Вконтакте Facebook Twitter Лента RSS

Свойства числовых последовательностей. Числовые последовательности

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Бесконечной числовой последовательностью называется числовая функция, определенная на множестве всех натуральных чисел. Общий вид: а 1 ; а 2 ; а 3 ; … а n ; … (или (а n)).

Способы задания последовательностей:

1. Последовательность может быть задана при помощи формулы, указывающей, как по номеру n члена последовательности вычислить его значение а.

Последовательность, у которой все члены принимают равные между собой значения, называется постоянной последовательностью.

2. Реккурентный (индуктивный) способ: он состоит в том, что указывается правило (обычно это формула), позволяющая вычислить общий член последовательности через предыдущие, и задается несколько начальных членов последовательности. Эта формула называется реккурентным соотношением.

3. Последовательность может быть задана словесно, т.е. описанием ее членов.

При изучении последовательностей удобно использовать их геометрическое изображение. Для этого используют в основном 2 способа:

1. Т.к. последовательность (а n) есть функция, заданная на N, то ее можно изобразить как график этой функции с координатами точек (n; а n).

2. Члены последовательности (а n) можно изобразить точками х=а n .

Ограниченные и неограниченные последовательности.

Последовательность (а n) называется ограниченной, если существуют числа M и m, такие, что имеет место неравенство m≤a n ≤M. В противном случае она называется неограниченной.

Существует 3 вида неограниченных последовательностей:

1. Для нее существует m и не существует M – в таком случае она ограниченная снизу и неограниченная сверху.

2. Для нее не существует m и существует M – в таком случае она неограниченная снизу и ограниченная сверху.

3. Для нее не существует ни m, ни М – в таком случае она не ограниченная ни снизу, ни сверху.

Монотонные последовательности.

К монотонным последовательностям относятся убывающие, строго убывающие, возрастающие, строго возрастающие последовательности.

Последовательность (а n) называется убывающей, если каждый предыдущий член не меньше последующего: а n +1 ≤a n .



Последовательность (а n) называется строго убывающей, если каждый предыдущий член строго больше последующего: а n >a 2 >a 3 >…>a n +1 >…

Последовательность (а n) называется возрастающей, если каждый последующий член не меньше предыдущего: а n ≤a n +1 .

Последовательность называется строго возрастающей, если каждый последующий член строго больше предыдущего: а 1

Предел числовой последовательности. Основные теоремы о пределах.

Число а называется пределом последовательности (а n), если для каждого положительного числа ε найдется такое натуральное число N, что для любого n>N выполняется неравенство:

|a n – a| < ε.

В этом случае пишут: lim a n = a , или a n ->a при n->∞.

Последовательность, имеющая предел, называется сходящейся, а не имеющая предела – расходящейся.

Если последовательность имеет предел, то она ограниченная.

Всякая сходящаяся последовательность имеет только один предел.

Последовательность называется бесконечно малой, если ее предел равен нулю.

Для того, чтобы число а было пределом последовательности (а n), необходимо и достаточно, чтобы а n имело представление а n =а+α n , где (α n) - бесконечно малая последовательность.

Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

Теоремы о пределах:

1. О пределе суммы: Если последовательность (а n) и (в n) сходятся, то последовательность (а n + в n) также сходится и: lim (а n + в n) = lim а n + lim в n .

n ->∞ n ->∞ n ->∞

2. О пределе произведения: Если последовательности (а n) и (в n) сходятся, то последовательность (а n ∙ в n) также сходится и:

lim (а n ∙ в n) = lim а n ∙ lim в n .

n ->∞ n ->∞ n ->∞

Следствие 1: Постоянный множитель можно выносить за знак предела:

lim (са n) = с ∙ lim а n

n ->∞ n ->∞

3. Если последовательности (а n) и (в n) сходятся, то последовательность (а n /в n) также сходится и: lim (а n / в n) = (lim а n)/ (lim в n).

n ->∞ n ->∞ n ->∞

Функция. Способы задания функции.

Если каждому элементу х по какому-либо правилу f поставлен в соответствие элемент у, единственный для каждого х, то говорят, что на множестве А задана функция f со значением из множества В, и пишут: f:А->В, или у=f (х).

Пусть задана функция у=f (х). Тогда х назыв. аргументом или независимой переменной, а у – значением функции или зависимой переменной.

Множество А называют областью определения функции, а множество всех у, поставленных в соответствие хотя бы одному х – множеством значений функции. Область определения функции называют также областью значений аргумента, или областью изменения независимой переменной..

Способы задания функции:

1. Табличный способ.

2. Аналитический способ: при таком способе указывается область определения функции (множество А), и формулируется закон (задается формула), по которому каждому х сопоставляется соответствующий у.

3. Способ словесного описания.

4. Геометрический (графический) способ: задать функцию графически – значит изобразить ее график.

Урок № 32 Дата ____________

Алгебра

Класс: 9 «Б»

Тема: « Числовая последовательность и способы её задания».

Цель урока: учащиеся должны знать, что такое числовая последовательность; способы задания числовой последовательности; уметь различать различные способы задания числовых последовательностей.

Дидактические материалы: раздаточный материал, опорные конспекты.

Технические средства обучения: презентация по теме «Числовые последовательности».

Ход урока.

1.Организационный момент.

2.Постановка целей урока.

Сегодня на уроке вы, ребята, узнаете:

    Что такое последовательность?

    Какие виды последовательностей существуют?

    Как задаётся числовая последовательность?

    Научитесь записывать последовательность с помощью формулы и множества ее элементов.

    Научитесь находить члены последовательности.

3.Работа над изучаемым материалом.

3.1. Подготовительный этап.

Ребята, давайте проверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:

–понедельник, вторник,…..

– январь, февраль, март…;

– Глебова Л, Гановичев Е, Дряхлов В, Ибраева Г,…..(список класса);

–10,11,12,…99;

Из ответов ребят делается вывод, что вышеназванные задания – это последовательности, то есть какой-то упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте, и, если поменять местами члены, то последовательность нарушится (вторник, четверг, понедельник – это просто перечисление дней недели). Итак, тема урока – числовая последовательность.

3.1. Объяснение нового материала. (Демонстрационный материал)

Анализируя ответы учащихся, дать определение числовой последовательности и показать способы задания числовых последовательностей.

(Работа с учебником с. 66 – 67)

Определение 1. Функцию y = f(x), xN называют функцией натурального аргумента или числовой последовательностью и обозначают: y = f(n) или y 1 , y 2 , y 3 , ..., y n , ... или (y n).

В данном случае независимая переменная – натуральное число.

Чаще всего последовательности будем обозначать так: (а n ), (b n ), (с n ) и т.д.

Определение 2. Члены последовательности .

Элементы, образующие последовательность, называются членами последовательности.

Новые понятия: предыдущий и последующий член последовательности,

а 1 …а п. (1-ый и п-ый член последовательности)

Способы задания числовой последовательности.

    Аналитический способ.

Любой n-й элемент последовательности можно определить с помощью формулы.(демонстрационный материал)

Разобрать примеры

Пример 1. Последовательность чётных чисел: y = 2n.

Пример 2. Последовательность квадрата натуральных чисел: y = n 2 ;

1, 4, 9, 16, 25, ..., n 2 , ... .

Пример 3. Стационарная последовательность: y = C;

C, C, C, ...,C, ... .

Частный случай: y = 5; 5, 5, 5, ..., 5, ... .

Пример 4 . Последовательность y = 2 n ;

2, 2 2 , 2 3 , 2 4 , ..., 2 n , ... .

    Словесный способ.

Правила задания последовательности описываются словами, без указания формул или когда закономерности между элементами последовательности нет.

Пример 1. Приближения числа π.

Пример 2. Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .

Пример 3. Последовательность чисел делящихся на 5.

Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .

Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ... .

    Рекуррентный способ.

Рекуррентный способ заключается в том, что указывается правило, позволяющее вычислить n-й член последовательности, если указаны ее несколько первых членов (как минимум один первый член) и формула, позволяющая по предыдущим членам вычислить ее следующий член. Термин рекуррентный произошло от латинского слова recurrere , что означает возвращаться . При вычислении членов последовательности по этому правилу мы как бы все время возвращаемся назад, вычисляя следующий член на основе предыдущего. Особенностью этого способа является то, что для определения, например, 100-го члена последовательности необходимо сначала определить все предыдущие 99 членов.

Пример 1 . a 1 =a, a n+1 =a n +0,7. Пусть a 1 =5, тогда последовательность будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .

Пример 2. b 1 = b, b n +1 = ½ b n . Пусть b 1 =23, тогда последовательность будет иметь вид: 23; 11,5; 5,75; 2,875; ... .

Пример 3. Последовательность Фибоначчи. Эта последовательность легко задаётся рекуррентно: y 1 =1, y 2 =1,y n -2 +y n -1 , если n=3, 4, 5, 6, ... . Она будет иметь вид:

1, 1,2, 3, 5, 8, 13, 21, 34, 55, ... . (п -ый член этой последовательности равен сумме двух предыдущих членов)

Аналитически последовательность Фибоначчи задать трудно, но возможно. Формула, по которой определяется любой элемент этой последовательности, выглядит так:

Дополнительная информация:

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был значительным математиком средневековья. С помощью данной последовательности Фибоначчи определил число φ (фи); φ=1,618033989.

    Графический способ

Члены последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер, а по вертикальной – значение соответствующего члена последовательности.

Для закрепления способов задания прошу привести несколько примеров последовательностей, которые задаются или словесным, или аналитическим, или рекуррентным способом.

Виды числовых последовательностей

( На перечисленных ниже последовательностях отрабатываются виды последовательностей ).

Работа с учебником стр.69-70

1) Возрастающая – если каждый член меньше следующего за ним, т.е. a n a n +1.

2) Убывающая – если каждый член больше следующего за ним, т.е. a n a n +1 .

3) Бесконечная.

4) Конечная.

5) Знакочередующаяся.

6) Постоянная (стационарная).

Возрастающую или убывающую последовательность называют монотонными.

    3; 6; 9; 12; 15; 18;…

  1. –1; 2; –3; 4; –5; …

    1, 4, 9, 16 ,…

    –1; 2; –3; 4; –5; 6; …

    3; 3; 3; 3; …; 3; … .

Работа с учебником: выполним устно №150, 159 стр.71, 72

3.2. Закрепление нового материала. Решение задач.

Для закрепления знаний выбираются примеры в зависимости от уровня подготовки учащихся.

Пример 1. Составить возможную формулу n-го элемента последовательности (y n):

а) 1, 3, 5, 7, 9, 11, ...;

б) 4, 8, 12, 16, 20, ...;

Решение.

а) Это последовательность нечётных чисел. Аналитически эту последовательность можно задать формулой y = 2n+1.

б) Это числовая последовательность, у которой последующий элемент больше предыдущего на 4. Аналитически эту последовательность можно задать формулой y = 4n.

Пример 2 . Выписать первые десять элементов последовательности, заданной рекуррентно: y 1 =1, y 2 =2, y n = y n -2 +y n -1 , если n = 3, 4, 5, 6, ... .

Решение.

Каждый последующий элемент этой последовательности равен сумме двух предыдущих элементов.

Пример 3. Последовательность (y n) задана рекуррентно: y 1 =1, y 2 =2,y n =5y n -1 - 6y n -2 . Задать эту последовательность аналитически.

Решение.

Найдём несколько первых элементов последовательности.

y 3 =5y 2 -6y 1 =10-6=4;

y 4 =5y 3 -6y 2 =20-12=8;

y 5 =5y 4 -6y 3 =40-24=16;

y 6 =5y 5 -6y 4 =80-48=32;

y 7 =5y 6 -6y 5 =160-96=64.

Получаем последовательность: 1; 2; 4; 8; 16; 32; 64; ..., которую можно представить в виде

2 0 ; 2 1 ; 2 2 ; 2 3 ; 2 4 ; 2 5 ; 2 6 ... .

n = 1; 2; 3; 4; 5; 6; 7... .

Анализируя последовательность, получаем следующую закономерность: y = 2 n -1 .

Пример 4. Дана последовательность y n =24n+36-5n 2 .

а) Сколько в ней положительных членов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Данная числовая последовательность – это функция вида y = -5x 2 +24x+36, где x

а) Найдём значения функции, при которых -5x 2 +24x+360. Решим уравнение -5x 2 +24x+36=0.

D = b 2 -4ac=1296, X 1 =6, X 2 =-1,2.

Уравнение оси симметрии параболы y = -5x 2 +24x+36 можно найти по формуле x=, получим: x=2,4.

Неравенство -5x 2 +24x+360 выполняется при -1,2 В этом интервале находится пять натуральных чисел (1, 2, 3, 4, 5). Значит в заданной последовательности пять положительных элементов последовательности.

б) Наибольший элемент последовательности определяется методом подбора и он равен y 2 =64.

в) Наименьшего элемента нет.

3.4.Задания для самостоятельной работы

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

1. Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 < y 2 < y 3 < … < y n < y n +1 < ….

2. Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

3. Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Например: y 1 = 1; y n = n 2…– возрастающая последовательность. y 1 = 1; – убывающая последовательность. y 1 = 1; – эта последовательность не является не возрастающей не убывающей.

4. Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

5. Последовательность называется ограниченной снизу, если все ее члены не меньше некоторого числа.

6. Последовательность называется ограниченной сверху, если все ее члены не больше некоторого числа.

7. Последовательность называется ограниченной, если она ограничена и сверху, и снизу, т.е. есть такое положительное число, что все члены данной последовательности по модулю не превосходят это число. (Но ее ограниченность с двух сторон не обязательно означает, что она конечная).

8. Последовательность может иметь только один предел.

9. Любая неубывающая и ограниченная сверху последовательность имеет предел (lim).

10. Любая невозрастающая и ограниченная снизу последовательность имеет предел.

Предел последовательности – такая точка (число), в окрестностях которой расположено большинство членов последовательности, они плотно подходят к этому пределу, но не достигают его.

Геометрическая и арифметическая прогрессии являются частными случаями последовательности.

Способы задания последовательности:

Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n-го члена:

Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….

Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

История Фибоначчи:

Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа - числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Задача№1:

Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

а n =2 n +1/2 n

Задача№2:

Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ: 0,3,6,9,12,15,.... 3n, а n =3n

Задача№3:

Напишите формулу общего члена последовательности натуральных чисел, которые при делении на 4 дают в остатке 1.

Ответ:5,9,13,17,21....... 4 n +1 , а n =4n+1

№19. Функция.

Функция (отображение, оператор, преобразование) - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной х однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Можно дать и другое определение. Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Множество элементов некоторой Ф., подставляемых вместо х, называют областью ее определения, а множество элементов у некоторой Ф. называют областью ее значений.

История термина:

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному. Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем - у Лакруа (1806 год) - уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год). К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

№20. Способы задания функции.

Различают 4 способа задания функции:

1. табличный Довольно распространенный, заключается в задании таблицы отдельных

значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Удобен, когда f --конечное множество, когда же f бесконечное, указывается лишь избранные пары (х,у).

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Достоинства : точность, быстрота, по таблице значений легко найти нужное значение функции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений.

Недостатки : неполнота, отсутствие наглядности. В некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

2. аналитический (формулы). Чаще всего закон, устанавливающий связь между

аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Является наиболее важным для МА (мат.анализа), поскольку методы МА (дифференциального, интегрального счисления) предполагают этот способ задания. Одна и та же функция может быть задана различными формулами: y =∣sin(x )∣y =√1−cos2(x ) Иногда в различных частях своих областей определяемая функция может быть задана различными формулами f (x )={f 1(x ),x D 1 fn (x ),x Dn nk =1Dk =D (f ) . Часто при этом способе задания функции область определения не указывается, тогда под областью определения понимается естественная область определения, т.е. множество всех значений x при которых функция принимает действительное значение.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Частным случаем аналитического способа задания функции является задание функции уравнением вида F(x,y)=0 (1) Если это уравнение обладает свойством, что ∀x ∈Дсопоставляется единственное y , такое, что F (x ,y )=0, то говорят, что уравнение (1) на Д неявно задает функцию. Еще один частный случай задания функции -- параметрический, при этом каждая пара (x ,y )∈f задается с помощью пары функций x =ϕ(t ),y =ψ(t ) где t M .






2. Определить арифметическое действие, с помощью которого из двух крайних чисел получено среднее, и вместо знака * вставить пропущенное число: ,3104,62,51043,60,94 1,7*4,43,1*37,2*0,8


3. Учащиеся решали задание, в котором требуется найти пропущенные числа. У них получились разные ответы. Найдите правила, по которым ребята заполнили клетки. Задание Ответ 1Ответ




Определение числовой последовательности Говорят, что задана числовая последовательность, если всякому натуральному числу (номеру места) по какому-либо закону однозначно поставлено в соответствие определенное число (член последовательности). В общем виде указанное соответствие можно изобразить так: y 1, y 2, y 3, y 4, y 5, …, y n, … … n … Число n есть n-ый член последовательности. Всю последовательность обычно обозначают (y n).








Аналитический способ задания числовых последовательностей Последовательность задана аналитически, если указана формула n-ого члена. Например, 1) y n= n 2 – аналитическое задание последовательности 1, 4, 9, 16, … 2) y n= С – постоянная (стационарная) последовательность 2) y n= 2 n – аналитическое задание последовательности 2, 4, 8, 16, … Решить 585


Рекуррентный способ задания числовых последовательностей Рекуррентный способ задания последовательности состоит в том, что указывают правило, позволяющее вычислить n-ый член, если известны ее предыдущие члены 1) арифметическая прогрессия задается рекуррентными соотношениями a 1 =a, a n+1 =a n + d 2) геометрическая прогрессия – b 1 =b, b n+1 =b n * q


Закрепление 591, 592 (a, б) 594, – 614 (a)




Ограниченность сверху Последовательность (y n) называют ограниченной сверху, если все ее члены не больше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число M что для любого n выполняется неравенство y n M. M – верхняя граница последовательности Например, -1, -4, -9, -16, …, -n 2, …


Ограниченность снизу Последовательность (y n) называют ограниченной снизу, если все ее члены не меньше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число m что для любого n выполняется неравенство y n m. m – нижняя граница последовательности Например, 1, 4, 9, 16, …, n 2, …


Ограниченность последовательности Последовательность (y n) называют ограниченной, если можно указать такие два числа A и B, между которыми лежат все члены последовательности. Выполняется неравенство Ay n B A – нижняя граница, B – верхняя граница Например, 1 – верхняя граница, 0 – нижняя граница



Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например, y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например," title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> 23


Проверочная работа Вариант 1Вариант 2 1. Числовая последовательность задана формулой а) Вычислите первые четыре члена данной последовательности б) Является ли членом последовательности число? б) Является ли членом последовательности число 12,25? 2. Составьте формулу -ого члена последовательности 2, 5, 10, 17, 26,…1, 2, 4, 8, 16,…

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции