренняя энергия квантовой системы, состоящей из связанных микрочастиц (в том числе атома), может принимать одно из дискретного (прерывного) ряда значений

Каждому из этих «дозволенных» значений энергии соответствует одно или несколько стационарных квантовых состояний. Промежуточными значениями энергии (например, лежащими между Е 1 и Е 2 , Е 2 и Е 3 , и т.д.) система обладать не может, о такой системе говорят, что её энергия квантована. Любое изменение Е связано с квантовым (скачкообразным) переходом системы из одного стационарного квантового состояния в другое (смотри ниже).

Возможные дискретные значения (3) энергии атома графически можно изобразить по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии, где каждому значению энергии соответствует прямая, проведённая на высоте E i , i= 1, 2, 3, ... (рис. 1). Самый нижний уровень E 1 , соответствующий наименьшей возможной энергии атома, называется основным, а все остальные (E i >E 1), i = 2, 3, 4, ...) — возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные возбуждённые состояния из основного) необходимо возбудить систему - сообщить ей извне энергию E i -E 1 .

Квантование энергии атома является следствием волновых свойств электронов. Согласно принципу корпускулярно-волнового дуализма, движению микрочастицы массы m со скоростью v соответствует длина волны λ = h/mv, где h - постоянная Планка. Для электрона в атоме λ порядка 10 -8 см, то есть порядка линейных размеров атома, и учёт волновых свойств электрона в атоме является необходимым. Связанное движение электрона в атоме схоже со стоячей волной, и его следует рассматривать не как движение материальной точки по траектории, а как сложный волновой процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны λ (и, следовательно, частоты колебаний v). Согласно квантовой механике, энергия атома Е связана с v соотношением Е = hν и поэтому может принимать лишь определённые значения. Свободное, не ограниченное в пространстве поступательное движение микрочастицы, например движение электрона, оторванного от атома (с энергией Е> 0), сходно с распространением бегущей волны в неограниченном объёме, для которой возможны любые значения λ (и v). Энергия такой свободной микрочастицы может принимать любые значения (не квантуется, имеет непрерывный энергетический спектр). Такая непрерывная последовательность соответствует ионизованному атому. Значение Е ∞ = 0 соответствует границе ионизации; разность Е ∞ —Е 1 = Е ион называется энергией ионизации (смотри в статье Ионизационный потенциал); для атома водорода она равна 13,6 эВ.

Распределение электронной плотности . Точное положение электрона в атоме в данный момент времени установить нельзя вследствие неопределенностей соотношения. Состояние электрона в атоме определяется его волновой функцией, определённым образом зависящей от его координат; квадрат модуля волновой функции характеризует плотность вероятности нахождения электрона в данной точке пространства. Волновая функция в явном виде является решением Шрёдингера уравнения.

Таким образом, состояние электрона в атоме можно характеризовать распределением в пространстве его электрического заряда с некоторой плотностью - распределением электронной плотности. Электроны как бы «размазаны» в пространстве и образуют «электронное облако». Такая модель правильнее характеризует электроны в атоме, чем модель точечного электрона, движущегося по строго определённым орбитам (в теории атома Бора). Вместе с тем каждой такой боровской орбите можно сопоставить конкретное распределение электронной плотности. Для основного уровня энергии E 1 электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии Е 2 , Е 3 , Е 4 ... она распределяется на всё больших средних расстояниях от ядра. В многоэлектронном атоме электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов с ядром во внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами.

Учёт спина электрона и спина ядра . В теории атома весьма существен учёт спина электрона - его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан сто собственный (спиновый) магнитный момент. Поэтому в атоме необходимо учитывать, наряду с электростатическими взаимодействиями, и магнитные взаимодействия, определяемые спиновым магнитным моментом и орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенно влияние спина в многоэлектронных атомах: от спина электронов зависит заполнение электронных оболочек атома определённым числом электронов.

Ядро в атоме также может обладать собственным механическим моментом - ядерным спином, с которым связан ядерный магнитный момент в сотни и тысячи раз меньший электронного. Существование спинов приводит к дополнительным, очень малым взаимодействиям ядра и электронов (смотри ниже).

Квантовые состояния атома водорода . Важнейшую роль в квантовой теории атома играет теория простейшего одноэлектронного атома, состоящего из ядра с зарядом +Ze и электрона с зарядом -е, то есть теория атома водорода Н и водородоподобных ионов Не + , Li 2+ , Ве 3+ ,..., называемая обычно теорией атома водорода. Методами квантовой механики можно получить точную и полную характеристику состояний электрона в одноэлектронном атоме. Задача о многоэлектронном атоме решается лишь приближённо; при этом исходят из результатов решения задачи об одноэлектронном атоме.

Энергия одноэлектронного атома в нерелятивистском приближении (без учёта спина электрона) равна

целое число n = 1, 2, 3, ... определяет возможные дискретные значения энергии - уровни энергии - и называется главным квантовым числом, R - постоянная Ридберга, равная 13,6 эВ. Уровни энергии атома сходятся (сгущаются) к границе ионизации Е ∞ = 0, соответствующей n =∞. Для водородоподобных ионов изменяется (в Z 2 раз) лишь масштаб значений энергий. Энергия ионизации водородоподобного атома (энергия связи электрона) равна (в эВ)

что даёт для Н, Не + , Li 2+ , ... значения 13,6эВ, 54,4 эВ, 122,4 эВ, ... .

Основная формула (4) соответствует выражению U(r) = -Ze 2 /r для потенциальной энергии электрона в электрическом поле ядра с зарядом +Ze. Эта формула была впервые выведена Н. Бором путём рассмотрения движения электрона вокруг ядра по круговой орбите радиуса r и является точным решением уравнения Шрёдингера для такой системы. Уровням энергии (4) соответствуют орбиты радиуса

где постоянная а 0 = 0,529·10 -8 см = = 0,529 А - радиус первой круговой орбиты атома водорода, соответствующей его основному уровню (этим боровским радиусом часто пользуются в качестве удобной единицы для измерений длин в атомной физике). Радиус орбит пропорционален квадрату главного квантового числа n 2 и обратно пропорционален Z; для водородоподобных ионов масштаб линейных размеров уменьшается в Z раз по сравнению с атомом водорода. Релятивистское описание атома водорода с учётом спина электрона даётся Дирака уравнением.

Согласно квантовой механике, состояние атома водорода полностью определяется дискретными значениями четырёх физических величин: энергии Е; орбитального момента М l (момента количества движения электрона относительно ядра); проекции М lz орбитального момента на произвольно выбранное направление z; проекции M sz спинового момента (собственного момента количества движения электрона M s). Возможные значения этих физических величин, в свою очередь, определяются квантовыми числами n, l, m l , m s соответственно. В приближении, когда энергия атома водорода описывается формулой (4), она определяется только главным квантовым числом n, принимающим целочисленные значения 1, 2, 3, ... . Уровню энергии с заданным n соответствует несколько состояний, различающихся значениями орбитального (азимутального) квантового числа l = 0, 1, ..., n-1. Состояния с заданными значениями n и l принято обозначать как 1s, 2s, 2р, 3s, ..., где цифры указывают значение n, а буквы s, р, d, f (дальше по латинскому алфавиту) - соответственно значения l = 0, 1, 2, 3. При заданных n и l число различных состояний равно 2(2l + 1) - числу комбинаций значений магнитного орбитального квантового числа m l магнитного спинового числа m s (первое принимает 2l + 1 значений, второе - 2 значения). Общее число различных состояний с заданными n и l получается равным 2n 2 . Таким образом, каждому уровню энергии атома водорода соответствует 2,8, 18,…2n 2 (при n= 1, 2, 3, ...) различных стационарных квантовых состояний. Если уровню энергии соответствует лишь одно квантовое состояние, то его называют невырожденным, если два или более - вырожденным (смотри Вырождение в квантовой теории), а число таких состояний g называется степенью или кратностью вырождения (для невырожденных уровней энергии g=1). Уровни энергии атома водорода являются вырожденными, а их степень вырождения g n = 2n 2 .

Для различных состояний атома водорода получается и разное распределение электронной плотности. Оно зависит от квантовых чисел n, l и При этом электронная плотность для s-состояний (l=0) отлична от нуля в центре, т. е. в месте нахождения ядра, и не зависит от направления (сферически симметрична), а для остальных состояний (l>0) она равна нулю в центре и зависит от направления. Распределение электронной плотности для состояний атома водорода с n = 1, 2, 3 показано на рисунке 2; размеры «электронного облака» растут в соответствии с формулой (6) пропорционально n2 (масштаб на рисунке 2 уменьшается при переходе от n = 1 к n = 2 и от n = 2 к n = 3). Квантовые состояния электрона в водородоподобных ионах характеризуются теми же четырьмя квантовыми числами n, l, m l и m s , что и в атоме водорода. Сохраняется и распределение электронной плотности, только она увеличивается в Z раз.

Действие на атом внешних полей . Атом как электрическая система во внешнем электрическом и магнитном полях приобретает дополнительную энергию. Электрическое поле поляризует атом - смещает электронные облака относительно ядра (смотри Поляризуемость атомов, ионов и молекул), а магнитное поле ориентирует определённым образом магнитный момент атома, связанный с движением электрона вокруг ядра (с орбитальным моментом M l) и его спином. Различным состояниям атома водорода с той же энергией Е n во внешнем поле соответствуют разные значения дополнительной энергии ΔЕ, и вырожденный уровень энергии E n расщепляется на ряд подуровней. Как расщепление уровней энергии в электрическом поле - Штapкa эффект, - так и их расщепление в магнитном поле - Зеемана эффект - пропорциональны напряжённостям соответствующих полей.

К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри атома. Для атома водорода и водородоподобных ионов имеет место спин-орбитальное взаимодействие - взаимодействие спинового и орбитального моментов электрона; оно обусловливает так называемую тонкую структуру уровней энергии — расщепление возбуждённых уровней E n (при n>1) на подуровни. Для всех уровней энергии атома водорода наблюдается и сверхтонкая структура, обусловленная очень малыми магнитными взаимодействиями ядерного спина с электронными моментами.

Электронные оболочки многоэлектронных атомов . Теория атома, содержащих 2 или более электронов, принципиально отличается от теории атома водорода, так как в таком атоме имеются взаимодействующие друг с другом одинаковые частицы - электроны. Взаимное отталкивание электронов в многоэлектронном атоме существенно уменьшает прочность их связи с ядром. Например, энергия отрыва единственного электрона в ионе гелия (Не +) равна 54,4 эВ, в нейтральном же атоме гелия в результате отталкивания электронов энергия отрыва одного из них уменьшается до 24,6 эВ. Для внешних электронов более тяжёлых атомов уменьшение прочности их связи из-за отталкивания внутренними электронами ещё более значительно. Важную роль в многоэлектронных атомах играют свойства электронов как одинаковых микрочастиц (смотри Тождественности принцип), обладающих спином s = 1/2, для которых справедлив Паули принцип. Согласно этому принципу, в системе электронов не может быть более одного электрона в каждом квантовом состоянии, что приводит к образованию электронных оболочек атома, заполняющихся строго определёнными числами электронов.

Учитывая неразличимость взаимодействующих между собой электронов, имеет смысл говорить только о квантовых состояниях атома в целом. Однако приближённо можно рассматривать квантовые состояния отдельных электронов и характеризовать каждый из них совокупностью квантовых чисел n, l, m l и m s , аналогично электрону в атоме водорода. При этом энергия электрона оказывается зависящей не только от n, как в атоме водорода, но и от l; от m l и m s она по-прежнему не зависит. Электроны с данными n и l в многоэлектронном атоме имеют одинаковую энергию и образуют определённую электронную оболочку. Такие эквивалентные электроны и образованные ими оболочки обозначают, как и квантовые состояния и уровни энергии с заданными n и l, символами ns, nр, nd, nf, ... (для 1 = 0, 1, 2,3,...) и говорят о 2р-электронах, 3s-о6олочках и т.п.

Согласно принципу Паули, любые 2 электрона в атоме должны находиться в различных квантовых состояниях и, следовательно, отличаться хотя бы одним из четырёх квантовых чисел n, l, m l и m s , а для эквивалентных электронов (n и l одинаковы) - значениями m l и m s . Число пар m l , m s , т. е. число различных квантовых состояний электрона с заданными n и l, и есть степень вырождения его уровня энергии g l = 2 (2l+1) = 2, 6, 10, 14, ... . Оно определяет число электронов в полностью заполненных электронных оболочках. Таким образом, s-, р-, d-, f-, ... оболочки заполняются 2, 6, 10, 14, ... электронами, независимо от значения n. Электроны с данным n образуют слой, состоящий из оболочек с l = 0, 1, 2, ..., n - 1 и заполняемый 2n 2 электронами, так называемый К- , L-, М, N-слой. При полном заполнении имеем:

В каждом слое оболочки с меньшими l характеризуются большей электронной плотностью. Прочность связи электрона с ядром уменьшается с увеличением n, а при заданном n — с увеличением l. Чем слабее связан электрон в соответствующей оболочке, тем выше лежит его уровень энергии. Ядро с заданным Z присоединяет электроны в порядке уменьшения прочности их связи: сначала два электрона 1s, затем два электрона 2s, шесть электронов 2р и т. д. Атому каждого химического элемента присуще определённое распределение электронов по оболочкам - его электронная конфигурация, например:

(число электронов в данной оболочке указывается индексом справа сверху). Периодичность в свойствах элементов определяется сходством внешних электронных оболочек атома. Например, нейтральные атомы Р, As, Sb, Bi (Z = 15, 33, 51, 83) имеют по три р-электрона во внешней электронной оболочке, подобно атому N, и схожи с ним по химическим и многим физическим свойствам.

Каждый атом характеризуется нормальной электронной конфигурацией, получающейся, когда все электроны в атоме связываются наиболее прочно, и возбуждёнными электронными конфигурациями, когда один или несколько электронов связаны более слабо - находятся на более высоких уровнях энергии. Например, для атома гелия наряду с нормальной 1s2 возможны возбуждённые электронные конфигурации: 1s2s, 1s2р, ... (возбуждён один электрон), 2s 2 , 2s2р, ... (возбуждены оба электрона). Определённой электронной конфигурации соответствует один уровень энергии атома в целом, если электронные оболочки целиком заполнены (например, нормальная конфигурация атома Ne 1s 2 2s 2 2р 6), и ряд уровней энергии, если имеются частично заполненные оболочки (например, нормальная конфигурация атома азота 1s 2 2s 2 2р 3 для которой оболочка 2р заполнена наполовину). При наличии частично заполненных d- и f-оболочек число уровней энергии, соответствующих каждой конфигурации, может достигать многих сотен, так что схема уровней энергии атома с частично заполненными оболочками получается очень сложной. Основным уровнем энергии атома является самый нижний уровень нормальной электронной конфигурации.

Квантовые переходы в атоме . При квантовых переходах атом переходит из одного стационарного состояния в другое - с одного уровня энергии на другой. При переходе с более высокого уровня энергии E i на более низкий Е к атом отдаёт энергию E i - E k , при обратном переходе получает её. Как для любой квантовой системы, для атома квантовые переходы могут быть двух типов: с излучением (оптические переходы) и без излучения (безызлучательные, или неоптические, переходы). Важнейшая характеристика квантового перехода - его вероятность, определяющая, как часто этот переход может происходить.

При квантовых переходах с излучением атом поглощает (переход Е к → E i) или испускает (переход E i →Е к) электромагнитное излучение. Электромагнитная энергия поглощается и испускается атомом в виде кванта света - фотона, - характеризуемого определённой частотой колебаний v, согласно соотношению:

где hv - энергия фотона. Соотношение (7) представляет собой закон сохранения энергии для микроскопических процессов, связанных с излучением.

Атом в основном состоянии может только поглощать фотоны, а в возбуждённых состояниях может, как поглощать, так и испускать их. Свободный атом в основном состоянии может существовать неограниченно долго. Продолжительность пребывания атома в возбуждённом состоянии (время жизни этого состояния) ограничена, атом спонтанно (самопроизвольно), частично или полностью теряет энергию возбуждения, испуская фотон и переходя на более низкий уровень энергии; наряду с таким спонтанным испусканием возможно и вынужденное испускание, происходящее, подобно поглощению, под действием фотонов той же частоты. Время жизни возбуждённого атома тем меньше, чем больше вероятность спонтанного перехода, для атома водорода оно порядка 10 -8 с.

Совокупность частот v возможных переходов с излучением определяет атомный спектр соответствующего атома: совокупность частот переходов с нижних уровней на верхние - его спектр поглощения, совокупность частот переходов с верхних уровней на нижние - спектр испускания. Каждому такому переходу в атомном спектре соответствует определённая спектральная линия частоты v.

При безызлучательных квантовых переходах атом получает или отдаёт энергию при взаимодействии с другими частицами, с которыми он сталкивается в газе или длительно связан в молекуле, жидкости или твёрдом теле. В газе атом можно считать свободным в промежутках времени между столкновениями; во время столкновения (удара) атом может перейти на более низкий или высокий уровень энергии. Такое столкновение называется неупругим (в противоположность упругому столкновению, при котором изменяется только кинетическая энергия поступательного движения атома, а его внутренняя энергия остаётся неизменной). Важный частный случай - столкновение свободного атома с электроном; обычно электрон движется быстрее атома, время столкновения очень мало и можно говорить об электронном ударе. Возбуждение атома электронным ударом является одним из методов определения его уровней энергии.

Химические и физические свойства атома . Большинство свойств атома определяется строением и характеристиками его внешних электронных оболочек, в которых электроны связаны с ядром сравнительно слабо (энергии связи от нескольких эВ до нескольких десятков эВ). Строение внутренних оболочек атома, электроны которых связаны гораздо прочнее (энергии связи в сотни, тысячи и десятки тысяч эВ), проявляется лишь при взаимодействиях атома с быстрыми частицами и фотонами больших энергий (более сотен эВ). Такие взаимодействия определяют рентгеновские спектры атома и рассеяние быстрых частиц (смотри Дифракция частиц). От массы атома зависят его механические свойства при движении атома как целого - количество движения, кинетическая энергия. От механических и связанных с ними магнитных и электрических моментов атома зависят различные резонансные и другие физические свойства атома (смотри Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс).

Электроны внешних оболочек атома легко подвергаются внешним воздействиям. При сближении атомов возникают сильные электростатические взаимодействия, которые могут приводить к образованию химической связи. Более слабые электростатические взаимодействия двух атомов проявляются в их взаимной поляризации - смещении электронов относительно ядер, наиболее сильном для слабо связанных внешних электронов. Возникают поляризационные силы притяжения между атомами, которые надо учитывать уже на больших расстояниях между ними. Поляризация атома происходит и во внешних электрических полях; в результате уровни энергии атома смещаются и, что особенно важно, вырожденные уровни энергии расщепляются (эффект Штарка). Поляризация атома может возникнуть под действием электрического поля световой (электромагнитной) волны; она зависит от частоты света, что обусловливает зависимость от неё и показателя преломления (смотри Дисперсия света), связанного с поляризуемостью атома. Тесная связь оптических характеристик атома с его электрическими свойствами особенно ярко проявляется в его оптических спектрах.

Магнитные свойства атомов определяются в основном строением их электронных оболочек. Магнитный момент атома зависит от его механического момента (смотри Магнитомеханическое отношение), в атоме с полностью заполненными электронными оболочками он равен нулю, так же, как и механический момент. Атомы с частично заполненными внешними электронными оболочками обладают, как правило, отличными от нуля магнитными моментами и являются парамагнитными. Во внешнем магнитном поле все уровни атомов, у которых магнитный момент не равен нулю, расщепляются - имеет место эффект Зеемана. Все атомы обладают диамагнетизмом, который обусловлен возникновением у них магнитного момента под действием внешнего магнитного поля (так называемого индуцированного магнитного момента, аналогичного электрическому дипольному моменту атома).

При последовательной ионизации атома, то есть при отрыве его электронов, начиная с самых внешних в порядке увеличения прочности их связи, соответственно изменяются все свойства атома, определяемые его внешней оболочкой. Внешними становятся всё более прочно связанные электроны; в результате сильно уменьшается способность атома поляризоваться в электрическом поле, увеличиваются расстояния между уровнями энергии и частоты оптических переходов между этими уровнями (что приводит к смещению спектров в сторону всё более коротких длин волн). Ряд свойств обнаруживает периодичность: сходными оказываются свойства ионов с аналогичными внешними электронами; например, N 3+ (два электрона 2s) обнаруживают сходство с N 5+ (два электрона 1s). Это относится к характеристикам и относительному расположению уровней энергии и к оптическим спектрам, к магнитным моментам атома и так далее. Наиболее резкое изменение свойств происходит при удалении последнего электрона из внешней оболочки, когда остаются лишь полностью заполненные оболочки, например при переходе от N 4+ к N 5+ (электронные конфигурации 1s 2 2s и 1s 2). В этом случае ион наиболее устойчив и его полный механический и полный магнитный моменты равны нулю.

Свойства атома, находящегося в связанном состоянии (например, входящего в состав молекулы), отличаются от свойств свободного атома. Наибольшие изменения претерпевают свойства атома, определяемые самыми внешними электронами, принимающими участие в присоединении данного атома к другому. Вместе с тем свойства, определяемые электронами внутренних оболочек, могут практически не измениться, как это имеет место для рентгеновских спектров. Некоторые свойства атома могут испытывать сравнительно небольшие изменения, по которым можно получить информацию о характере взаимодействий связанных атомов. Важным примером может служить расщепление уровней энергии атома в кристаллах и комплексных соединениях, которое происходит под действием электрических полей, создаваемых окружающими ионами.

Экспериментальные методы исследования структуры атома, его уровней энергии, его взаимодействий с другими атомами, элементарными частицами, молекулами, внешними полями и так далее разнообразны, однако основная информация содержится в его спектрах. Методы атомной спектроскопии во всех диапазонах длин волн, и в особенности методы современной лазерной спектроскопии, позволяют изучать всё более тонкие эффекты, связанные с атомом. С начала 19 века существование атома для учёных было очевидным, однако эксперимент по доказательству реальности его существования был поставлен Ж. Перреном в начале 20 века. С развитием микроскопии появилась возможность получать изображения атомов на поверхности твёрдых тел. Впервые атом увидел Э. Мюллер (США, 1955) с помощью изобретённого им автоионного микроскопа. Современные атомно-силовые и туннельные микроскопы позволяют получать изображения поверхностей твёрдых тел с хорошим разрешением на атомном уровне (смотри рисунок 3).

Рис. 3. Изображение атомной структуры поверхности кремния, полученное профессором Оксфордского университета М. Капстеллом с помощью сканирующего туннельного микроскопа.

Существуют и широко используются в различных исследованиях так называемые экзотические атомы, например мюонные атомы, т. е. атомы, в которых все или часть электронов заменены отрицательными мюонами, мюоний, позитроний, а также адронные атомы, состоящие из заряженных пионов, каонов, протонов, дейтронов и др. Осуществлены также первые наблюдения атома антиводорода (2002) - атома, состоящего из позитрона и антипротона.

Лит.: Борн М. Атомная физика. 3-е изд. М., 1970; Фано У., Фано Л. Физика атомов и молекул. М., 1980; Шпольский Э. В. Атомная физика. 7-е изд. М., 1984. Т. 1-2; Ельяшевич М. А. Атомная и молекулярная спектроскопия. 2-е изд. М., 2000.

А́том (от др.-греч. ἄτομος - неделимый) - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро , несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N - определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы .

Свойства атома

По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием - наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны.

Масса

Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.), которая также называется дальтоном (Да). Эта единица определяется как 1⁄12 часть массы покоя нейтрального атома углерода-12, которая приблизительно равна 1,66·10−24 г. Водород-1 - наилегчайший изотоп водорода и атом с наименьшей массой, имеет атомный вес около 1,007825 а. е. м. Масса атома приблизительно равна произведению массового числа на атомную единицу массы Самый тяжёлый стабильный изотоп - свинец-208 с массой 207,9766521 а. е. м.

Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов (примерно 6,022·1023). Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г.

Размер

Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом - это атом гелия, имеющий радиус 32 пм, а самый большой - атом цезия (225 пм). Эти размеры в тысячи раз меньше длины волны видимого света (400-700 нм), поэтому атомы нельзя увидеть в оптический микроскоп. Однако отдельные атомы можно наблюдать с помощью сканирующего туннельного микроскопа.

Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. Одна капля воды содержит 2 секстиллиона (2·1021) атомов кислорода, и в два раза больше атомов водорода. Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода. Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока.

Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра.

ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции