Вконтакте Facebook Twitter Лента RSS

Квантовая запутанность. Квантовая запутанность простыми словами. Чудеса продолжаются

Интеллектуальный партнер проекта

Альберт Эйнштейн (1879-1955) опубликовал труды, сделавшие его знаменитыми, в основном, на ранних этапах научной карьеры. Работа, содержащая основные принципы специальной теории относительности, относится к 1905 году, общей теории относительности - к 1915 году. Квантовая теория фотоэффекта, за которую консервативный Нобелевский комитет присудил ученому премию, тоже относится к 1900-м годам.

Люди, имеющие опосредованное отношение к науке, как правило, не имеют представления о научной деятельности Альберта Эйнштейна после эмиграции в США в 1933 году. А, надо сказать, он занимался проблемой, которая фактически не решена до сих пор. Речь идет о так называемой «единой теории поля».

Всего в природе существует четыре типа фундаментальных взаимодействий. Гравитационное, электромагнитное, сильное и слабое. Электромагнитное взаимодействие - это взаимодействие между частицами, имеющими электрический заряд. Но не только явления, которые в бытовом сознании связаны с электричеством, происходят благодаря электромагнитному взаимодействию. Поскольку, например, для двух электронов сила электромагнитного отталкивания заметно превышает силу гравитационного притяжения, им объясняются взаимодействия отдельных атомов и молекул, то есть химические процессы и свойства веществ. Большая часть явлений классической механики (трение, упругость, поверхностное натяжение) имеют в своей основе его же. Теорию электромагнитного взаимодействия разработал еще в XIX веке Джеймс Максвелл, который объединил электрическое и магнитное взаимодействия, и она была прекрасно известна Эйнштейну вместе с ее более поздними квантовыми интерпретациями.

Гравитационное взаимодействие - это взаимодействие между массами. Ему посвящена общая теория относительности Эйнштейна. Сильное (ядерное) взаимодействие стабилизирует ядра атомов. Оно было теоретически предсказано в 1935 году, когда стало понятно, что уже известных взаимодействий недостаточно, чтобы ответить на вопрос: «Что удерживает протоны и нейтроны в ядрах атомов?». Существование сильного взаимодействия получило первое экспериментальное подтверждение в 1947 году. Благодаря его исследованию в 1960-х годах были открыты кварки, и, наконец, в 1970-х годах была построена более-менее полная теория взаимодействия кварков. Слабое взаимодействие тоже происходит в атомном ядре, оно действует на более коротких расстояниях, чем сильное, и с меньшей интенсивностью. Однако без него не существовало бы термоядерного синтеза, обеспечивающего, например, солнечной энергией Землю, и β-распада, благодаря которому оно и было открыто. Дело в том, что при β-распаде не происходит, как говорят физики, сохранения четности. То есть для остальных взаимодействий результаты экспериментов, проведенных на зеркально симметричных установках, должны совпадать. А для экспериментов по изучению β-распада они не совпали (о фундаментальной разнице правого и левого уже шла речь в ). Открытие и описание слабого взаимодействия пришлись на конец 50-х годов.

На сегодняшний день в рамках Стандартной модели (ей также недавно была посвящена Полит.ру) объединены электромагнитное, сильное и слабое взаимодействия. Согласно Стандартной модели все вещество состоит из 12 частиц: 6 лептонов (среди которых электрон, мюон, тау-лептон и три нейтрино) и 6 кварков. Еще есть 12 античастиц. Все три взаимодействия имеют свои переносчики - бозоны (фотон - это бозон электромагнитного взаимодействия). А вот гравитационное взаимодействие пока объединить с остальными не удалось.

Умерший в 1955 году Альберт Эйнштейн ничего не успел узнать о слабом взаимодействии и мало что - о сильном. Таким образом, он пытался объединить электромагнитное и гравитационное взаимодействия, а это задача и на сегодняшний день не решенная. Поскольку Стандартная модель по сути своей квантовая, для объединения ней гравитационного взаимодействия нужна квантовая теория гравитации. Ее на сегодняшний день по совокупности причин нет.

Одна из сложностей квантовой механики, особенно ярко проявляющаяся, когда надо говорить про нее с неспециалистом, - это ее неинтуитивность и даже антиинтуитивность. Но даже и ученые часто вводятся в заблуждение этой антиинтуитивностью. Разберем один пример, иллюстрирующий это, и полезный для понимания дальнейшего материала.

С точки зрения квантовой теории, до момента измерения частица находится в состоянии суперпозиции - то есть его характеристика одновременно с какой-то вероятностью принимает каждое из возможных значений. В момент измерения суперпозиция снимается, и факт измерения «заставляет» частицу принять конкретное состояние. Это само по себе противоречит интуитивным представлениям человека о природе вещей. Не все физики были согласны, что такая неопределенность - фундаментальное свойство вещей. Многим казалось, что это какой-то парадокс, который позже прояснится. Именно об этом известнейшая фраза Эйнштейна, произнесенная в споре с Нильсом Бором «Бог не играет в кости». Эйнштейн считал, что, на самом деле, все детерминировано, просто мы пока не можем это измерить. Правильность противоположной позиции была позднее продемонстрирована экспериментально. Особенно ярко - в экспериментальных исследованиях квантовой запутанности.

Квантовая запутанность - ситуация, при которой квантовые характеристики двух или более частиц оказываются связаны. Она может возникнуть, например, если частицы родились в результате одного и того же события. Фактически, нужно, чтобы была определена (например, благодаря их общему происхождению) суммарная характеристика всех частиц. С такой системой частиц происходит еще более странная, чем с одиночной частицей, вещь. Если, например, в ходе эксперимента измерить состояние одной из запутанных частиц, то есть заставить ее принять конкретное состояние, то суперпозиция автоматически снимается и у другой запутанной частицы, на каком бы расстоянии они ни находились. Это было доказано экспериментально в 70 - 80х годах. На сегодняшний день экспериментаторам удалось получить квантово-запутанные частицы, разнесенные на несколько сотен километров. Таким образом, получается, что информация передается от частицы к частице с бесконечной скоростью, заведомо большей скорости света. Последовательно стоявший на детерминистских позициях Эйнштейн отказывался считать эту ситуацию чем-то большим, чем абстрактным умопостроением. В своем письме к физику Борну он иронически назвал взаимодействие запутанных частиц «жутким дальнодействием».

Забавную бытовую иллюстрацию феномена квантовой запутанности придумал физик Джон Белл. У него был рассеянный коллега Рейнгольд Бертлман, который очень часто приходил на работу в разных носках. Белл шутил, что если наблюдателю виден только один носок Бертлмана, и он розовый, то про второй, даже не видя его, можно совершенно точно сказать, что он не розовый. Разумеется, это просто забавная, не претендующая на проникновение в суть вещей аналогия. В отличие от частиц, которые до момента измерения находятся в состоянии суперпозиции, носок с самого утра на ноге один и тот же.

Сейчас квантовая запутанность и связанное с ней дальнодействие с бесконечной скоростью считаются реальными, экспериментально доказанными феноменами. Им пытаются найти практическое применение. Например, при конструировании квантового компьютера и разработке методов квантовой криптографии.

Работы в области теоретической физики, проведенные за последний год, дают надежду, что проблема построения теории квантовой гравитации и, соответственно, единой теории поля будет, наконец, решена.

В июле этого года американские физики-теоретики Малдасена и Сасскинд выдвинули и обосновали теоретическую концепцию квантовой запутанности черных дыр . Напомним, что черные дыры - это очень массивные объекты, гравитационное притяжение к которым настолько велико, что, подобравшись к ним на определенное расстояние, даже самые быстрые в мире объекты - кванты света - не могут вырваться и улететь прочь. Ученые провели мысленный эксперимент. Они выяснили, что если создать две квантово-запутанные черные дыры, а потом удалить их друг от друга на некоторое расстояние, то в результате образуется так называемая непроходимая кротовая нора . То есть кротовая нора по своим свойствам идентична паре квантово-запутанных черных дыр. Кротовые норы - это пока еще остающиеся гипотетическими топологические особенности пространства-времени, туннели, находящиеся в дополнительном измерении, соединяющие в какие-то моменты времени две точки трехмерного пространства. Кротовые норы популярны в фантастической литературе и кинематографе, потому что через некоторые из них, особенно экзотические, теоретически возможно совершать межзвездные путешествия и путешествия во времени. Через непроходимые кротовые норы, возникающие в результате квантового запутывания черных дыр невозможно ни путешествовать, ни обмениваться информацией. Просто если условный наблюдатель зайдет внутрь одной из пары квантово-запутанных черных дыр, он окажется там же, где он оказался бы, зайдя в другую.

Кротовые норы обязаны своим существованием гравитации. Поскольку в мысленном эксперименте Малдасены и Сасскинда кротовая нора создается на основании квантовой запутанности, то можно сделать вывод, что гравитация не фундаментальна сама по себе, а является проявлением фундаментального квантового эффекта - квантовой запутанности.

В начале декабря 2013 года в одном номере журнала Physical Review Letters вышло сразу две работы ( ,), развивающие идеи Малдасены и Сасскинда. В них голографический метод и теория струн были применены для того, чтобы описать изменения в геометрии пространства-времени, вызываемые квантовой запутанностью. Голограмма представляет собой изображение на плоскости, позволяющее реконструировать соответствующее трехмерное изображение. В общем случае, голографический метод позволяет уместить информацию об n-мерном пространстве в (n-1)-мерное.

Ученым удалось перейти от квантово-запутанных черных дыр к квантово-запутанным парам рождающихся элементарных частиц . При наличии достаточного количества энергии могут рождаться пары, состоящие из частицы и античастицы. Поскольку при этом должны выполняться законы сохранения, такие частицы будут квантово-запутанными. Моделирование такой ситуации показало, что рождение пары кварк+антикварк порождает образование соединяющей их кротовой норы, и что описание состояния квантовой запутанности двух частиц эквивалентно описанию непроходимой кротовой норы между ними.

Получается, что квантовая запутанность может вызывать те же изменения в геометрии пространства-времени, что и гравитация. Возможно, это откроет путь к построению теории квантовой гравитации, которой так не хватает для создания единой теории поля.

Если вас еще не поразили чудеса квантовой физики, то после этой статьи ваше мышление уж точно перевернется. Сегодня я расскажу, что такое квантовая запутанность, но простыми словами, чтобы любой человек понял, что это такое.

Запутанность как магическая связь

После того, как были открыты необычные эффекты, происходящие в микромире, ученые пришли к интересному теоретическому предположению. Оно именно следовало из основ квантовой теории.

В прошлой я рассказывал о том, что электрон ведет себя очень странно.

Но запутанность квантовых, элементарных частиц вообще противоречит какому-либо здравому смыслу, выходит за рамки любого понимания.

Если они взаимодействовали друг с другом, то после разъединения между ними остается магическая связь, даже если их разнести на любое, сколь угодно большое расстояние.

Магическая в том смысле, что информация между ними передается мгновенно.

Как известно из квантовой механики частица до измерения находится в суперпозиции, то есть имеет сразу несколько параметров, размыта в пространстве, не имеет точное значение спина. Если над одной из пары ранее взаимодействующих частиц произвести измерение, то есть произвести коллапс волновой функции, то вторая сразу, мгновенно отреагирует на это измерение. И не важно, какое расстояние между ними. Фантастика, не правда ли.

Как известно из теории относительности Эйнштейна ничто не может превышать скорость света. Чтобы информация дошла от одной частицы до второй, нужно по крайне мере затратить время прохождения света. Но одна частица именно мгновенно реагирует на измерение второй. Информация при скорости света дошла бы до нее уже позже. Все это не укладывается в здравый смысл.

Если разделить пару элементарных частичек с нулевым общим параметром спина, то одна должна иметь отрицательный спин, а вторая положительный. Но до измерения значение спина находится в суперпозиции. Как только мы измерили спин у первой частички, увидели, что он имеет положительное значение, так сразу вторая приобретает отрицательный спин. Если же наоборот первая частичка приобретает отрицательное значение спина, то вторая мгновенно положительное значение.

Или такая аналогия.

У нас имеется два шара. Один черный, другой белый. Мы их накрыли непрозрачными стаканами, не видим, где какой. Мешаем как в игре наперстки.

Если открыли один стакан и увидели, что там белый шар, значит во втором стакане черный. Но сначала мы не знаем, где какой.

Так и с элементарными частичками. Но они до того, как на них посмотреть, находятся в суперпозиции. До измерения шары как бы бесцветны. Но разрушив суперпозицию одного шара и увидев, что он белый, то второй сразу становится черным. И это происходит мгновенно, будь хоть один шар на земле, а второй в другой галактике. Чтобы свет дошел от одного шара до другого в нашем случае, допустим нужно сотни лет, а второй шар узнает, что произвели измерение над вторым, повторяю, мгновенно. Между ними запутанность.

Понятно, что Эйнштейн, да и многие другие физики не принимали такой исход событий, то есть квантовую запутанность. Он считал выводы квантовой физики неверными, неполными, предполагал, что не хватает каких-то скрытых переменных.

Вышеописанный парадокс Эйнштейна наоборот придумал, чтобы показать, что выводы квантовой механики не верны, потому что запутанность противоречит здравому смыслу.

Этот парадокс назвали парадокс Эйнштейна - Подольского - Розена, сокращённо ЭПР-парадокс.

Но проведенные эксперименты с запутанностью уже позже А. Аспектом и другими учеными, показали, что Эйнштейн был не прав. Квантовая запутанность существует.

И это уже были не теоретические предположения, вытекающие из уравнений, а реальные факты множества экспериментов по квантовой запутанности. Ученые это увидели вживую, а Эйнштейн умер, так и не узнав правду.

Частицы действительно взаимодействуют мгновенно, ограничения по скорости света им не помеха. Мир оказался куда интереснее и сложнее.

При квантовой запутанности происходит, повторю, мгновенная передача информации, образуется магическая связь.

Но как такое может быть?

Сегодняшняя квантовая физика отвечает на этот вопрос изящным образом. Между частицами происходит мгновенная связь не из-за того, что информация передается очень быстро, а потому что на более глубоком уровне они просто не разделены, а все еще находятся вместе. Они находятся в так называемой квантовой запутанности.

То есть состояние запутанности это такое состояние системы, где по каким-то параметрам или значениям, она не может быть разделена на отдельные, полностью самостоятельные части.

Например, электроны после взаимодействия могут быть разделены на большое расстояние в пространстве, но их спины находятся все еще вместе. Поэтому во время экспериментов спины мгновенно согласуются между собой.

Понимаете, к чему это ведет?

Сегодняшние познания современной квантовой физики на основе теории декогеренции сводятся к одному.

Существует более глубокая, непроявленная реальность. А то, что мы наблюдаем как привычный классический мир лишь малая часть, частный случай более фундаментальной квантовой реальности.

В ней нет пространства, времени, каких-то параметров частиц, а лишь информация о них, потенциальная возможность их проявления.

Именно этот факт изящно и просто объясняет, почему возникает коллапс волновой функции, рассмотренный в предыдущей статье, квантовую запутанность и другие чудеса микромира.

Сегодня, говоря о квантовой запутанности, вспоминают потусторонний мир.

То есть на более фундаментальном уровне элементарная частица непроявленная. Она находится одновременно в нескольких точках пространства, имеет несколько значений спинов.

Затем по каким-то параметрам она может проявиться в нашем классическом мире в ходе измерения. В рассмотренном выше эксперименте две частицы уже имеют конкретное значение координат пространства, но спины их находятся все еще в квантовой реальности, непроявленные. Там нет пространства и времени, поэтому спины частиц сцеплены вместе, несмотря на огромное расстояние между ними.

А когда мы смотрим, какой спин у частицы, то есть производим измерение, мы как бы вытаскиваем спин из квантовой реальности в наш обычный мир. А нам кажется, что частицы обмениваются информацией мгновенно. Просто они были все еще вместе по одному параметру, хоть и находились далеко друг от друга. Их раздельность на самом деле есть иллюзия.

Все это кажется странным, непривычным, но этот факт уже подтверждается многими экспериментами. На основе магической запутанности создаются квантовые компьютеры.

Реальность оказалась намного сложнее и интереснее.

Принцип квантовой запутанности не стыкуется с обычным нашим взглядом на мир.


Вот как объясняет квантовую запутанность физик-ученый Д.Бом.

Допустим, мы наблюдаем за рыбой в аквариуме. Но в силу каких-то ограничений, мы можем смотреть не на аквариум, как он есть, а лишь на его проекции, снимаемые двумя камерами спереди и сбоку. То есть мы наблюдаем за рыбой, смотря на два телевизора. Нам кажутся рыбы разными, так как мы снимаем ее одной камерой в анфас, другой в профиль. Но чудесным образом их движения четко согласуются. Как только рыба с первого экрана поворачивается, вторая мгновенно делает также поворот. Мы удивляемся, не догадываясь, что это одна и та же рыба.

Так и в квантовом эксперименте с двумя частицами. Из-за своих ограничений нам кажется, что спины двух, ранее взаимодействующих частиц, не зависимы друг от друга, ведь теперь частицы находятся далеко друг от друга. Но на самом деле они все еще вместе, но находятся в квантовой реальности, в нелокальном источнике. Мы просто смотрим не на реальность, как она есть на самом деле, а с искажением, в рамках классической физики.

Квантовая телепортация простыми словами

Когда ученые узнали о квантовой запутанности и мгновенной передаче информации, многие задались вопросом: можно ли осуществить телепортацию?

Это оказалось действительно возможным.

Уже проведено множество экспериментов по телепортации.

Суть метода легко можно понять, если вы поняли общий принцип запутанности.

Имеется частица, например электрон А и две пары запутанных электронов В и С. Электрон А и пара В, С находятся в разных точках пространства, неважно как далеко. А теперь переведем в квантовую запутанность частички А и В, то есть объединим их. Теперь С становится точно такой же как А, потому что общее их состояние не меняется. То есть частица А как бы телепортируется в частицу С.

Сегодня проведены уже более сложные опыты по телепортации.

Конечно, все опыты пока проводятся только с элементарными частицами. Но согласитесь, это уже невероятно. Ведь все мы состоим из тех же частиц, ученые говорят, что телепортация макрообъектов теоретически ничем не отличается. Нужно лишь решить множество технических моментов, а это лишь вопрос времени. Может быть, человечество дойдет в своем развитии до способности телепортировать большие объекты, да и самого человека.

Квантовая реальность

Квантовая запутанность есть целостность, неразрывность, единение на более глубоком уровне.

Если по каким-то параметрам частицы находятся в квантовой запутанности, то по этим параметрам их просто нельзя разделить на отдельные части. Они взаимозависимы. Такие свойства просто фантастические с точки зрения привычного мира, запредельные, можно сказать потусторонние и трансцендентные. Но это факт, от которого уже никуда не деться. Пора это уже признать.

Но к чему все это ведет?

Оказывается, о таком положении вещей давно говорили многие духовные учения человечества.

Видимый нами мир, состоящий из материальных объектов это не основа реальности, а лишь малая ее часть и не самая главная. Существует трансцендентная реальность, которая задает, определяет все, что происходит с нашим миром, а значит и с нами.

Именно там кроются настоящие ответы на извечные вопросы о смысле жизни, настоящего развития человека, обретения счастья и здоровья.

И это не пустые слова.

Все это приводит к переосмыслению жизненных ценностей, пониманию того, что кроме бессмысленной гонкой за материальными благами есть что-то более важное и высокое. И эта реальность не где-то там, она окружает нас повсюду, она пронизывает нас, она как говорится "на кончиках наших пальцев".

Но давайте об этом поговорим в следующих статьях.

А сейчас посмотрите видео о квантовой запутанности.

От квантовой запутанности мы плавно переходим к теории . Об этом в следующей статье.

Квантовая запутанность, или «жуткое действие на расстоянии», как ее называл Альберт Эйнштейн - это квантовомеханический феномен, при котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми. Эта зависимость сохраняется даже если объекты удалить друг от друга за много километров. Например, можно запутать пару фотонов, увести один из них в другую галактику, а потом измерить спин второго фотона - и он будет противоположен спину первого фотона, и наоборот. Квантовую запутанность пытаются приспособить для мгновенной передачи данных на гигантские расстояния или даже для телепортации.

Современные компьютеры дают довольно много возможностей по моделированию самых разных ситуаций. Однако любые вычисления будут в некоторой степени «линейны», так как они подчиняются четко прописанным алгоритмам и не могут от них отступить. И эта система не позволяет симулировать сложные механизмы, в которых случайность — это практически постоянное явление. Речь идет о симуляции жизни. А какое устройство могло бы позволить это сделать? Квантовый компьютер! Именно на одной из таких машин был запущен самый масштабный проект по симуляции квантовой жизни.

Квантовая запутанность - явление, при котором подсистемы некоторой ранее единой квантовомеханической системы, будучи разнесенными на расстояние друг от друга, продолжают оказывать влияние друг на друга. В этом случае изменение состояния одной системы сказывается на другой системе. Явление носит существенно квантовый характер и не имеет классического аналога.

Кофе остывает, здания рушатся, яйца бьются, а звезды выдыхаются во Вселенной, которой, кажется, суждено деградировать в состояние равномерной серости, известной как тепловое равновесие. Астроном-философ сэр Артур Эддингтон в 1927 году привел постепенное распространение энергии в качестве доказательства необратимой «стрелы времени».

Но к недоумению поколений физиков, стрела времени, похоже, не вытекает из основных законов физики, по которым двигаться вперед во времени - это то же самое, что и назад. По этим законам, если бы кто-то знал пути всех частиц во вселенной и повернул их вспять, энергия накапливалась бы, а не распылялась: холодный кофе спонтанно нагревался бы, здания собирались бы из обломков, а солнечный свет собирался обратно в солнце.

«В классической физике мы сильны, - говорит Санду Попеску, профессор физики Бристольского университета в Великобритании в интервью журналу QuantaMagazine. - Если бы я знал больше, мог бы я переломить ход события, собрать воедино все молекулы разбитого яйца?». Конечно, профессор говорит, что стрела времени не управляется человеческим незнанием. И все же, с момента рождения термодинамики в 1850-х годах, единственным известным подходом для расчета распространения энергии оставалось сформулировать статистическое распределение неизвестных траекторий частицы и показать, что с течением времени незнание смазывает картину вещей.

Теперь физики определили фундаментальный источник стрелы времени. Энергия рассеивается и объекты приходят в равновесие, говорят они, потому что элементарные частицы переплетаются, когда взаимодействуют - странный эффект под названием «квантовая запутанность». «Наконец мы можем понять, почему чашка кофе уравновешивается в комнате, - говорит Тони Шорт, квантовый физик из Бристоля. - Запутанность накапливается между состоянием чашки кофе и состоянием комнаты». Попеску, Шорт и их коллеги Ной Линден и Андреас Уинтер сообщили об открытии журналу Physical Review E в 2009 году, утверждая, что объекты достигают равновесия, или состояния равномерного распределения энергии, в течение бесконечного количества времени за счет квантово-механического запутывания с окружающей средой. Похожее открытие опубликовал Питер Рейман из Билефельдского университета в Германии несколькими месяцами раньше в Physical Review Letters. Шорт и коллеги укрепили аргументацию в 2012 году, показав что запутанность вызывает уравновешенность за конечное время. Также, в работе, опубликованной на arXiv.org в феврале, две отдельных группы предприняли следующий шаг, рассчитав, что большинство физических систем быстро уравновешиваются, за время, пропорциональное их размеру.

Если новая линия исследований верна, история стрелы времени начинается с квантово-механической идеи о том, что в своей основе природа по своей сути неопределенна. Элементарной частице не хватает конкретных физических свойств и она определяется только вероятностями нахождения в определенных состояниях. К примеру, в определенный момент частица может с 50-процентным шансом вращаться по часовой стрелке и с 50-процентным - против часовой. Экспериментально проверенная теорема северо-ирландского физика Джона Белла гласит, что нет «истинного» состояния частицы; вероятности - единственное, что можно использовать для его описания. Квантовая неопределенность неизбежно приводит к запутанности, предполагаемому источнику стрелы времени.

Когда две частицы взаимодействуют, их больше нельзя описывать отдельными, независимо развивающимися вероятностями под названием «чистые состояния». Вместо этого, они становятся запутанными компонентами более сложного распределения вероятностей, которые описываются двумя частицами вместе. Система в целом находится в чистом состоянии, но состояние каждой из индивидуальных частиц «смешанное». Обе частицы можно отдалить на световые годы друг от друга, но спин каждой частицы будет коррелировать с другим. Альберт Эйнштен хорошо описал это как «жуткое действие на расстоянии». «Запутанность - это некотором смысле суть квантовой механики», или законы, регулирующие взаимодействия на субатомных масштабах, говорит Бруннер. Это явление лежит в основе квантовых вычислений, квантовой криптографии и квантовой телепортации.

Идея того, что запутанность может объяснить стрелу времени, впервые пришла в голову Сету Ллойду тридцать лет назад, когда он был 23-летним выпускником факультета философии Кембриджского университета с Гарвардской степенью по физике. Ллойд понял, что квантовая неопределенность и то, как она распространяется по мере того, что частицы становятся все более запутанными, может заменить человеческую неуверенность (или незнание) в старых классических доказательствах как истинный источник стрелы времени. Используя известный квантово-механический подход, в котором единицы информации являются основными строительными блоками, Ллойд провел несколько лет, изучая эволюцию частиц с точки зрения перетасовки единиц (1) и нулей (0). Он выяснил, что поскольку частицы все больше запутываются друг с другом, информация, которая их описывала (1 - для спина по часовой стрелке, и 0 - против часовой, например), перейдет на описание системы запутанных частиц в целом. Как если бы частицы постепенно потеряли свою индивидуальную автономию и стали пешками коллективного состояния. В этот момент, как обнаружил Ллойд, частицы переходят в состояние равновесия, их состояния перестают меняться, словно чашка с кофе остывает до комнатной температуры. «Что происходит на самом деле? Вещи становятся более взаимосвязаны. Стрела времени - это стрела роста корреляций».

«Когда Ллойд высказал идею в своей диссертации, мир был не готов, - говорит Ренато Реннер, глава Института теоретической физики в ETH Zurich. - Никто не понимал его. Иногда нужно, чтобы идеи приходили в нужное время». В 2009 году доказательство группы бристольских физиков вызвало отклик у квантовых информационных теоретиков, открывая новые способы применения их методов. Оно показало, что по мере того, как объекты взаимодействуют со своим окружением - как частицы в чашке кофе взаимодействуют с воздухом, например, - информация об их свойствах «утекает и смазывается со средой», поясняет Попеску. Эта локальная потеря информации приводит к тому, что состояние кофе приходит к стагнации, даже если чистое состояние всей комнаты продолжает развиваться. За исключением редких случайных флуктуаций, говорит ученый, «его состояние перестает меняться со временем». Получается, холодная чашка с кофе не может спонтанно нагреться. В принципе, по мере эволюции чистого состояния комнаты, кофе может внезапно «стать не смешанным» с воздухом и войти в чистое состояние. Но кофе доступно настолько больше смешанных состояний, чем чистых, что это практически никогда не произойдет - скорее вселенная закончится, чем мы сможем это засвидетельствовать. Эта статистическая маловероятность делает стрелу времени необратимой.

«По сути, запутанность открывает для вас огромное пространство, - комментирует Попеску. - Представьте, что вы находитесь в парке, перед вами ворота. Как только вы войдете в них, вы попадете в огромное пространство и потеряетесь в нем. К воротам тоже не вернетесь никогда».
В новой истории стрелы времени информация теряется в процессе квантовой запутанности, а не из-за субъективного отсутствия человеческих знаний, что приводит к уравновешиванию чашки кофе и комнаты. Комната в конце концов уравновешивается с внешней средой, а среда - еще более медленно - дрейфует к равновесию с остальной частью вселенной. Гиганты термодинамики 19 века рассматривали этот процесс как постепенное рассеяние энергии, которое увеличивает общую энтропию, или хаос, вселенной. Сегодня же, Ллойд, Попеску и другие в этой сфере видят стрелу времени по-другому. По их мнению, информация становится все более диффузной, но никогда не исчезает полностью. Хотя локально энтропия растет, общая энтропия вселенной остается постоянной и нулевой.

«В целом вселенная находится в чистом состоянии, - говорит Ллойд. - Но отдельные ее части, будучи запутанными с остальной частью вселенной, остаются смешанными».

«В этих работах нет ничего, что объяснит, почему вы начинаете с ворот, - говорит Попеску, возвращаясь к аналогии с парком. - Другими словами, они не объясняют, почему изначальное состояние вселенной было далеко от равновесия». Ученый намекает на то, что этот вопрос относится к природе Большого Взрыва.
Несмотря на недавний прогресс в расчете времени уравновешивания, новый подход до сих пор не может стать инструментом для расчета термодинамических свойств конкретных вещей, вроде кофе, стекла или экзотических состояний материи.

«Дело в том, что нужно найти критерии, при которых вещи ведут себя как оконное стекло или чашка чая, - говорит Реннер. - Я думаю, что увижу новые работы в этом направлении, но впереди еще много работы».
Некоторые исследователи выразили сомнение в том, что этот абстрактный подход к термодинамике когда-нибудь сможет точно объяснить, как ведут себя конкретные наблюдаемые объекты. Но концептуальные достижения и новый математический формализм уже помогают исследователям задаваться теоретическими вопросами из области термодинамики, например о фундаментальных пределах квантовых компьютеров и даже о конечной судьбе Вселенной.

Двадцать шесть лет спустя грандиозного провала идеи Ллойда о стреле времени, он рад быть свидетелем ее подъема и пытается применить идеи последней работы к парадоксу информации, попадающей в черную дыру.

По мнению ученых, наша способность помнить прошлое, но не будущее, другое проявление стрелы времени, также может рассматриваться как возрастание корреляций между взаимодействующими частицами. Когда читаешь что-то с листа бумаги, мозг коррелирует с информацией через фотоны, которые достигают глаз. Только с этого момента вы будете способны вспомнить, что написано на бумаге. Как отмечает Ллойд: «Настоящее может быть определено как процесс связывания (или установления корреляций) с нашим окружением». Фоном для устойчивого роста запутанностей по всей вселенной является, конечно, само время. Физики подчеркивают, что несмотря на большие успехи в понимании того, как происходят изменения во времени, они ни на йоту не приблизились к пониманию природы самого времени или почему оно отличается от трех других измерений пространства. Попеску называет эту загадку «одной из величайших непоняток в физике».

«Мы можем обсудить факт того, что час назад наш мозг был в состоянии, которое коррелировало с меньшим числом вещей, - говорит он. - Но наше восприятие того, что время идет - это совсем другое дело. Скорее всего, нам понадобится революция в физике, которая откроет нам эту тайну».

Это изящная и мощная концепция. Она предполагает, что время – это возникающий феномен, который появляется в реальности благодаря природе квантового спутывания. И оно существует только для наблюдателей внутри нашей вселенной. Любой богоподобный наблюдатель за её пределами будет видеть статичную неизменяющуюся вселенную, как прежде предсказывало более раннее квантовое уравнение Уилера-ДеВитта. Разумеется, у нас нет никакой возможности получить наблюдателя за пределами нашей вселенной и у нас нет и никаких шансов когда-либо подтвердить эту теорию. По крайней мере, так было до сегодняшнего дня. Недавно Екатерина Морева из Istituto Nazionale di Ricerca Metrologica в Турине, Италия, и несколько её коллег сумели впервые экспериментально проверить идеи Пейджа и Вутерса. И они продемонстрировали, что время действительно является возникающим феноменом для внутренних наблюдателей, но его не существует для наблюдателей внешних.

Этот эксперимент включает в себя создание игрушечной вселенной, состоящей из пары спутанных фотонов и наблюдателя, который может измерять их состояние одним из двух способов. В первом наблюдатель измеряет эволюцию системы, спутывая себя с ней. Во втором богоподобный наблюдатель измеряет эволюцию в сравнении с внешними часами, которые полностью независимы от игрушечной вселенной.


Сам эксперимент достаточно прямолинеен. Каждый из спутанных фотонов имеет поляризацию, которая может быть изменена прохождением через двулучепреломляющую пластинку. В первом случае наблюдатель измеряет поляризацию одного фотона, таким образом, спутываясь с ним. Затем он сравнивает результат с поляризацией второго фотона. Полученная им разница и будет мерой времени.

Во втором случае оба фотона также проходят через двулучепреломляющие пластинки, которые изменяют их поляризацию. Однако в этом случае наблюдатель измеряет только глобальные свойства обоих фотонов, сравнивая их с независимыми часами.

В этом случае наблюдатель не может заметить какой-либо разницы между фотонами, не приходя в состоянии спутанности с одним из них. А если нет никакой разницы, система предстаёт перед ним статичной. Другими словами – время в ней не возникает.

Это весьма впечатляющий эксперимент. Появление чего-либо является популярной концепцией в науке. В частности, недавно физики заинтересовались идеей, что гравитация также является таким возникающим феноменом. А отсюда до идеи о сходном механизме возникновения времени оставался всего один шаг. Чего не хватает возникающей гравитации – это, разумеется, экспериментальной демонстрации, которая показывала бы, как это работает на практике. Именно поэтому работа Моревы имеет такое важное значение – она впервые в мире помещает абстрактную и экзотическую идею на устойчивое экспериментальное основание. А возможно самым важным результатом этой работы является то, что ей впервые удалось продемонстрировать, что квантовая механика и общая теория относительности не так уж несовместимы.

Следующим шагом станет дальнейшее развитие идеи, в частности – на макроскопическом уровне. Одно дело показать, как время возникает в фотонах, и другое – понять, как оно возникает для людей. Квантовая механика уже достаточно глубоко проникла в смежные научные области. В попытке объяснить в терминах квантовой теории саму жизнь она даже породила свою собственную биологию. Но до сих пор никто не решался прямо утверждать, что эффект запутанности лежит в самой сердцевине живых существ – внутри спирали ДНК.

Новорождённая квантовая биология (quantum biology) официально не признана научной дисциплиной. Однако она уже превратилась в одну из самых интересных и захватывающих тем передовых исследований. Например, раскрывающих важную роль квантовых эффектов в ряде биологических процессов, как в фотосинтезе . Новое исследование провела группа физиков из Национального университета Сингапура (NSU). Элизабет Рипер (Elizabet Rieper) и её коллеги исходили из того, что двойная спираль ДНК не распадается именно благодаря принципу квантовой запутанности (сцепленности).

Чтобы проверить свою смелую теорию, учёные построили упрощённую теоретическую модель ДНК на компьютере. В ней каждый нуклеотид состоит из облака электронов вокруг центрального положительно заряженного ядра. Это «негативное» облако может двигаться относительно ядра, создавая диполь. При этом смещение облака туда и обратно приводит к образованию гармонического осциллятора.

Рипер с коллегами заинтересовались, что же произойдёт с колебаниями облаков (фононами), когда пары оснований создадут двойную спираль ДНК. По мнению учёных, при формировании пар нуклеотидов их объединённые облака теоретически должны колебаться в противоположном направлении с облаком от соседней пары, чтобы обеспечить стабильность всей структуры. Поскольку фононы по сути являются квантовыми объектами, они могут существовать в виде суперпозиции состояний и умеют «запутываться». Учёные начали с того, что предположили отсутствие любых тепловых эффектов, влияющих на спираль извне. «Очевидно, что цепочки попарно связанных гармонических осцилляторов могут быть запутаны лишь при нулевой температуре», – говорит Рипер. В своей пока неопубликованной научными изданиями статье физики приводят доказательство, что эффект запутывания в принципе, может возникнуть и при комнатной температуре. А возможно это потому, что длина волны у описанных фононов близка к размерам спирали ДНК. Это позволяет формироваться так называемым стоячим волнам (феномен, известный как фононный захват). После этого фононы не могут «сбежать». Данный эффект не будет иметь особенного значения для гигантской молекулы, если только он не распространяется на всю спираль. Однако компьютерное моделирование, проведённое Рипер со товарищи, демонстрирует – эффект и вправду колоссален.

Каждое электронное облако в паре оснований не просто колеблется согласованно с движениями соседей - фононы при этом находятся в суперпозиции состояний. А общая картина всех таких колебаний в ДНК описывается квантовыми законами: вдоль всей цепочки нуклеотиды-осцилляторы колеблются синхронно – это проявление квантовой сцепленности. Общее же движение спирали оказывается равным нулю.


Модель спирали ДНК, на которой увеличен фрагмент с двумя соседними парами оснований. Синим выделены электронные облака в двух крайних позициях своих колебаний, направления которых отмечают стрелки (иллюстрация Rieper et al.). Если пытаться описать эту модель исключительно в рамках классической физики, то ничего из перечисленного произойти не сможет: «классическая» спираль должна хаотично вибрировать и распадаться на части. По мнению исследователей, именно квантовые эффекты ответственны за «склеивание» ДНК. Но, как и в случае с теорией космической ряби – амбициозной «сестрой-близнецом» нынешней работы (правда, занятой объектами макромира), – главный вопрос не оригинален: как этот вывод доказать? Ответа пока нет. Команда Рипер в конце своей статьи интригует мыслью о том, что запутывание каким-то образом напрямую влияет на способ «считывания» информации из ДНК. Дескать, в будущем это удастся проверить и использовать экспериментально. Как именно – пока никто даже не предполагает.

Несмотря на некоторую долю спекулятивности, выдвинутое физиками предположение взбудоражило многие умы. Ведь квантовые эффекты уже находили в самых неожиданных местах, например в электрической цепи , но покамест никто не замахивался на претензии такого масштаба – микроскопического и в то же время невероятно важного.

В свете изложенного тратящий массу сил на запутывание нескольких кубитов в твёрдом теле человек выглядит забавно, поскольку не подозревает, что самым ярким примером такой системы является он сам.

Когда Альберт Эйнштейн поражался «жуткой» дальнодействующей связи между частицами, он не думал о своей общей теории относительности. Вековая теория Эйнштейна описывает, как возникает гравитация, когда массивные объекты деформируют ткань...

Когда Альберт Эйнштейн поражался «жуткой» дальнодействующей связи между частицами, он не думал о своей общей теории относительности. Вековая теория Эйнштейна описывает, как возникает гравитация, когда массивные объекты деформируют ткань пространства и времени. Квантовая запутанность, тот жуткий источник эйнштейновского испуга, как правило, затрагивает крошечные частицы, которые незначительно действуют на гравитацию. Пылинка деформирует матрас ровно так же, как субатомная частица искривляет пространство.

Тем не менее физик-теоретик Марк Ван Раамсдонк подозревает, что запутанность и пространство-время на самом деле связаны между собой. В 2009 году он рассчитал, что пространство без запутанности не смогло бы удержать себя. Он написал работу, из которой вытекало, что квантовая запутанность является иглой, которая сшивает воедино гобелен космического пространства-времени.

Многие журналы отказались публиковать его работу. Но спустя годы изначального скептицизма изучение идеи того, что запутанность формирует пространство-время, стало одной из самых горячих тенденций в области физики.

«Выходя из глубоких основ физики, все указывает на то, что пространство должно быть связано с запутанностью», - говорит Джон Прескилл, физик-теоретик из Калтеха.

В 2012 году появилась еще одна провокационная работа, представляющая парадокс запутанных частиц внутри и снаружи черной дыры. Менее чем через год два эксперта в этой области предложили радикальное решение: запутанные частицы соединяются червоточинами - туннелями пространства-времени, представленными еще Эйнштейном, которые в настоящее время одинаково часто появляются на страницах журналов по физике и в научной фантастике. Если это допущение верно, запутанность не является жутким дальнодействующим соединением, о котором думал Эйнштейн - а вполне реальным мостом, связывающим удаленные точки в пространстве.


Многие ученые находят эти идеи достойными внимания. В последние годы физики, казалось бы, несвязанных специальностей сошлись на этом поле запутанности, пространства и червоточин. Ученые, которые когда-то были сосредоточены на создании безошибочных квантовых компьютеров, сегодня размышляют, не является ли сама Вселенная квантовым компьютером, который тихо программирует пространство-время в сложной сети запутанностей. «Все прогрессирует невероятным образом», - говорит Ван Раамсдонк из Университета Британской Колумбии в Ванкувере.

Физики возлагают большие надежды на то, куда их заведет это соединение пространства-времени с запутанностью. ОТО блестяще описывает, как работает пространство-время; новые исследования могут приоткрыть завесу над тем, откуда берется пространство-время и на что оно похоже на мельчайших масштабах, лежащих во власти квантовой механики. Запутанность может быть секретным ингредиентом, который объединит эти пока что несовместимые области в теорию квантовой гравитации, позволив ученым понять условия внутри черной дыры и состояние Вселенной в первые моменты после Большого Взрыва.

Голограммы и банки с супом

Прозрение Ван Раамсдонка в 2009 году не материализовалось из воздуха. Оно уходит корнями в голографический принцип, идею того, что граница, ограничивающая объем пространства, может содержать всю информацию, в нем заключенную. Если применить голографический принцип к повседневной жизни, то любопытный сотрудник может идеально реконструировать все, что находится в офисе, - кипы бумаг, семейные фотографии, игрушки в углу и даже файлы на жестком диске компьютера - просто глядя на внешние стены квадратного офиса.

Эта идея противоречива, учитывая то, что стены имеют два измерения, а интерьер офиса три. Но в 1997 году Хуан Малдасена, струнный теоретик тогда из Гарварда, привел интригующий пример того, что голографический принцип мог бы раскрыть о Вселенной.

Он начал с анти-де-ситтеровского пространства, которое напоминает пространство-время, в котором преобладает гравитации, но обладает рядом странных атрибутов. Оно изогнуто таким образом, что вспышка света, излученного в определенном месте, в конечном счете вернется оттуда, где появилась. И хотя Вселенная расширяется, анти-де-ситтеровское пространство не растягивается и не сжимается. Из-за таких особенностей кусок анти-де-ситтеровского пространства с четырьмя измерениями (тремя пространственными и одним временным) может быть окружен трехмерной границей.

Малдасена обращался к цилиндру анти-де-ситтеровского пространства-времени. Каждый горизонтальный срез цилиндра представляет состояние его пространства в данный момент, тогда как вертикальное измерение цилиндра представляет время. Малдасена окружил свой цилиндр границей для голограммы; если бы анти-де-ситтеровское пространство было банкой супа, то граница была бы этикеткой.

На первый взгляд кажется, что эта граница (этикетка) не имеет ничего общего с наполнением цилиндра. Пограничная «этикетка», к примеру, соблюдает правила квантовой механики, а не гравитации. И все же гравитация описывает пространство внутри содержимого «супа». Малдасена показал, что этикетка и суп были одним и тем же; квантовые взаимодействия на границе отлично описывают анти-де-ситтеровское пространство, которое закрывает эта граница.

«Две этих теории кажутся совершенно разными, но точно описывают одно и то же», - говорит Прескилл.


Малдасена добавил запутанность в голографическое уравнение в 2001 году. Он представил пространство в двух банках с супом, каждая из которых содержит черную дыру. Затем создал эквивалент самодельного телефона из стаканчиков, соединяющего черные дыры с помощью червоточины - туннеля через пространство-время, впервые предложенного Эйнштейном и Натаном Розеном в 1935 году. Малдасена искал способ создать эквивалент такой связи пространства-времени на этикетках банок. Хитрость, как он понял, была в запутанности.

Как и червоточина, квантовая запутанность связывает объекты, которые не имеют очевидных отношений. Квантовый мир - расплывчатое место: электрон может вращаться в обе стороны одновременно, будучи в состоянии суперпозиции, пока измерения не предоставят точный ответ. Но если два электрона запутаны, измерение спина одного позволяет экспериментатору узнать спин другого электрона - даже если партнерский электрон находится в состоянии суперпозиции. Эта квантовая связь остается даже если электроны будут разделять метры, километры или световые годы.

Малдасена показал, что с помощью запутывания частиц на одной этикетке с частицами на другой можно идеально квантово-механически описать соединение червоточиной банок. В контексте голографического принципа, запутанность эквивалентна физическому связыванию кусков пространства-времени вместе.

Вдохновленный этой связью запутанности с пространством-временем, Ван Раамсдонк задался вопросом, насколько большую роль запутанность может играть в формировании пространства-времени. Он представил самую чистую этикетку на банке с квантовым супом: белую, соответствующую пустому диску анти-де-ситтеровского пространства. Но он знал, что, согласно основам квантовой механики, пустое пространство никогда не будет полностью пустым. Оно заполнено парами частиц, которые всплывают и исчезают. И этим мимолетные частицы запутаны.

Поэтому Ван Раамсдонк нарисовал воображаемую биссектрису на голографической этикетке и затем математически разорвал квантовую запутанность между частицами на одной половине этикетке и частицами на другой. Он обнаружил, что соответствующий диск анти-де-ситтеровского пространства начал делиться пополам. Будто бы запутанные частицы были крючками, которые удерживают полотно пространства и времени на месте; без них пространство-времени разлетается на части. По мере того, как Ван Раамсдонк понижал степень запутанности, часть подключенного к разделенным регионам пространства становилась тоньше, подобно резиновой нити, тянущейся от жвачки.

«Это навело меня на мысль, что присутствие пространства начинается с присутствия запутанности».

Это было смелое заявление, и потребовалось время, чтобы работа Ван Раамсдонка, опубликованная в General Relativity and Gravitation в 2010 году, привлекла серьезное внимание. Огонь интереса всполыхнул уже в 2012 году, когда четверо физиков из Калифорнийского университета в Санта-Барбаре написали работу, бросающую вызов общепринятым убеждениям о горизонте событий, точки невозврата черной дыры.

Истина, скрытая файрволом

В 1970-х годах физик-теоретик Стивен Хокинг показал, что пары запутанных частиц - тех же видов, которые Ван Раамсдонк позже анализировал в своей квантовой границе - могут распадаться на горизонте событий. Одна падает в черную дыру, а другая убегает вместе с так называемым излучением Хокинга. Этот процесс постепенно подтачивает массу черной дыры, в конечном итоге приводя к ее гибели. Но если черные дыры исчезают, вместе с ней должна исчезать и запись всего, что падало внутрь. Квантовая теория же утверждает, что информация не может быть уничтожена.

К 90-м годам несколько физиков-теоретиков, включая Леонарда Сасскинда из Стэнфорда, предложили решение этой проблемы. Да, сказали они, материя и энергия падает в черную дыру. Но с точки зрения внешнего наблюдателя, этот материал никогда не преодолевает горизонт событий; он словно балансирует на его грани. В результате горизонт событий становится голографической границей, содержащей всю информацию о пространстве внутри черной дыры. В конце концов, когда черная дыра испаряется, эта информация утекает в виде излучения Хокинга. В принципе, наблюдатель может собрать это излучение и восстановить всю информацию о недрах черной дыры.

В своей работе 2012 года физики Ахмед Альмхейри, Дональд Марольф, Джеймс Салли и Джозеф Полчинский заявили, что в этой картине что-то не так. Для наблюдателя, пытающегося собрать головоломку того, что находится внутри черной дыры, отметили одни, все отдельные части головоломки - частицы излучения Хокинга - должны быть запутаны между собой. Также каждая хокингова частица должна быть запутана со своим оригинальным партнером, который упал в черную дыру.

К сожалению, одной запутанности недостаточно. Квантовая теория утверждает, что для того, чтобы запутанность присутствовала между всеми частицами снаружи черной дыры, должна быть исключена запутанность этих частиц с частицами внутри черной дыры. Кроме того, физики обнаружили, что разрыв одной из запутанностей породил бы непроницаемую энергетическую стену, так называемый файрвол, на горизонте событий.

Многие физики усомнились в том, что черные дыры на самом деле испаряют все, что пытается проникнуть внутрь. Но сама возможность существования файрвола наводит на тревожные мысли. Ранее физики уже задумывались о том, как выглядит пространство внутри черной дыры. Теперь они не уверены в том, есть ли у черных дыр это «внутри» вообще. Все будто смирились, отмечает Прескилл.

Но Сасскинд не смирился. Он потратил годы, пытаясь доказать, что информация не исчезает внутри черной дыры; сегодня он так же убежден, что идея файрвола ошибочна, но доказать этого пока не смог. Однажды он получил загадочное письмо от Малдасены: «В нем было немного, - говорит Сасскинд. - Только ЭР = ЭПР». Малдасена, работающий сейчас в Институте продвинутых исследований в Принстоне, задумался о своей работе с банками супа 2001 года и заинтересовался, могут ли червоточины разрешить мешанину запутанности, порожденную проблемой файрвола. Сасскинд быстро подхватил эту идею.

В статье, опубликованной в немецком журнале Fortschritte der Physik в 2013 году, Малдасена и Сасскинд заявили, что червоточина - технически мост Эйнштейна-Розена, или ЭР - является пространственно-временным эквивалентом квантовой запутанности. (Под ЭПР понимают эксперимент Эйнштейна-Подольского-Розена, который должен был развеять мифологическую квантовую запутанность). Это означает, что каждая частица излучения Хокинга, независимо от того, как далеко она находится от начала, напрямую связана с недрами черной дыры посредством короткого пути через пространство-время.

«Если двигать через червоточину, далекие вещи оказываются не такими уж и далекими», - говорит Сасскинд.

Сасскинд и Малдасена предложили собрать все частицы Хокинга и столкнуть их вместе, пока они не коллапсируют в черную дыру. Эта черная дыра была бы запутана, а значит соединена червоточиной с оригинальной черной дырой. Этот трюк превратил запутанную мешанину хокинговых частиц - парадоксально запутанных с черной дырой и между собой - в две черные дыры, соединенные червоточиной. Перегрузка запутанности разрешилась, и проблема файрвола была исчерпана.

Не все ученые прыгнули на подножку трамвая ЭР = ЭПР. Сасскинд и Малдасена признают, что им предстоит проделать еще много работы, чтобы доказать эквивалентность червоточин и запутанности. Но после обдумывания последствий парадокса файрвола, многие физики соглашаются, что пространство-время внутри черной дыры обязано своим существованием запутанности с излучением снаружи. Это важное прозрение, отмечает Прескилл, поскольку оно также означает, что вся ткань пространства-времени Вселенной, включая тот клочок, который занимаем мы, является продуктом квантового жуткого действия.

Космический компьютер

Одно дело сказать, что вселенная конструирует пространство-время посредством запутанности; совсем другое - показать, как вселенная это делает. Этой сложной задачей занялись Прескилл и коллеги, которые решили рассмотреть космос как колоссальный квантовый компьютер. Почти двадцать лет ученые работали над строительством квантовых компьютеров, которые используют информацию, зашифрованную в запутанных элементах, вроде фотонов или крошечных микросхем, чтобы решать проблемы, с которыми традиционные компьютеры справиться не могут. Команда Прескилла использует знание, полученное в результате этих попыток, чтобы предсказать, как отдельные детали внутри банки с супом могли бы отразиться на заполненной запутанностью этикетке.

Квантовые компьютеры работают, эксплуатируя компоненты, которые находятся в суперпозиции состояний, как носители данных - они могут быть нулями и единицами одновременно. Но состояние суперпозиции очень хрупкое. Избыток тепла, например, может разрушить состояние и всю заключенную в нем квантовую информацию. Эти потери информации, которые Прескилл сравнивает с рваными страницами в книге, кажутся неизбежными.

Но физики ответили на это, создав протокол квантовой коррекции ошибок. Вместо того чтобы полагаться на одну частицу для хранения квантового бита, ученые разделяют данные между несколькими запутанными частицами. Книга, написанная на языке квантовой коррекции ошибок, будет полна бреда, говорит Прескилл, но все ее содержимое можно будет восстановить, даже если половина страниц пропадет без вести.

Квантовая коррекция ошибок привлекла много внимания в последние годы, но теперь Прескилл и его коллеги подозревают, что природа придумала эту систему уже давно. В июне, в журнале Journal of High Energy Physics, Прескилл и его команда показали, как запутывание множества частиц на голографической границе идеально описывает одну частицу, притягиваемую гравитацией внутри куска анти-де-ситтеровского пространства. Малдасена говорит, что эта находка может привести к лучшему пониманию того, как голограмма кодирует все детали пространства-времени, которое окружает.

Физики признают, что их размышления должны пройти долгий путь, чтобы соответствовать реальности. В то время как анти-де-ситтеровское пространство предлагает физикам преимущество работы с хорошо определенной границей, у Вселенной нет такой четкой этикетки на банке с супом. Ткань пространства-времени космоса расширяется с момента Большого Взрыва и продолжает делать это в нарастающем темпе. Если вы отправите луч света в космос, он не развернется и не вернется; он будет лететь. «Непонятно, как определить голографическую теорию нашей Вселенной, - писал Малдасена в 2005 году. - Просто нет удобного места для размещения голограммы».

Тем не менее, как бы странно ни звучали все эти голограммы, банки с супом и червоточины, они могут стать перспективными дорожками, которые приведут к слиянию квантовых жутких действий с геометрией пространства-времени. В своей работе над червоточинами Эйнштейн и Розен обсудили возможные квантовые последствия, но не провели соединения со своими ранними работами по запутанности. Сегодня эта связь может помочь объединить квантовую механику ОТО в теорию квантовой гравитации. Вооружившись такой теорией, физики могли бы разобрать загадки состояния юной Вселенной, когда материя и энергия умещались в бесконечно малой точке пространства. опубликовано

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции