Вконтакте Facebook Twitter Лента RSS

Землеведение - это наука будущего. Землеведение

В первую очередь землеведение - это базовая географическая дисциплина, на которой основываются такие разделы географии, как биогеография, космическое землеведение, климатология, а также почвоведение, метеорология и океанология. Таким образом, без ясного понимания задач и инструментов этой дисциплины невозможно качественное изучение других дисциплин.

Объект изучения

География и землеведение изучают Землю, ее поверхность и строение, а также следят за всеми процессами, которые происходят в среде обитания человека. Современными учеными землеведение относится к естественно-научному блоку географических дисциплин наряду с палеогеографией, гидрологией и почвоведением.

Главным объектом интереса землеведов является географическая оболочка Земли, которая имеет крайне сложное устройство и состоит из нескольких сфер, каждая из которых имеет свои особенности строения. Сегодня основные объекты изучения землеведения - это атмосфера, литосфера, гидросфера и биосфера.

Стоит отметить, что каждая из названных сфер изучается самостоятельной наукой, но вся оболочка как единое целостное образование, имеющее внутреннее непротиворечивое строение и свои законы функционирования, изучается именно землеведением.

Методы исследования в землеведении

Все многообразие научных методов землеведения - это общенаучные методы, междисциплинарные и специфические. Сложность каждого из этих методов обусловлена сложностью изучаемого объекта.

Наиболее продуктивной схемой изучения земной оболочки считается та, при которой интегрируются различные методы. Например, разумным считается совмещать исторический анализ и Кроме того, развитие современной вычислительной техники позволяет использовать такой эффективный метод исследования Земли, как моделирование.

Эффективным моделирование делает тот факт, что сегодня ученые располагают огромным массивом данных о состоянии экологии, климате и гидрологии и благодаря методу больших данных могут обобщать всю имеющуюся у них информацию, делая важные выводы.

Происхождение Земли

Землеведение 6 класса уделяет также внимание и тому, каким образом происходило формирование планеты. Сегодня ученые благодаря методу моделирования и имеющихся данных имеют довольно ясное представление о том, что планета формировалась из газо-пылевого облака, которое по мере остывания формировало планеты и малые космические объекты, такие как метеориты.

Кроме того, география 6 класса и землеведение изучают материки и океаны, а также тектонические платформы, которые образуют земную кору. Стоит обратит внимание на то, что толщина коры варьируется в зависимости от того, измеряется она на континенте или на океаническом дне.

Континентальная кора состоит из гранитного, базальтового и осадочного слоев и достигает толщины 40-50 километров. В то же время толщина земной коры на океаническом дне не превышает шести километров.

Гидросфера Земли

Гидросфера планеты является одной из тех оболочек, которые изучает землеведение. Это одна из самых важных для человеческой жизнедеятельности сфер, так как без чистой воды человек не сможет долго прожить, в то же время значительное число жителей планеты не имеют регулярного доступа к чистой качественной питьевой воде. Вся гидросфера земли состоит из подземных вод, рек, озер, океанов, морей и ледников.

Подземными водами называют все источники и резервуары воды, расположенные под земной поверхностью. Ложем подземных резервуаров служат водоупорные слои земной коры, которыми являются глиняные залежи и граниты.

Реками называют естественные потоки воды, которые движутся от истока, расположенного на возвышенности, к устью, расположенному в низине. Питание рек составляют талые воды, дожди и подземные источники. Важной особенностью реки как естественного водоема считается то, что она движется по руслу, которое сама себе прокладывает за продолжительное время.

На планете существуют несколько великих рек, которые оказывают огромное влияние на развитие культуры и производительных сил человечества. К таким рекам относят Нил, Евфрат, Тигр, Амазонку, Волгу, Енисей и Колорадо, а также некоторые другие полноводные реки.

Биосфера Земли

Землеведение - это не только наука о строении земной оболочки и физических процессах, проходящих в земной коре, но и дисциплина, изучающая развитие и взаимодействие крупных биологических сообществ. Современная биосфера состоит из десятков тысяч различных экосистем, каждая из которых сформирована в уникальных природных и исторических условиях.

Стоит отметить, что биологическая масса распределена на Земле крайне неравномерно. Большинство из многих миллионов видов живых организмов сосредоточены в местах, где имеется достаточное количество кислорода, солнечного света и питательных веществ - т.е. на поверхности земли и в верхних слоях земной коры и океана.

Однако последние научные данные свидетельствуют о том, что жизнь имеется также и на дне океанов, и даже в вечной мерзлоте Антарктиды.

Землеведение в настоящее время является фундаментальной наукой, основой для развития других физико-географических дисциплин, в частности — почвоведения, ландшафтоведения, биогеографии, космического землеведения, геологии, метеорологии, океанологии, климатологии и других. Землеведение изучает строение планеты Земля, ее непосредственное окружение, а также географическую оболочку — среду деятельности человека. В настоящее время в окружающей среде наблюдается быстрое развитие негативных процессов, в частности, изменение климата, возрастание загрязнения и др.

Проблемы взаимоотношений человеческого общества и природы в наши дни как никогда актуальны. Для грамотного контроля за происходящими процессами необходимо прежде всего знать строение нашей планеты и законы, управляющие ее развитием. Земля — наш общий дом, а от современных действий человеческого общества будут зависеть качество и комфортность проживания нашего и будущих поколений.

Как наука Землеведение прошло длительный путь исторического развития. Проблемы строения Земли волновали ученых с глубокой древности. Уже в древнем Китае, Египте, Вавилоне составлялись изображения поверхности Земли. Планы города Вавилон, побережья Средиземного моря сохранились до сих пор. Землеописание, т. е. география (от. гео — греч. «Земля» и графил — «описание») активно разрабатывалось в Древней Греции. Многих ученых античного периода интересовал вопрос о форме Земли. Высказывались различные идеи, в частности, что Земля находится на трех слонах, которые стоят на черепахе, плавающей в океане, и другие.

Выдающийся древнегреческий ученый Аристотель (384- 322 гг. до н. э.) в труде «Метеорологика» высказал гениальные идеи о строении Земли, ее шарообразной форме, о существовании разных «сфер», проникающих друг в друга, круговороте воды, морских течениях, зонах Земли, причинах землетрясений и т. д. Современные идеи землеведения во многом подтверждают его догадки.

Многих ученых интересовал также вопрос о размерах Земли. Наиболее точные измерения были проведены Эратосфеном Киренским — древнегреческим ученым (около 276-194 до н.э.). Им были заложены основы математической географии. Он впервые вычислил окружность Земли по меридиану, и, что удивительно, полученные цифры близки современным вычислениям — 40 тыс. км. Эратосфен впервые употребил термин «географика».

Античная география выполняла в основном описательные функции. Значительную роль в развитии этого направления сыграли работы древнегреческого географа и астронома Клавдия Птоломея (около 90-168 до н. э.). В своем труде «Руководство по географии», включающем восемь томов, он предлагает различать географию и хорографию. География имеет дело с изображением всей известной части Земли и всем, что находится на ней. Хорография занимается подробным описанием местности, т. е. своего рода краеведением, по современным понятиям. Птоломей составлял различные карты, и именно его считают «отцом» картографии. Им были предложены несколько новых картографических проекций. Наибольшую известность принесла ему идея о геоцентрическом устройстве мира, считавшая центром мироздания Землю, вокруг которой вращаются Солнце и другие планеты.

Считается, что труды Птоломея завершают античный период в развитии географии, занимавшейся тогда в основном описанием вновь открытых земель.

В эпоху Великих географических открытий (XVI-XVII вв.) проявилось другое направление — аналитическое.

Началом формирования землеведения как самостоятельной научной дисциплины считается выход в свет в Голландии «Всеобщей географии» Бернхарда Варениуса в 1650 г. В этой работе представлены достижения в области астрономии и создания гелиоцентрической системы мира (Н. Коперник, Г. Галилей, Дж. Бруно, И. Кеплер). Наряду с этим обобщены результаты Великих географических открытий. Предметом изучения землеведения, по Б. Варениусу, является земноводный круг, состоящий из земли, воды, атмосферы, проникающих друг в друга. Однако значение человека и его деятельности было исключено.

Ведущей идеей этого периода был анализ взаимосвязей между различными частями природы. В разработке этой идеи большое значение имели работы Александра фон Гумбольдта (1769-1859), выдающегося немецкого ученого-энциклопедиста, натуралиста, путешественника. Есть мнение, что труды Б. Варениуса являются началом развития общего землеведения, а достижения Гумбольдта — это одна из замечательных вершин. А. Гумбольдт много путешествовал, изучал природу Европы, Центральной и Южной Америки, Урала, Сибири. Именно в его трудах доказано значение анализа взаимосвязей в качестве основной идеи всей географической науки. Анализируя взаимосвязи рельефа, климата, животного мира и растительности, А. Гумбольдт заложил основы географии растений и географии животных, учения о жизненных формах, климатологии, общего землеведения обосновал идею вертикальной и широтной зональности. В его работах «Путешествие в равноденственные области Нового света», т. 1-30 (1807-1834) и «Космос» развивается идея о земной поверхности как особой оболочке, где не только существует взаимосвязь, но и взаимодействие земли, воздуха, воды, наблюдается единство неорганической и органической природы. А. Гумбольдт впервые употребляет термины «жизнесфера», что по смыслу соответствует современному «биосфера», и «сфера разума», соответствующий «ноосфере».

Книга А. Гумбольдта «Картины природы» никого не может оставить равнодушным, поскольку в ней сочетаются достоверные факты и высокохудожественные описания природы. Его считают основоположником художественного ландшафтоведения.

Основателем первой кафедры географии в Берлинском университете является живший в одно время с А. Гумбольдтом Карл Риттер (1779-1859). В своих широко известных трудах по землеведению он рассматривал Землю как жилище рода человеческого, существующего благодаря силе Божественного провидения.

К. Риттер ввел в науку термин «землеведение». Он пытался количественно определить пространственные соотношения между разными объектами.

В многотомном труде «Земля и люди. Всеобщая география» Э. Реклю (1830-1905) достаточно подробно описывает большинство стран мира. Он считается основоположником современного страноведения.

Из учебных пособий по землеведению, выходивших в XIX в., следует отметить работы Э. Ленца (1851), А. Рихтгофена (1883), Э. Ленда (1851). Однако эти авторы исключали из своих работ биогеографию.

В России в XVIII-XIX вв. развитие географических идей связано с именами выдающихся ученых М. В. Ломоносова, В. Н. Татищева, С. П. Крашенинникова.

Материалистический подход к изучению явлений и процессов в природе особенно ярко наблюдался в трудах М. В. Ломоносова (1711 — 1765). В работе «О слоях земных» (1763) он изложил законы формирования рельефа Земли, в целом соответствующие современным представлениям.

В XIX-XX вв. в России выходили труды по географии П. П. Семенова-Тян-Шанского, Н. М. Пржевальского, В. А. Обручева, Д. Н. Анучина и др.

С 80-х годов XIX в. на передовых позициях в области общего землеведения оказалась Русская географическая школа. В работах В.В.Докучаева (1846-1903) «Русский чернозем» (1883) и А. И. Воейкова (1842-1916) «Климаты земного шара» вскрывается на примере почв и климата сложный механизм взаимодействия компонентов географической оболочки.

В. В. Докучаев в конце XIX в. открыл закон мировой географической зональности. Это было выдающееся теоретическое обобщение. В. В. Докучаев полагал, что зональность является всеобщим законом природы. Этот закон распространяется как на органическую, так и неорганическую природу. Естественно-исторические зоны, существующие на земном шаре, являются пространственным выражением этого закона. Зеркалом закона мировой географической зональности являются почвы, отражающие взаимодействие живой и неживой природы. Год выхода монографии «Русский чернозем» — 1883 г. — считается годом рождения новой самостоятельной науки — почвоведения. В. В. Докучаев стал основоположником научного почвоведения. В его труде «Русский чернозем» доказывается, что почва — это самостоятельное естественно-историческое тело, возникшее вследствие взаимодействия пяти факторов почвообразования: 1) материнской породы; 2) климата; 3) рельефа местности; 4) живых организмов (микроорганизмов, растений, животных); 5) возраста страны. Впоследствии присоединился еше один фактор — хозяйственная деятельность человека. В. В. Докучаев пришел к выводу, что необходимо изучать не только отдельные факторы, но и закономерные связи и взаимодействия между ними. Он показал, что с почвенными зонами тесно связаны сельскохозяйственные области. Отсюда следует, что в каждой зоне сельское хозяйство имеет свои особенности и свои методы решения производственных задач.

Вместе с В. В. Докучаевым самостоятельно работали его ученики и последователи: А. Н. Краснов, В. И. Вернадский, Г. И. Танфильсв, Г. Н. Высоцкий, К. Д. Глинка, С. А. Захаров, Л. И. Прасолов, Б. Б. Полынов и др. В 1894 г. в Петровской земледельческой и лесной академии (ныне Московская сельскохозяйственная академия им. К. А. Тимирязева) была создана кафедра почвоведения, которую возглавил В. Р. Вильяме (1863-1939). В его учебнике «Почвоведение», выдержавшем пять изданий, обосновывается идея тесной связи знаний о почвах с запросами земледелия. Ученик В. В. Докучаева и ботаника А. Н. Бекетова (Петербургский университет) А. Н. Краснов (1862-1914) в 1889 г. организовал кафедру географии в Харьковском университете, занимался изучением степей и зарубежных тропиков, создал Батумский ботанический сад. А. Н. Краснов обосновал черты научного землеведения, отличающие его от старой географии, в частности отыскание взаимной связи и взаимной обусловленности между явлениями природы, изучение генезиса (происхождения) явлений, а также изучение изменяющейся природы, а не статичной. Он создал первый русский учебник по общему землеведению для университетов. В учебнике А. Н. Краснов развивает новый взгляд на географию как науку, изучающую не отдельные явления и предметы, а географические комплексы — пустыни, степи и др.

Таким образом, на протяжении столетий — от Аристотеля до Докучаева — предмет изучения физической географии усложнялся от двумерной земной поверхности до объемной географической оболочки с тесными связями между компонентами, ее составляющими.

В учебнике «Курс физической географии» II. И. Броунов четко сформулировал идею о том, что наружная оболочка Земли состоит из четырех сферических составляющих: литосферы, атмосферы, гидросферы и биосферы, проникающих друг в друга: отсюда задачей физической географии является изучение этого взаимодействия. Его идеи оказали значительное влияние на дальнейшее развитие физической географии.

Мысль о том, что именно природная оболочка Земли является основным предметом изучения физической географии, развивалась постепенно, начиная с А. Гумбольдта.

Однако, что такое оболочка Земли, какие компоненты входят в нее, каковы ее границы, было неясно. Впервые эти вопросы были рассмотрены Андреем Александровичем Григорьевым (1883- 1968) в 1932 г. в статье «Предмет и задачи физической географии».

В этой статье А. А. Григорьев впервые предложил термин «физико-географическая оболочка», в частности, он полагал, что «земная поверхность представляет качественно особую вертикальную физико-географическую зону или оболочку, характеризующуюся глубоким взаимопроникновением и активным взаимодействием литосферы, атмосферы и гидросферы, возникновением и развитием именно в ней органической жизни, наличием в ней сложного, но единого физико-географического процесса». В 1937 г. выходит монография А. А. Григорьева, в которой он лает подробное обоснование географической оболочки как основного предмета физической географии, рассматривает границы географической оболочки и методы ее изучения.

Примерно в это же время Л.С. Берг развивает учение В. В. Докучаева о географических зонах и разрабатывает учение о ландшафтах. Ряд ученых в конце 1940-х годов развернули дискуссию, пытаясь противопоставить учение А. А. Григорьева и Л. С. Берга. Однако в фундаментальной работе С. В. Калесника «Основы общего землеведения» (1947, 1955) было доказано, что эти два направления не противоречат, а взаимно дополняют друг друга.

Качественно новый этап в изучении географической оболочки наступил после запусков искусственных спутников Земли, полета 12 апреля 1961 г. Юрия Алексеевича Гагарина, выведения многочисленных лабораторий в ближний и дальний космос. Это дало возможность изучать географическую оболочку со стороны. Всех космонавтов восхищала красота Земли, наблюдаемая из космоса, и вместе с тем очевидным стало глобальное загрязнение человеком ее поверхности. Сохранение чистоты географической оболочки стало насущной задачей человечества, а теория охраны окружающей человека среды — основой современного землеведения.

Сегодня — это одна из основных отраслей в системе географических наук, изучающая закономерности географической оболочки, ее пространственно-временную организацию и дифференциацию; круговорот веществ, энергии и информации; ее функционирование, динамику и эволюцию. Современное землеведение исследует геосферы, слагающие географическую оболочку, следит за их состоянием, составляет региональные и глобальные прогнозы ее развития.

Все эти задачи землеведения решаются на базе как традиционных и новых методов географических исследований (картографического, статистического, геофизического и др.), так и новейших достижений геоинформатики, дистанционного зондирования, космического землеведения.

Географическая оболочка – предмет общего землеведения

Географическая оболочка – это внешний слой планеты, в котором соприкасаются и взаимодействуют литосфера, гидросфера, атмосфера и биосфера, т.е. косное и живое вещество. Географической эта система называется потому, что объединяет в единое целое неживую и живую природу. Ни одна другая земная сфера, как и любая известная оболочка остальных планет Солнечной системы, не имеет подобного комплексного объединения из-за отсутствия в них органического мира. Географическая оболочка

Важнейшими особенностями географической оболочки является ее исключительное богатство формами проявления свободной энергии, чрезвычайное разнообразие веществ по химическому составу и агрегатному состоянию, их видами и массами - от свободных элементарных частиц через атомы, молекулы к химическим соединениям и сложных тел, включая растительный и животный мир, на вершине эволюции которого находится человек. Среди других специфических признаков стоит выделить наличие в пределах этой природной системы воды в жидком состоянии, осадочных пород, различных форм рельефа, почвенного покрова, концентрацию и аккумуляцию солнечного тепла, большую активность большинства физико-географических процессов.

Географическая оболочка генетически неразрывно связана с поверхностью Земли, является ареной ее развития. На земной поверхности очень динамично развиваются процессы, обусловленные солнечной энергией (например действие ветра, воды, льда). Эти процессы вместе с внутренними силами и влиянием силы тяжести перераспределяют огромные массы горных пород, воды, воздуха и даже вызывают спуска и подъема определенных участков литосферы. Наконец, на поверхности Земли или вблизи от нее наиболее интенсивно развивается жизнь.

Главными чертами и закономерностями географической оболочки является целостность, ритмичность, зональность и круговорот вещества и энергии .

Целостность географической оболочки заключается в том, что изменение в развитии любого компонента природы обязательно вызывает изменение всех других (например, изменение климата в различные эпохи развития Земли отразилась на природе всей планеты). Масштабы этих изменений различны: они могут равномерно охватывать всю географическую оболочку или проявляться только на отдельных ее участках.

Ритмичность - это повторение одинаковых явлений природы через определенные промежутки времени. Таковы, например, суточные и годовые ритмы, особенно наиболее заметны в природе. Циклическими являются длительные эпохи потеплений и похолоданий, колебания уровня озер, морей, Мирового океана в целом, наступление и отступление ледников и т.

Зональность - закономерное изменение в пространстве строения компонентов географической оболочки. Различают горизонтальную (широтную ) и вертикальную (высотное) зональность. Первая обусловлена различным количеством тепла, поступающего на различные широты в связи с шаровидной формой Земли. Другой вид зональности - высотная поясность - проявляется только в горах и обусловлена изменением климата в зависимости от высоты.

Круговорот вещества и энергии приводит непрерывное развитие географической оболочки. Все вещества в ней находятся в постоянном движении. Часто круговороты вещества сопровождаются кругооборотами энергии. Например, в результате круговорота воды происходит выделение тепла при конденсации водяного пара и поглощения тепла при испарении. Биологический круговорот чаще всего начинается с превращения растениями неорганических веществ в органические. После отмирания органическое вещество превращается в неорганическую. Благодаря круговоротом происходит тесное взаимодействие всех компонентов географической оболочки, их взаимосвязанный развитие

Таким образом, географическая оболочка включает в себя всю гидросферу и биосферу, а также нижнюю часть атмосферы (в ней, правда, сосредоточено около 80% массы воздуха) и поверхностные слои литосферы.

Землеведение – наука о наиболее общих закономерностях географической оболочки Земли, ее вещественном составе, структуре, развитии и территориальном расчленении. Землеведение – раздел физической географии. Слово «география» означает «землеописание». Объектом землеведения является географическая оболочка Земли.

Географическая оболочка – это внешний слой планеты, в котором соприкасаются и взаимодействуют литосфера, гидросфера, атмосфера и биосфера, т.е. косное и живое вещество. Географическая оболочка - физическое тело. Верхняя ее граница находится между тропосферой и стратосферой на высоте 16-18 км. Нижняя граница на суше, находится на глубине 3-5 км. Гидросфера полностью включается географическую оболочку. Энергетическим компонентом географической оболочки является лучистая энергия Солнца и внутренняя энергия Земли.

Та сторона объекта, которая рассматривается наукой на определенном этапе развития, составляет предмет ее исследования. До середины 19 века предметом землеведения было описание земной поверхности. Сегодня предметом землеведения являются также изучение закономерности процесса, происходящего в географической оболочки, круговороты вещества и энергии, взаимодействия человеческого общества и природы.

Задачей землеведения является познание закономерностей строения, динамики и развития географической оболочки для разработки системы оптимального взаимодействия с происходящими процессами в ней. Землеведение в своих исследованиях использует разнообразные методы, как специальные географические, так и методы других наук. Наибольшее значение имеет экспедиционный (для полевых географических исследований); экспериментальный (для выявления роли отдельных факторов в природных явлениях); сравнительно – описательный (для установления характерных черт объектов); математический (для получения количественных характеристик природных явлений); статистический (для характеристики изменяющихся во времени и пространстве показателей; например, температура, соленость вод и прочее); картографический метод (для изучения объектов с помощью модели – карты); геофизический (для исследования строения земной коры и атмосферы); геохимический (для изучения химического состава и географической оболочки); аэрокосмический (использование аэрофотосъемки земной поверхности).

Строение Вселенной

Вселенная предстаёт перед нами всюду одинаковой - «сплошной» и однородной. Проще устройства и не придумать. Нужно сказать, что об этом люди уже давно подозревали. Указывая из соображений максимальной простоты устройства на общую однородность мира, замечательный мыслитель Паскаль (1623-1662) говорил, что мир - это круг, центр которого везде, а окружность нигде. Так с помощью наглядного геометрического образа он утверждал однородность мира.

У Вселенной есть и ещё одно важнейшее свойство, но о нем никогда даже и не догадывались. Вселенная находиться в движении - она расширяется. Расстояние между скоплениями и сверхскоплениями постоянно возрастает. Они как бы разбегаются друг от друга. А сеть ячеистой структуры растягивается.

Во все времена люди предпочитали считать Вселенную вечной и неизменной. Эта точка зрения господствовала вплоть до 20-х годов нашего века. В то время считалось, что она ограничена размерами нашей Галактики. Пути могут рождаться и умирать, Галактика все равно остается все той же, как неизменным остается лес, в котором поколение за поколением сменяются деревья.

Настоящий переворот в науке о Вселенной произвели в 1922 - 1924 годах работы ленинградского математика и физика А. Фридмана. Опираясь на только что созданную тогда А. Эйнштейном общую теорию относительности, он математически доказал, что мир - это не нечто застывшее и неизменное. Как единое целое он живет своей динамической жизнью, изменяется во времени, расширяясь или сжимаясь по строго определённым законам.

Фридман открыл подвижность звёздной Вселенной. Это было теоретическое предсказание, а выбор между расширением и сжатием нужно сделать на основании астрономических наблюдений. Такие наблюдения в 1928 - 1929 годах удалось проделать Хабблу, известному уже нам исследователю галактик.

Он обнаружил, что далёкие галактики и целые их коллективы движутся, удаляясь от нас во все стороны. Но так и должно выглядеть, в соответствии с предсказаниями Фридмана, общее расширение Вселенной.

Если Вселенная расширяется, то, значит, в далёком прошлом скопления были ближе друг к другу. Более того: из теории Фридмана следует, что пятнадцать - двадцать миллиардов лет назад ни звёзд, ни галактик ещё не было и всё вещество было перемешано и сжато до колоссальной плотности. Это вещество было тогда и немыслимо горячим. Из такого особого состояния и началось общее расширение, которое привело со временем к образованию Вселенной, какой мы видим и знаем её сейчас.

Общие представления о строении Вселенной складывались на протяжении всей истории астрономии. Однако только в нашем веке смогла появиться современная наука о строении и эволюции Вселенной - космология.

Гипотезы захвата

Очевидно, что небулярная гипотеза Шмидта, а равным образом и все небулярные гипотезы, имеют целый ряд неразрешимых противоречий. Желая избежать их, многие исследователи выдвигают идею индивидуального происхождения, как Солнца, так и всех тел Солнечной системы. Это так называемые гипотезы захвата.

Однако, избежав целого ряда противоречий, свойственных небулярным гипотезам, гипотезы захвата имеют другие, специфические противоречия, не свойственные небулярным гипотезам. Прежде всего, возникает серьезное сомнение, может ли крупное небесное тело, такое, как планета, особенно планета-гигант, так сильно затормозиться, чтобы перейти с гиперболической орбиты на эллиптическую. Очевидно, ни пылевая туманность, ни притяжение Солнца или планеты не могут создать такой силы тормозящий эффект.

Возникает вопрос: не разлетятся ли вдребезги на мелкие куски две планетозимали при своем столкновении? Ведь под влиянием притяжения Солнца, вблизи которого должно произойти столкновение, они разовьют большие скорости, в десятки км. в секунду. Можно предположить, что обе планетозимали рассыплются на осколки и частично упадут на поверхность Солнца, а частично умчатся в космическое пространство в виде большого роя метеоритов. И только, быть может, несколько осколков будут захвачены Солнцем или одной из его планет и превратятся в их спутники - астероиды.

Второе возражение, которое выдвигают оппоненты авторам гипотез захвата, относится к вероятности такого столкновения. По расчетам, выполненным многими небесными механиками, вероятность столкновения двух крупных небесных тел вблизи третьего, еще более крупного небесного тела, очень мала, так что одно столкновение может произойти за сотни миллионов лет. А ведь это столкновение должно произойти очень «удачно», т. е. столкнувшиеся небесные тела должны иметь определенные массы, направления и скорости движения и столкнуться они должны в определенном месте Солнечной системы. И при этом они должны не только перейти на почти круговую орбиту, но и остаться целыми и невредимыми. А это нелегкая задача для природы.

Что же касается захвата блуждающих планетозималей без столкновения, за счет одной лишь силы гравитационного притяжения (при помощи третьего тела), то такой захват либо невозможен, либо его вероятность ничтожна мала, настолько мала, что такой захват можно считать не закономерностью, а редчайшей случайностью. А между тем в Солнечной системе имеется большое количество крупных тел: планет, их спутников, астероидов и больших комет, что опровергает гипотезы захвата.

УСЛОВИЯ ДЛЯ ЗАТМЕНИЯ СОЛНЦА

Во время солнечного затмения между нами и Солнцем проходит Луна и скрывает его от нас. Рассмотрим подробнее условия, при которых может наступить затмение Солнца.

Наша планета Земля, вращаясь в течение суток вокруг своей оси, одновременно движется вокруг Солнца и за год делает полный оборот. У Земли есть спутник - Луна. Луна движется вокруг Земли, и полный оборот совершает за 29 1/2 суток.

Взаимное расположение этих трех небесных тел все время меняется. При своем движении вокруг Земли Луна в определенные периоды времени оказывается между Землей и Солнцем. Но Луна - темный, непрозрачный твердый шар. Оказавшись между Землей и Солнцем, она, словно громадная заслонка, закрывает собой Солнце. В это время та сторона Луны, которая обращена к Земле, оказывается темной, неосвещенной. Следовательно, солнечное затмение может произойти только во время новолуния. В полнолуние Луна проходит от Земли в стороне, противоположной Солнцу, и может попасть в тень, отбрасываемую земным шаром. Тогда мы будем наблюдать лунное затмение.

Среднее расстояние от Земли до Солнца составляет 149,5 млн. км,а среднее расстояние от Земли до Луны - 384 тыс. км.

Чем ближе предмет, тем большим он нам кажется. Луна по сравнению с Солнцем ближе к нам почти: в 400 раз, и в то же время ее диаметр меньше диаметра Солнца также приблизительно в 400 раз. Поэтому видимые размеры Луны и Солнца почти одинаковы. Луна, таким образом, может закрыть от нас Солнце.

Однако расстояния Солнца и Луны от Земли не остаются постоянными, а слегка изменяются. Происходит это потому, что путь Земли вокруг Солнца и путь Луны вокруг Земли - не окружности, а эллипсы. С изменением расстояний между этими телами изменяются и их видимые размеры.

Если в момент солнечного затмения Луна находится в наименьшем удалении от Земли, то лунный диск будет несколько больше солнечного. Луна целиком закроет собой Солнце, и затмение будет полным. Если же во время затмения Луна находится в наибольшем удалении от Земли, то она будет иметь несколько меньшие видимые размеры и закрыть Солнце целиком не сможет. Останется незакрытым светлый ободок Солнца, который во время затмения будет виден как яркое тоненькое кольцо вокруг черного диска Луны. Такое затмение называют кольцеобразным.

Казалось бы, солнечные затмения должны случаться ежемесячно, каждое новолуние. Однако этого не происходит. Если бы Земля и Луна двигались видной плоскости, то в каждое новолуние Луна действительно оказывалась бы точно на прямой линии, соединяющей Землю и Солнце, и происходило бы затмение. На самом деле Земля движется вокруг Солнца в одной плоскости, а Луна вокруг Земли - в другой. Эти плоскости не совпадают. Поэтому часто во время новолуний Луна приходит либо выше Солнца, либо ниже.

Видимый путь Луны на небе не совпадает с тем путем, по которому движется Солнце. Эти пути пересекаются в двух противоположных точках, которые называются узлами лунной о р б и т ы. Вблизи этих точек пути Солнца и Луны близко подходят друг к другу. И только в том случае, когда новолуние происходит вблизи узла, оно сопровождается затмением.

Затмение будет полным или кольцеобразным, если в новолуние Солнце и Луна будут находиться почти в узле. Если же Солнце в момент новолуния окажется па некотором расстоянии от узла, то центры лунного н солнечного дисков не совпадут и Луна закроет Солнце лишь частично. Такое затмение называется частным.

Луна перемещается среди звезд с запада на восток. Поэтому закрытие Солнца Луной начинается с его западного, т. е. правого, края. Степень закрытия называется у астрономов фазой затмения.

Вокруг пятна лунной тени располагается область полутени, здесь затмение бывает частным. Поперечник области полутени составляет около 6-7 тыс. км. Для наблюдателя, который будет находиться вблизи края этой области, лишь незначительная доля солнечного диска покроется Луной. Такое затмение может вообще пройти незамеченным.

Можно ли точно предсказать наступление затмения? Ученые еще в древности установили, что через 6585 дней и 8 часов, что составляет 18 лет 11 дней 8 часов, затмения повторяются. Происходит это потому, что именно через такой промежуток времени расположение в пространстве Луны, Земли и Солнца повторяется. Этот промежуток был назван саросом, что значит повторение.

В течение одного сароса в среднем бывает 43 солнечных затмения, из них 15 частных, 15 кольцеобразных и 13 полных. Прибавляя к датам затмений, наблюдавшихся в течение одного сароса, 18 лет 11 дней и 8 часов, мы сможем предсказать наступление затмений и в будущем.

В одном и том же месте Земли полное солнечное затмение наблюдается один раз в 250 - 300 лет.

Астрономы вычислили условия видимости солнечных затмений на много лет вперед.

ЛУННЫЕ ЗАТМЕНИЯ

К числу «необыкновенных» небесных явлений относятся также лунные затмения. Происходят они так. Полный светлый круг Луны начинает темнеть у своего левого края, на лунном диске появляется круглая бурая тень, она продвигается все дальше и дальше и примерно через час покрывает всю Луну. Луна меркнет и становится красно-бурого цвета.

Диаметр Земли больше диаметра Луны почти в 4 раза, а тень от Земли даже на расстоянии Луны от Земли более чем в 2 1/2 раза превосходит размеры Луны. Поэтому Луна может целиком погрузиться в земную тень. Полное лунное затмение гораздо продолжительнее солнечного: оно может длиться 1 час 40 минут.

По той же причине, по которой солнечные затмения бывают не каждое новолуние, лунные затмения происходят не каждое полнолуние. Наибольшее число лунных затмений в году - 3, но бывают годы совсем без затмений; таким был, например, 1951 год.

Лунные затмения повторяются через тот же промежуток времени, что и солнечные. В течение этого промежутка, в 18 лет 11 дней 8 часов (сарос), бывает 28 лунных затмений, из них 15 частных и 13 полных. Как видите, число лунных затмений в саросе значительно меньше солнечных, и все же лунные затмения можно наблюдать чаще солнечных. Это объясняется тем, что Луна, погружаясь в тень Земли, перестает быть видимой на всей не освещенной Солнцем половине Земли. Значит, каждое лунное затмение видно на значительно большей территории, чем любое солнечное.

Затмившаяся Луна не исчезает совершенно, как Солнце во время солнечного затмения, а бывает слабо видимой. Происходит это потому, что часть солнечных лучей приходит сквозь земную атмосферу, преломляется в ней, входит внутрь земной тени и попадает на Луну. Так как красные лучи спектра менее всего рассеиваются и ослабляются в атмосфере. Луна во время затмения приобретает медно-красный или бурый оттенок.

ЗАКЛЮЧЕНИЕ

Трудно представить себе, что солнечные затмения происходят так часто: ведь каждому из нас наблюдать затмения приходится чрезвычайно редко. Объясняется это тем, что во время солнечного затмения тень от Луны падает не на всю Землю. Упавшая тень имеет форму почти круглого пятна, поперечник которого может достигать самое большее 270 км. Это пятно покроет лишь ничтожно малую долю земной поверхности. В данный момент только на этой части Земли и будет видно полное солнечное затмение.

Луна движется по своей орбите со скоростью около 1 км/сек, т. е. быстрее ружейной пули. Следовательно, ее тень с большой скоростью движется по земной поверхности и не может надолго закрыть какое-то одно место на земном шаре. Поэтому полное солнечное затмение никогда не может продолжаться более 8 минут.

Таким образом, лунная тень, двигаясь по Земле, описывает узкую, но длинную полосу, па которой последовательно наблюдается полное солнечное затмение. Протяженность полосы полного солнечного затмения достигает нескольких тысяч километров. И все же площадь, покрываемая тенью, оказывается незначительной по сравнению со всей поверхностью Земли. Кроме того, в полосе полного затмения часто оказываются океаны, пустыни и малонаселенные районы Земли.

Последовательность затмений повторяется почти точно в прежнем порядке через промежуток времени, который называется саросом (сарос – египетское слово, означающее «повторение»). Сарос, известный ещё в древности, составляет 18 лет и 11,3 суток. Действительно, затмения будут повторяться в прежнем порядке (после какого-либо начального затмения) спустя столько времени, сколько необходимо, чтобы та же фаза Луны случилась на том же расстоянии Луны от узла её орбиты, как и при начальном затмении.

В течение каждого сароса происходит 70 затмений, из них 41 солнечное и 29 лунных. Таким образом, солнечные затмения происходят чаще лунных, но в данной точке на поверхности Земли чаще можно наблюдать лунные затмения, так как они видны на целом полушарии Земли, тогда как солнечные затмения видны лишь в сравнительно узкой полосе. Особенно редко удаётся видеть полные солнечные затмения, хотя в течение каждого сароса их бывает около 10.

№8 Земля, как шар, эллипсоид вращения, 3-хосный эллипсоид, геоид.

Предположения о шарообразности земли появились в VI веке до нашей эры, а с IV века до нашей эры были высказаны некоторые из известных нам доказательств, что Земля имеет форму шара (Пифагор, Эратосфен). Античными учеными доказательства шарообразности Земли основывались на следующих явлениях:
- кругообразный вид горизонта на открытых пространствах, равнинах, морях и т.д.;
- круговая тень Земли на поверхности Луны при лунных затмениях;
- изменение высоты звезд при перемещении с севера (N) на юг (S) и обратно, обусловленное выпуклостью полуденной линии и др. В сочинении «О небе» Аристотель (384 – 322 г.г. до н.э.) указывал, что Земля не только шарообразна по форме, но и имеет конечные размеры; Архимед (287 – 212 г.г. до н.э.) доказывал, что поверхность воды в спокойном состоянии является шаровой поверхностью. Ими же введено понятие о сфероиде Земли, как геометрической фигуре, близкой по форме к шару.
Современная теория изучения фигуры Земли берет начало от Ньютона (1643 – 1727 г.г.), открывшего закон всемирного тяготения и применившего его для изучения фигуры Земли.
К концу 80-х годов XVII века были известны законы движения планет вокруг Солнца, весьма точные размеры земного шара, определенные Пикаром из градусных измерений (1670 г.), факт убывания ускорения силы тяжести на поверхности Земли от севера (N) к югу (S), законы механики Галилея и исследования Гюйгенса о движении тел по криволинейной траектории. Обобщение указанных явлений и фактов привели ученых к обоснованному взгляду о сфероидичности Земли, т.е. деформации ее в направлении полюсов (сплюсности).
Знаменитое сочинение Ньютона – «Математические начала натуральной философии» (1867 г.) излагает новое учение о фигуре Земли. Ньютон пришел к выводу о том, что фигура Земли должна быть по форме в виде эллипсоида вращения с небольшим полярным сжатием (этот факт обосновывался им уменьшением длины секундного маятника с уменьшением широты и уменьшением силы тяжести от полюса к экватору из-за того, что «Земля на экваторе немного выше»).
Исходя из гипотезы, что Земля состоит из однородной массы плотности, Ньютон теоретически определил полярное сжатие Земли (α) в первом приближении равном, примерно, 1: 230. На самом деле Земля неоднородна: кора имеет плотность 2,6 г/см3, тогда как средняя плотность Земли составляет 5,52 г/см3. Неравномерное распределение масс Земли продуцирует обширные пологие выпуклости и вогнутости, которые сочетаясь образуют возвышенности, углубления, впадины и другие формы. Заметим, что отдельные возвышения над Землей достигают высот более 8000 метров над поверхностью океана. Известно, что поверхность Мирового океана (МО) занимает 71 %, суша – 29 %; средняя глубина МО (Мирового океана) 3800м, а средняя высота суши – 875 м. Общая площадь земной поверхности равна 510 х 106 км2. Из приведенных данных следует, большая часть Земли покрыта водой, что дает основание принять ее за уровенную поверхность (УП)и, в конечном итоге, за общую фигуру Земли. Фигуру Земли можно представить, вообразив поверхность, в каждой точке которой сила тяжести направлена по нормали к ней (по отвесной линии).
Сложную фигуру Земли, ограниченную уровенной поверхностью, являющуюся началом отчета высот, принято называть геоидом. Иначе, поверхность геоида, как эквипотенциальная поверхность, фиксируется поверхностью океанов и морей, находящихся в спокойном состоянии. Под материками поверхность геоида определяется как поверхность, перпендикулярная силовым линиям (рис. 3-1).
P.S. Название фигуры Земли – геоид – предложено немецким ученым –физиком И.Б. Листигом (1808 – 1882 г.г.). При картографировании земной поверхности, на основании многолетних исследований ученых, сложную фигуру геоида без ущерба для точности, заменяют математически более простой – эллипсоидом вращения . Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.
Эллипсоид вращения близко подходит к телу геоида (уклонение не превышает 150 метров в некоторых местах). Размеры земного эллипсоида определялись многими учеными мира.
Фундаментальные исследования фигуры Земли, выполненные русскими учеными Ф.Н. Красовским и А.А. Изотовым, позволили развить идею о трехосном земном эллипсоиде с учетом крупных волн геоида, в результате были получены его основные параметры.
В последние годы (конец XX и начало XXI в.в.) параметры фигуры Земли и внешнего гравитационного потенциала определены с использованием космических объектов и применением астрономо–геодезических и гравиметрических методов исследований так надежно, что теперь речь идет об оценке их измерений во времени.
Трехосный земной эллипсоид, характеризующий фигуру Земли, подразделяют на общеземной эллипсоид (планетарный), подходящий для решения глобальных задач картографии и геодезии и референц – эллипсоид, который используют в отдельных регионах, странах мира и их частях. Эллипсо́ид враще́ния (сферо́ид) - это поверхность вращения в трёхмерном пространстве, образованная при вращении эллипса вокруг одной из его главных осей. Эллипсоид вращения – геометрическое тело, образующееся в результате вращения эллипса вокруг малой оси.

Геоид - фигура Земли, ограниченная уровенной поверхностью потенциала силы тяжести, совпадающей в океанах со средним уровнем океана и продолженной под континенты (материки и острова) так, что эта поверхность всюду перпендикулярна направлению силы тяжести. Поверхность геоида более сглажена, чем физическая поверхность Земли.

Форма геоида не имеет точного математического выражения, и для построения картографических проекций подбирается правильная геометрическая фигура, которая мало отличается от геоида. Лучшим приближением геоида служит фигура, получающаяся в результате вращения эллипса вокруг короткой оси (эллипсоид)

Термин «геоид» был предложен в 1873 году немецким математиком Иоганном Бенедиктом Листингом для обозначения геометрической фигуры, более точно, чем эллипсоид вращения, отражающей уникальную форму планеты Земля.

Крайне сложная фигура - геоид. Она существует лишь теоретически, однако на практике ее нельзя ни пощупать, ни увидеть. Можно представить себе геоид в виде поверхности, сила земного притяжения в каждой точке которой направлена строго вертикально. Если бы наша планета была правильным шаром, заполненным равномерно каким-либо веществом, то отвес в любой ее точке смотрел бы в центр шара. Но ситуация осложняется тем, что неоднородной является плотность нашей планеты. В одних местах имеются тяжелые горные породы, в других пустоты, горы и впадины разбросаны по всей поверхности, так же неравномерно распределены равнины и моря. Все это меняет в каждой конкретной точке гравитационный потенциал. В том, что форма земного шара - геоид, виноват также эфирный ветер, который обдувает нашу планету с севера.

Метеорные тела

Чёткого разграничения между метеороидами (метеорными телами) и астероидами нет. Обычно метеороидами называют тела размерами менее сотни метров , а астероидами - более крупные. Совокупность метеороидов, ображающихся вокруг Солнца, образует метеорное вещество в межпланетном пространстве . Некоторая доля метеорных тел является остатком того вещества, из которого когда-то образовалась Солнечная система, некоторая – остатки постоянного разрушения комет, обломки астероидов.

Метеорное тело или метеороид – твёрдое межпланетное тело, которое при влете в атмосферу планеты вызывает явление метеора и иногда завершается падением на поверхность планеты метеорита .

Что обычно бывает, когда метеорное тело достигает поверхности Земли? Обычно ничего, так как из-за незначительных размеров метеорные тела сгорают в атмосфере Земли. Крупные скопления метеорных тел называется метеорным роем . Во время сближения метеорного роя с Землей наблюдаются метеорные потоки .

  1. Метеоры и болиды

Явление сгорания метеорного тела в атмосфере планеты называется метеором . Метеор – это кратковременная вспышка, след от сгорания проходит через несколько секунд.

За сутки в атмосфере Земли сгорает около 100000000 метеорных тел.

Если следы метеоров продолжить назад, то они пересекутся в одной точке, называемой радиантом метеорного потока .

Многие метеорные потоки являются периодическими, повторяются из года в год и названы по созвездиям, в которых лежат их радианты. Так, метеорный поток, наблюдаемый ежегодно примерно с 20 июля по 20 августа, назван Перcеидами, поскольку его радиант лежит в созвездии Персея. От созвездий Лиры и Льва получили соответственно свое название метеорные потоки Лириды (середина апреля) и Леониды(середина ноября).

Исключительно редко метеорные тела бывают сравнительно больших размеров, в этом случае говорят, что наблюдают болид . Очень яркие болиды видны и днём.

  1. Метеориты

Если метеорное тело достаточно большое и не смогло полностью сгореть в атмосфере при падении, то оно выпадает на поверхность планеты. Такие упавшие на Землю или другое небесное тело метеорные тела называют метеоритами .

Самые массивные метеорные тела, имеющие большую скорость, выпадают на поверхность Земли с образованием кратера .

В зависимости от химического состава метеориты подразделяются на каменные (85 %), железные (10 %) и железо-каменные метеориты (5 %).

Каменные метеориты состоят из силикатов с включениями никелистого железа. Поэтому небесные камни, как правило, тяжелее земных. Основными минералогическими составляющими метеоритного вещества являются железо-магнезиальные силикаты и никелистое железо. Более 90 % каменных метеоритов содержит округлые зерна – хондры. Такие метеориты называются хондритами.

Железные метеориты почти целиком состоят из никелистого железа. У них удивительная структура, состоящая из четырех систем параллельных камаситовых пластин с низким содержанием никеля и с прослойками, состоящими из тэнита.

Железо-каменные метеориты состоят наполовину из силикатов, наполовину из металла. Они обладают уникальной структурой, не встречающейся нигде, кроме метеоритов. Эти метеориты представляют собой либо металлическую, либо силикатную губку.

Один из крупнейших железных метеоритов, Сихотэ-Алинский, упавший на территорию СССР в 1947 г., был найден в виде россыпи множества осколков.

Виды масштаба

Масштаб на планах и картах выражается в:

1. Численной форме (численный масштаб ).

2. Именованной форме (именованный масштаб ).

3. Графической форме (линейный масштаб ).

Численный масштаб выражается простой дробью, в числителе которой единица, а в знаменателе – число, показывающее, во сколько раз горизонтальное проложение линии местности уменьшено при нанесении на план (карту). Масштабы могут быть любыми. Но чаще используются их стандартные величины: 1:500; 1:1000; 1:2000; 1:5000; 1:10 000 и т.д. Например, масштаб плана 1:1000 указывает, что горизонтальное проложение линии уменьшено на карте в 1000 раз, т. е. 1 см на плане соответствует 1000 см (10 м) на горизонтальной проекции местности. Чем меньше знаменатель численного масштаба, тем крупнее считается масштаб, и наоборот. Численный масштаб – величина безразмерная; она не зависит от системы линейных мер, т. е. им можно пользоваться, проводя измерения в любых линейных мерах.

Именованный масштаб(словесный) - вид масштаба, словесное указание того, какое расстояние на местности соответствует 1 см на карте, плане, снимке, записывается как в 1 см 100 км

Линейный масштаб представляет собой графическое выражение численного и именованного масштабов в виде линии, разделенной на равные отрезки – основания. Левый из них делится на 10 равных частей (десятые доли). Сотые доли оцениваются «на глаз».

Градусная сеть.

Находить месторасположение самых разных географических объектов на карте, а также ориентироваться на ней, нам помогает градусная сетка. Градусная сетка – это система меридианов и параллелей. Меридианы представляют собой невидимые линии, которые пересекают нашу планету вертикально по отношению к экватору. Меридианы начинаются и заканчиваются на полюсах Земли, соединяя их. Параллели – невидимые линии, которые проводят условно параллельно экватору. Теоретически меридиан и параллелей может быть множество, однако в географии принято размещать их с интервалом 10 – 20 °. Благодаря градусной сетке мы можем вычислить долготу и широту объекта на карте, а значит узнать его географическое расположение. Все точки, которые располагаются на одном меридиане, имеют идентичную долготу, точки, расположенные на одной параллели, обладают одинаковыми показателями широты.

Изучая географию, трудно не заметить, что на разных картах меридианы и параллели изображены неодинаково. Рассматривая карту полушарий, мы можем заметить, что все меридианы обладают формой полукруга и только один меридиан, который делит полушарие пополам, изображен в виде прямой линии. Все параллели на карту полушарий наносятся в виде дуг, за исключением экватора, который представлен прямой. На картах отдельных государств, как правило, меридианы изображаются исключительно в виде прямых линий, а параллели могут быть лишь немного изогнуты. Такие отличия изображения градусной сетки на карте объясняются тем, что нарушения земной градусной сетки при ее переносе на прямую поверхность недопустимы.

Азимуты.

Азимут - это угол, образуемый в данной точке на местности или на карте, между направлением на север и направлением на какой-либо предмет. Азимутом пользуются для ориентирования при передвижении в лесу, в горах, в пустынях или в условиях плохой видимости, когда нет возможности привязать и сориентировать карту. Также, с помощью азимута определяют направление движения судов и самолетов.

На местности, отсчет азимутов проводится от северного направления стрелки компаса, от северного, красного конца, по ходу часовой стрелки от 0° до 360°, иначе говоря - от магнитного меридиана данной точки. Если предмет находится от наблюдателя точно на Севере, то азимут равен 0°, если ровно на Востоке (справа) - 90°, на Юге (сзади) - 180°, на Западе (слева) - 270°.


Дарлинг, Муррей

Модуль Землеведение

Введение. Общее землеведение в системе географических дисциплин.

·Общее землеведение в системе географических наук.

·История географических исследований. Великие географические открытия.

·Географическая оболочка и ее компоненты.

1. Общее землеведение в системе географических дисциплин .

География – древняя и вечно юная наука, хорошо знакомая по школьному курсу. В ней неувядаемая романтика странствий удивительным образом сочетается с особым, глубоко научным видением мира. Едва ли найдется другая наука, которую в равной степени интересовали бы вода и суша, рельеф Земли и атмосферные процессы, живая природа и территориальная организация жизни и деятельности людей. Синтез этих знаний и характеризует современную географию.

Современная география – система взаимосвязанных наук, подразделяющихся прежде всего на науки физико-географические и экономико-географические.

Физико-географические науки (физическая география) относятся к наукам естественным, изучающим природу.

Объектом изучения физической географии является комплексная или , сформировавшаяся в результате соприкосновения, взаимопроникновения и взаимодействия литосферы, гидросферы, атмосферы и организмов. По-другому, ГО - географическая оболочка Земли это арена сложного взаимодействия и переплетения самых различных явлений и процессов живой и неживой природы, человеческого общества . В силу этого объект географии отличается от объектов других наук своей комплексностью, разнообразной системной организацией.

Знание общепланетарных географических закономерностей необходимо для понимания особенностей любой части планетарного комплекса, для расчета, учета, прогноза и регулирования воздействий общества на ГО.

Изучением участков ГО, составляющих ее природный комплекс, измененных и не измененных деятельностью людей, занимается раздел общего землеведения – ландшафтоведение. Общее землеведение и ландшафтоведение неразрывно связаны: предмет их изучения – природный комплекс. Иногда ландшафтоведение путают с физическим страноведением, которое занимается изучением участков ГО в «случайных границах», например, административных. Особого, своего предмета исследования физическое страноведение не имеет. Страноведческие работы важны тем, что они дают физико-географические сведения об определенной территории, необходимые практике.

Изучением компонентов ГО занимаются частные (компонентные) физико-географические науки. К ним относятся:

Геоморфология (от греч. geо – «Земля», morphe – наука, изучающая верхнюю, воздействующую с другими компонентами ГО часть литосферы . Результатом этого воздействия является рельеф земной поверхности. Изучает разнообразные формы рельефа, их происхождение и развитие.

Климатология (от греч. кlima – «наклон», logos – «учение») – наука о закономерностях формирования и развития в пространстве и времени воздушных масс атмосферы в результате их взаимодействия с другими компонентами ГО.

Океанология комплексная наука о Мировом океане как специфической части ГО Земли.

Гидрология наука о природных водах Земли – гидросфере . В узком смысле – наука о водах суши, исследующая разнообразные водные объекты (реки, озера, болота) с качественной и количественной характеристикой их положения, происхождения, режима в зависимости от состояния других компонентов ГО.

Почвоведение наука об особом материальном теле Земли – почве . Почва – реальное проявление взаимодействия всех компонентов ГО.

Биогеография синтетическая наука, которая выявляет закономерности географического распределения организмов и их сообществ, исследует их экосистемную организацию .

Гляциология – (от лат. glacies – «лед» и греч. logos – «учение») и

мерзлотоведение (геокриолитология) – науки об условиях возникновения, развития и формах различных наземных (ледники, морские льды, снежники, лавины и т.д.) и литосферных (вечная мерзлота, подземное оледенение) льдов.

Для понимания современного состояния ГО, всех составляющих ее природных комплексов необходимо знание истории их развития. Этим и занимаются палеогеография и историческая география.

Палеогеография и историческая география науки, исследующие тенденции развития географических объектов в прошлом.

Если «общее землеведение» наука естественная, то экономическая география относится к общественным наукам, т.к. изучает структуру и размещение производства, условия и особенности его развития в различных странах и районах.

На стыке географии со смежными науками возникают новые направления: медицинская, военная, инженерная география.

Географические исследования немыслимы без применения карт, картографирования.

Карта, методы ее создания и использования составляют предмет изучения самостоятельной географической науки картографии.

2. История географических исследований.

Землю открывали сообща. Самая первая документально подтвержденная экспедиция была организована женщиной.

Царица Хатшепсут – в истории Древнего Египта отправила корабли в страну благовоний – Пунт (ок. 1493 – 1492 гг. до н.э.).

Долгое время мореплавание оставалось исключительно прибрежным, т.к. единственным орудием движения было весло.

Около 1150 -1000 гг. до н.э. греки познакомились с Черным морем. Уже в 8 веке до н.э. они открыли Колхиду, основали 1-е колонии.

Начиная с 8 века финикияне регулярно плавали к островам Блаженных (Канарские острова), добывали красители из особого вида лишайника и из смолы драконового дерева.

Около 525 г. до н.э. они попытались заселить западное побережье Африки (финикияне – первооткрыватели Африки). Их беспримерное плавание вокруг Африки из Красного моря в Средиземное было повторено лишь через 2000 лет.

4 век до н.э. Общеупотребительными стали 2 части света: Европа и Азия (Ассия), связанные с ассирийскими терминами «эреб» - закат, и «асу» - восход. Третью известную часть света греки назвали Ливией. Римляне, завоевав Корфаген (2 в. До н.э.), назвали свою провинцию «Afrika», т.к. там обитало берберское племя афригии («афри» - пещера).

Большинство античных географов говорили, что Земля шарообразна, вопрос о размерах вызывал споры (Эратосфен 276 – 195 гг. до н.э. – длина окружности – 252 тыс. стадий, Посийдоний – 180 тыс. стадий).

На карте Эратосфена были нанесены параллели с различными промежутками, соответствующими климатическим зонам (они были вычислены по продолжительности уже схематично).

Весь земной шар был поделен на 5 или 9 широтных поясов: экватор – необитаемый, вследствие жары, два полярных – также необитаемых, вследствие холода, и лишь 2 промежуточных пояса – умеренны и обитаемы.

Полагали, что обитаемая часть суши окружена единым беспредельным Мировым океаном (Страбон).

Постепенно, по истечении веков, античная идея о шарообразности Земли была заменена на библейскую: Земля – диск, закрепленный под водами и покрытый хрустальным небосводом.

Начиная с 8 века килевые корабли норманнов (викингов) бесстрашно бороздили Норвежское, Балтийское, Северное, Баренцево моря, Бискайский залив. Они проникали в Белое, Каспийское, Средиземное, Черное моря, грабили и разоряли поселения. Они захватывали Британские острова, укрепились в Нормандии, терроризировали Францию, создали норманнское государство в Сицилии, 2 столетия держали в страхе всю Европу.

Они открыли Исландию (ок. 860 г.), в 981 г. Достигли берегов Гренландии и в 1000 г. – берегов Америки.

Гренландия была открыта Эриком Рыжим. Лейф Эриксон открыл Америку.

В середине 14 века началось сильное похолодание. Произошло угасание гренландских колоний.

Норманнам удалось проникнуть внутрь Америки до Великих озер и верховьев Миссисипи. По полному праву в 1887 г. в Бостоне был воздвигнут памятник Лейфу Эриксону – как первооткрывателю Америки.

Открытия норманнов не привлекли внимания ученых, как и незамеченные путешествия арабов.

Марроканца Ибн Батуту часто называют «величайшим путешественником всех времен до Магеллана. За 24 года (1325-1349) по суше и морю прошел около 120 тыс. км. Его ценнейший труд – книга по описанию посещенных им городов и стран.

Карты арабских географов Идриси (ок. 1150 г.) и Ибн аль-Варди (13 в.) свидетельствуют о присутствии там Скандинавии, Балтийского моря, Ладожского и Онежского озер, Двины, Днепра, Дона, Волги. Идриси показал Енисей, Байкал, Амур, Алтайские горы, Тибет, страну Син и страну Инд.

Через 3 с лишним столетия португальцы обогнули мыс Доброй Надежды, доказав, что Индийское море – часть Мирового океана (тогда появилось очертание 3-го материка – Африки).

Предметом землеведения является географическая оболочка - объем вещества разного состава и состояния, возникшего в земных условиях и сформировавшего специфическую сферу нашей планеты. Географическая оболочка в землеведении исследуется как часть планеты и Космоса, которая находится под властью земных сил и развивается в процессе сложного космическо-планетарного взаимодействия.

В системе фундаментального географического образования землеведение является своеобразным связующим звеном между географическими знаниями, навыками и представлениями, полученными в школе, и глобальным естествознанием. Этот курс вводит будущего географа в сложный профессиональный мир, закладывая основы географического мировоззрения и мышления. Географический мир в землеведении предстает в виде целостности, процессы и явления рассматриваются в системной связи между собой и с окружающим пространством. «В землеведении с фактов, как таковых, внимание переносится на выяснение всесторонних связей между ними и раскрытие сложной совокупности географических процессов на пространстве всего земного шара», - писал более полувека назад С. В. Калесник.

Землеведение принадлежит к числу фундаментальных естественных наук. В иерархии естественного цикла наук землеведение как частный вариант планетоведения должно находиться в одном ряду с астрономией, космологией, физикой, химией. Следующий ранг создают науки о Земле - геология, география, общая биология, экология и др. В системе географических дисциплин землеведение занимает особую роль. Оно предстает как бы «наднаукой», объединяющей информацию о всех процессах и явлениях, происходящих после формирования планеты из межзвездной туманности. За это время на нашей планете возникли земная кора, воздушная и водная оболочки, в разной степени насыщенные живым веществом. В результате их взаимодействия по периферии планеты сформировался специфический материальный объем - географическая оболочка. Изучение этой оболочки как комплексного образования и является задачей землеведения.

Землеведение служит теоретической базой глобальной экологии - науки, которая оценивает текущее состояние и прогнозирует ближайшие изменения географической оболочки как среды существования живых организмов с целью обеспечения их экологического благополучия. С течением времени состояние географической оболочки менялось и меняется от чисто природной к природно-антропогенной и даже существенно антропогенной. Но она всегда была и будет по отношению к человеку и живым существам окружающей средой. С таких позиций, основная задача землеведения - исследование глобальных изменений, происходящих в географической оболочке, для понимания взаимодействия физических, химических и биологических процессов, которые определяют экосистему Земли.


Землеведение является теоретической основой эволюционной географии - огромного блока дисциплин, исследующих историю возникновения и развития нашей планеты и ее окружения. Оно обеспечивает понимание прошлого и аргументированность причин и следствий современных процессов и явлений в географической оболочке. Исходя из того, что прошлое определяет современность, землеведение существенно помогает расшифровке тенденций развития практически всех глобальных проблем современности. Это своеобразный ключ к познанию мира.

Термин «землеведение» появился в середине XIX в. при переводе трудов немецкого географа К. Риттера русскими переводчиками под руководством П. П. Семенова-Тян-Шанского. Это слово имеет сугубо русское звучание. В настоящее время в иностранных языках понятию «землеведение» отвечают разные термины и его дословный перевод подчас затруднителен. Нами уже высказывалось мнение, что термин «землеведение» введен русскими исследователями как наиболее полно отражающий сущность переводимых описаний. В связи с этим вряд ли правильно утверждать, что «землеведение» имеет иностранное происхождение и введено К. Риттером. В работах Риттера такого слова нет, он говорил о познании Земли или общей географии, а русскоязычный термин - это плод русских специалистов.

Землеведение как системное учение сложилось главным образом на протяжении XX в. в итоге исследований крупнейших географов и естествоиспытателей, а также обобщений накопленных знаний. Однако его первоначальная направленность заметно трансформировалась, пройдя путь от познания фундаментальных при-родно-географических закономерностей к исследованию на этой основе «очеловеченной» природы в целях оптимизации окружающей (природной или природно-антропогенной) среды и управления ею на планетарном уровне, имея благородную задачу - сохранение всего биологического многообразия.

Рассматривая землеведение как фундаментальную естественную науку географического профиля, необходимо обратить внимание на главный методический прием исследования географических объектов - пространственно-территориальный, т. е. изучение любого объекта в его пространственном расположении и взаимосвязи с окружающими объектами. В связи с этим особо подчеркнем, что географическая оболочка - понятие объемное, где территория с ее глубиной (недрами и водами) и высотой (воздухом) формируется совместно под действием географических процессов и явлений, постоянно изменяющихся во времени.

Итак, землеведение - фундаментальная наука, изучающая общие закономерности строения, функционирования и развития географической оболочки в единстве и взаимодействии с окружающим пространством-временем на разных уровнях его организации (от Вселенной до атома) и устанавливающая пути создания и существования современных природных (природно-антропогенных) ситуаций и тенденции их возможного преобразования в будущем.

Литература

Боков В.А., Селиверстов Ю.П., Черванев И.Г. Общее землеведение. - СПб., 1998.

Будыко М. И. Эволюция биосферы. - Л., 1984.

Будыко М.И., Ронов А.Б., Яншин А. Л. История атмосферы. -Л., 1985.

Веклич М.В. Проблемы палеоклиматологии. - Киев, 1987.

Вронский В. А., Войткевич Г. В. Основы палеогеографии. - Ростов-на-Дону, 1997.

Географические проблемы конца XX века / Отв. ред. Ю. П. Селиверстов. - СПб., 1998.

География: на грани веков / Отв. ред. Ю. П.Селиверстов. Тр. XI съезда РГО. - Т. 1.-СПб., 2000.

Геренчук К.И., Боков В.А., Черванев И.Г. Общее землеведение. - М., 1984.

Исаченко А. Г. Ландшафтоведение и физико-географическое районирование. - М., 1991.

Калесник СВ. Общие географические закономерности Земли. - М., 1970.

Любушкина С. Г., Пашканг К. В. Естествознание: Землеведение и краеведение. - М., 2002.

Марков К. К., Добродеев О. П., Симонов Ю.Г., Суетова И. А. Введение в физическую географию. - М., 1970.

Милъков Ф. И. Общее землеведение. - М., 1990.

Неклюдова М.Н. Общее землеведение. - М., 1976.

Николаев В. А. Ландшафтоведение. - М., 2000.

Синицын В.М. Введение в палеоклиматологию. - Л., 1980.

Шубаев Л. П. Общее землеведение. - М., 1977.

ГЛАВА 1. РУБЕЖИ ЗЕМЛЕВЕДЕНИЯ

Истоки землеведения были заложены в глубокой древности, когда человек стал интересоваться своим окружением на Земле и в Космосе. Однако древние мыслители не только описывали окрестности. Уже изначально люди систематически наблюдали за изменениями окружающего пространства и природными совпадениями, пытаясь установить причинно-следственные связи. Задолго до религиозных учений и представлений о божественном начале природы и жизни существовали взгляды на окружающий мир. Так постепенно складывались понятия и представления, многие из которых носили, несомненно, землеведческий характер.

Египтяне и вавилоняне прогнозировали время наступления наводнений в зависимости от расположения звезд, греки и римляне измерили Землю и установили ее положение в Космосе, китайцы и предки индусов постигали смысл жизни и взаимоотношения человека с его природным окружением. Мегалитические культуры неизвестных народов использовали закономерности движения Земли и положения планет и звезд для своих идеологических воззрений и построений культовых сооружений. Эти достижения характеризуют донаучный период познания и становления географических знаний. Многие открытия, приписанные мыслителям средневекового Возрождения, были известны уже в глубокой древности.

В доантичный период в Древней Индии возникло учение о материальной субстанции, которая представляла собой отдельные неделимые элементы (атомы) или их сочетания. Кроме материи, к неживым субстанциям относились пространство и время, а также условия покоя и движения. Жители Индии первыми провозгласили принцип непричинения вреда живым организмам. В Древнем Китае было создано учение о всеобщем законе мира вещей, согласно которому жизнь природы и людей протекает по определенному естественному пути, составляющему вместе с субстанцией вещей основу мира. В мире все находится в движении и изменении, в процессе которых все вещи переходят в свою противоположность. Древний Вавилон и Древний Египет дали примеры использования достижений астрономии, космологии и математики в практической жизни народов. Здесь возникли учения о происхождении мира (космогония) и его строении (космология). Вавилоняне установили правильную последовательность планет, сформировали звездное астральное мировоззрение, выделили знаки зодиака, ввели 60-ричную систему исчисления, лежащую в основе градусной меры и шкалы времени, установили периоды повторяемости солнечных и лунных затмений. В эпохи Древнего и Среднего царств в Египте были разработаны основы прогнозирования нильских разливов, создан солнечный календарь, точно определена продолжительность года и выделено 12 месяцев. Финикийцы и карфагеняне применили знания астрономии для навигации и ориентирования по звездам. Древними народами была высказана правильная и основополагающая до настоящего времени мысль об эволюции окружающего мира (от простого к сложному, от беспорядка к порядку), его постоянной изменчивости и обновлении.

В античное время было составлено представление о геоцент-ричном строении Мира (К.Птолемей, 165 - 87 гг. до н.э.), введены понятия «Вселенная» и «Космос», даны правильные оценки формы и размеров Земли. В это время сложилась система наук о Земле, основными направлениями которой были: описательно-страноведческое (Страбон, Плиний Старший), математико-гео-графическое (пифагорейцы, Гиппарх, Птолемей) и физико-географическое (Эратосфен, Посидоний).

Многое дали развитию географии и ее отдельных направлений эпохи Средневековья и Возрождения - время великих географических открытий (с конца XV в.), когда получили широкое развитие путешествия, принесшие огромный фактический материал о морях и землях, обобщение которого совершенствовало представления о географическом пространстве. Была практически доказана шарообразность Земли, единство вод Мирового океана, впервые создан глобус (в первой половине XV в. до кругосветного плавания Магеллана). Н.Коперник обнародовал свою гелиоцентрическую систему строения Вселенной, а Д.Бруно высказал идею о бесконечности Вселенной и множественности миров. В океанах были обнаружены течения (в частности, Гольфстрим), зоны штилей и муссонов. Г. Меркатор предложил новую проекцию и создал мировую карту, удобную для навигации. С этим периодом связаны появление сравнительно географических описаний, создание теорий научных заключений методами индукции (Ф. Бэкон) и дедукции (Р.Декарт), разработка метода изолиний для составления батиметрических, а затем и гипсографических карт. Конструирование зрительной трубы, термометра и барометра позволило приступить к развитию экспериментальной географии и инструментальным наблюдениям.

На рубеже XVI и XVII вв. начинают оформляться контуры землеведения. Н.Карпентер (1625) попытался свести воедино сведения о природе Земли. Несколько позже (1650) появился труд Б. Варениуса, который можно считать официальным началом землеведения, где он записал, что «всеобщая география называется та, которая рассматривает Землю вообще, изъясняет ее свойства, не вступая в подробное стран описание». В 1664 г. Р. Декарт дал естественно-научное объяснение происхождения Земли. Он считал, что Солнце и все планеты Солнечной системы образовались в результате вихревого движения мельчайших частиц материи, а при формировании Земли произошла дифференциация вещества на огненно-жидкое металлическое ядро, твердую кору, атмосферу и воду. Этот труд породил много представлений (Т. Барнет, Дж. Вудворд, У. Уистон) о происхождении тел окружающего пространства и поведении земных масс. Возникли гипотеза контракции, базирующаяся на взглядах о сокращении объема планеты по мере ее остывания (Э. Бомон), предположения о зависимости крупных форм рельефа от движений земных масс, представления о непрерывной связи внутренних и внешних сил развития Земли (М.Ломоносов). Впервые были предприняты попытки классифицировать живые организмы (Дж.Рей, К.Линней, Ж.Ламарк), а естественную историю Земли стали рассматривать совместно с живыми организмами, включая человека (Ж.Бюффон, Г.Лейбниц).

В середине XVIII в. появились новые научно обоснованные теории и гипотезы. Первой в этом ряду следует назвать теорию мироздания и образования Солнечной системы И.Канта (1755), в которой автор опирался на открытые И.Ньютоном (1686) законы всемирного тяготения и движения материи. Он предложил механическую модель происхождения мира из первоначально рассеянной неоднородной материи путем самопроизвольного усложнения ее структуры. Признавая вечность и бесконечность Вселенной, И. Кант говорил о возможности нахождения в ней жизни. По существу, с И. Канта началось познание истории природы и Земли на строго научной основе. Среди многих замечательных имен отметим исследователей, создавших фундамент современного землеведения как обобщающей науки о Земле.

А.Гумбольдт и К.Риттер являются крупнейшими учеными-географами и путешественниками первой половины XIX в., которые внесли огромный вклад в разработку многих географических понятий и закономерностей. А.Гумбольдт (1769-1859) создал 5-томный труд «Космос» по сравнительному землеведению (физическому миропониманию в оригинальной редакции) и написал о своих путешествиях по Новому Свету в 30 томах. В них он изложил новейшие идеи: ввел понятия «земной магнетизм», «магнитный полюс» и «магнитный экватор», обосновал эволюционные изменения земной поверхности, заложил основы палеогеографии, сравнил фауну Южной Америки и Австралии, установив их связи и различия, исследовал очертания континентов и положения их осей, изучил высоты материков и определил положение центров тяготения континентальных масс. При изучении атмосферы Гумбольдтом были установлены изменения воздушного давления в зависимости от широты и высоты места и времени года, выяснено климатическое распределение теплоты, влажности, воздушного электричества, доказана тесная связь внут-риземных и атмосферных процессов, а также взаимозависимость системы атмосфера-океан-суша. Понятие «климат» ученый употреблял в широком географическом понимании как свойство атмосферы, «...сильно зависимое от состояний моря и земли и произрастающей на ней растительности». Он также обосновал зависимость живой природы от климата и заложил основы научной геохимии.

С именем К.Риттера (1779-1859) связано становление современной географии. Он показал интегрирующую роль географии в естествознании и познании окружающего мира, сформулировал вполне материалистичный взгляд на природу как совокупность всех вещей, «существующих вблизи и вдали от нас, соединенных временем и пространством в стройную систему», высказал идею равновесия природных процессов и явлений в постоянных круговоротах и превращениях, доказал взаимодействие суши, моря и воздуха в процессе функционирования. В 1862 г. Риттер создал первый курс землеведения (на русский язык переведен в 1864 г.), основой которого он полагал физическую географию, объясняющую силы (процессы) природы. Оригинальную систему природы Земли ученый рассматривал как своеобразный организованный и постоянно развивающийся единый организм, отличающийся особым строением, законами и механизмами развития. К. Риттер придерживался мнения, что, только опираясь на идею земного организма или целостности Земли, можно представить появление и развитие ее составных частей, понять тайну устройства планеты. Он обосновал понятия «земное пространство» как целостное трехмерное единство и один из объектов физической географии и «ландшафт» в его современном значении, подчеркивая при этом его важную роль как основы органической жизни. Ученым разработано представление о рельефе как о пластике и конфигурации земной поверхности, создана классификация крупных форм рельефа, введены понятия «нагорье», «плоскогорье», «горная страна», «среда», «элемент», а также рассмотрена зависимость различных природных тел и этносов от географического положения.

К. Риттер создал научную школу, в которую входили такие крупные географы, как Э.Реклю, Ф.Ратцель, Ф. Рихтгофен, Э.Ленц, внесшие значительный вклад в понимание географических особенностей отдельных частей Земли и обогатившие содержание теоретического землеведения и физической географии.

Вторая половина XIX в. характеризуется новыми разработками в географических науках, из которых появились самостоятельные дисциплины. Наибольшая роль в это время принадлежит российским исследователям.

А.И.Воейков (1842- 1916) известен как основоположник климатологии. Он установил важнейшие факторы образования климата, обосновал энергетический баланс земного шара, объяснил механизм теплопередачи и климатические процессы в различных географических поясах.

Взаимосвязь природных явлений исследовалась В.В.Докучаевым (1846-1903). Основным результатом его трудов следует считать разработку понятия «природный комплекс» применительно к почве - самостоятельному естественноисторическому телу и продукту взаимодействия климата, живых организмов и материнских горных пород. Исследуя почвы и растительность, он ввел понятия «естественные исторические процессы» и «зоны природы», которые легли в основу открытого им закона мировой зональности. Докучаевым сформулирована программа комплексной и единой парадигмы нового естествознания - науки о соотношениях между живой и неживой природой, между человеком и окружающим его миром.

Г.Н.Высоцкий (1865-1940) внес существенный вклад в понимание процессов функционирования природных комплексов. Он установил водорегулирующую роль верхнего горизонта почвы, выделил типы почв по характеру водного режима. Ему удалось показать значение леса в гидроклиматических особенностях географической оболочки и его роль как одного из факторов развития географической среды. В методическом отношении его исследования обогатили науки о Земле применением пространственно-временных диаграмм для выявления изменений.

Примерно в эти же годы З.Пассарге (1867- 1958) ввел фундаментальное понятие физической географии - «естественный ландшафт» - территорию, где все компоненты природы обнаруживают соответствие. Он выделил факторы ландшафта, составил ландшафтную классификацию на примере Африки.

В России в эти же годы близкими вопросами занимался Л. С. Берг (1876- 1950), который обосновал понятие «ландшафтная зона» как совокупность одних и тех же ландшафтов и разработал обоснованное деление территории Сибири и Туркестана, а затем и всего Советского Союза на географические (ландшафтные) зоны. Он утвердил понятие о ландшафте как о закономерном единстве предметов и явлений, где целое влияет на части, а части - на целое. Им были заложены основы ландшафтно-географического районирования с выделением зон и ландшафтов как реально существующих природных образований с естественными границами. Берг сформулировал идею о смене ландшафтов в ходе развития планеты и доказал необратимость этих смен. Географию он считал наукой о географических ландшафтах, придавая ей тем самым страноведческий характер, а землеведение рассматривал как отрасль физической географии.

А.Н.Краснов (1862- 1914) известен как основоположник конструктивного землеведения, позволившего ему на этой основе разработать и осуществить мероприятия по преобразованию Черноморских субтропиков. Он создал первый курс «Общего землеведения» (1895-1899), задачей которого было нахождение причинной связи между формами и явлениями, обусловливающими несходство различных частей земной поверхности, а также исследование их характера, распространения и влияния на жизнь и культуру человека. Краснов подчеркивал антропоцентричность географии. Ему принадлежат классификации климатов и растительного покрова Земли, районирование земного шара по типам растительности, исходя из зонально-регионального принципа. К пониманию зональности географических процессов и явлений он подошел до открытия В.В.Докучаевым закона мировой зональности и описаний Л. С. Бергом ландшафтных зон. Оценивая научное наследие А. Н. Краснова, необходимо подчеркнуть, что он был первым исследователем землеведения, который практически воплотил часть своих выводов в переустройстве обширной территории. В отличие от предшественников задачей землеведения ученый считал не описание разрозненных явлений природы, а выявление взаимной связи и взаимообусловленности между явлениями природы, полагая, что научное землеведение интересует не внешняя сторона явлений, а их генезис.

Вслед за учебником А. Н. Краснова было издано «Общее землеведение» А. А. Крубера (1917), где дано понятие «земная оболочка», или «геосфера» (впоследствии разработанное А.А.Григорьевым). Крубер подчеркивал единство всех компонентов географической среды, которые необходимо изучать в целостности. Этот учебник был основным всю первую половину XX в.

Огромное значение для развития землеведения имели работы В. И. Вернадского (1863- 1945), главным образом его учение о биосфере. Введенное им понятие «живое вещество» и доказательство его широчайшего распространения и постоянного участия в природных процессах и явлениях, поставили вопрос о необходимости нового понимания сущности географической оболочки, которую следовало рассматривать как биокосное формирование. Научно-философские рассуждения позволили Вернадскому наряду с другими учеными (Л.Пастером, П.Кюри, И.И.Мечниковым) высказать мнение о космическом происхождении жизни (теория панспермии) и особом характере живого вещества. Биосферу ученый понимал как взаимосвязанную систему живых организмов и среды их обитания. К сожалению, многие взгляды Вернадского, в том числе его учение о ноосфере, долгое время были недостаточно востребованы и практически не учитывались в землеведении.

Новый этап в развитии землеведения совпадает с началом и серединой XX в. и связан с именами А. А. Григорьева (1883- 1968), С.В.Калесника (1901-1977), К.К.Маркова (1905-1980) и других ученых, которые вывели землеведение на современный путь развития. А.А.Григорьев ввел фундаментальные понятия, являющиеся объектом и предметом землеведения - «географическая оболочка» и «единый физико-географический процесс», объединив экологический подход в изучении географии с необходимостью взаимосвязанного рассмотрения всех процессов и явлений на Земле. Он заявил о землеведении как потенциальном разработчике и носителе общепланетарной стратегии выживания человечества в отношениях с природой.

С. В. Калесник обобщил достижения землеведения в своем учебнике (1947 г. и последующие переиздания), включив в него новые суждения о компонентах географической оболочки. Этот учебник и сегодня сохраняет свою ценность и является своеобразным примером для написания учебных материалов.

Продолжающаяся дифференциация географии привела к детальным разработкам ее отдельных частей. Появились специальные исследования ледникового покрова и его палеогеографического значения (К. К. Марков), геофизического механизма дифференциации земной поверхности по географическим зонам и высотной поясности (М. И. Будыко), истории климата на фоне изменений географической оболочки в прошлом (А. С. Монин), энергетического баланса Земли по дистанционным наблюдениям (К.Я. Кондратьев), ландшафтных систем Мира в их единстве и генетических различиях (А. Г. Исаченко), ландшафтной оболочки как части географической оболочки (Ф. Н. Мильков). В эти годы был установлен периодический закон географической зональности Григорьева- Будыко, выявлена огромная роль биоорганического вещества в формировании специфических геологических образований далекого прошлого (А.В.Сидоренко), появились новые направления географии - космическое землеведение, экологическая география, или глобальная экология, практически слились воедино исследования «точного» (физико-математического) и «натурального» (биолого-географического) естествознания в комплексную систему землеведения.

Середина и вторая половина XX в. были особенно наполнены событиями в различных отраслях знаний, которые потребовали качественных изменений во взглядах и суждениях.

Отметим наиболее значимые из них:

Поверхности планет и их спутников сложены горными породами основного и ультраосновного состава и испещрены кратерными неровностями - следами падений метеоритов или других космических тел;

На объектах Солнечной системы почти повсеместно отмечены вулканические процессы и льдистые образования, часть из которых может быть замерзшей водой; большинство космических тел имеет

Собственную атмосферу со следами кислорода и органических соединений (метан и др.); в космическом пространстве широко распространено органическое вещество, в том числе за пределами Солнечной системы; вокруг Земли существует пылевая сфера - космическая пыль, состоящая из минерального и органического веществ;

Живые организмы на Земле обнаружены во всех сферах и различных обстановках: внутри горных пород на удалении от поверхности на тысячи метров, при температуре окружающей среды в сотни градусов по Цельсию и давлении в тысячи атмосфер, в условиях высоких значений радиоактивного и иного излучения, при низких температурах почти до абсолютного нуля, на дне океанов в условиях вулканических извержений (белые и черные курильщики), в различных рассолах, включая металлоносные, в абсолютной темноте и без присутствия кислорода; фотосинтез может проходить без солнечного света (при свете от подводных извержений), а бактерии могут производить органическое вещество за счет химической энергии (хемосинтез); живые организмы чрезвычайно многообразны и сложны по своему строению, хотя и состоят из ограниченного количества биохимических соединений и генетических кодов;

Дно океанов сформировано главным образом молодыми базальтами с прослоями осадков в течение последних 150 млн лет; расширение рифтогенных образований на дне океанов идет в настоящее время со средними скоростями 4 - 5 см/год; на дне океанов широко развиты процессы дегазации вещества мантии - магмы, вулканических газов, ювенильных (впервые появившиеся) глубинных вод, термальных и металлоносных образований;

Строение коры континентов и дна океанов принципиально различается;

Континенты имеют древние (более 3,0 - 3,5 млрд лет) архейские ядра, что свидетельствует о постоянном местоположении их центральных частей и разрастании площадей современных материков главным образом за счет наращивания по периферии более молодых геологических структур; горные породы материков допалеозойского возраста (более 1 млрд лет) в большинстве случаев метаморфизованы;

Удельный вес кислорода атмосферного воздуха больше удельного веса фотосинтетического кислорода, что указывает на глубинный источник его происхождения при дегазации вещества мантии; исследование дегазируемого вещества в пределах суши показало присутствие в нем (%) диоксида углерода - около 70, оксида углерода - до 20, ацетилена - 9, оксида серы - 3,7, метана - 2,1, доля азота, водорода и этана не превышает 1 %;

В толщах Мирового океана происходит повсеместное перемешивание вод в виде восходящих и нисходящих потоков, разнообразных многоярусных течений, вихрей и др.;

Взаимодействие океана и атмосферы носит более сложный характер, чем предполагалось ранее (например, Эль-Ниньо и Ла-Нинья);

Природные катастрофы приводят к перемещению огромных масс вещества и энергии, что превышает эффект антропогенного воздействия на окружающую среду.

Новые данные убеждают в необходимости их учета при совершенствовании теоретических основ современного землеведения. Задача огромная, но посильная для исследователей XXI века. Следует максимально учитывать имеющиеся факты, интерпретируя их не только с позиций сегодняшних условий на поверхности Земли и прогрессивно-эволюционной направленности формирования геосистем, но и возможности иного пути развития (в частности направленно скачкообразного, эволюционно-катастрофического).

Контрольные вопросы

Каковы основные вехи становления землеведения?

Каков вклад ученых Древнего мира в землеведческие знания?

Какие открытия стимулировали развитие землеведения в эпоху Возрождения?

Как происходило развитие землеведения в XVII -XIX вв.?

Каков вклад российских исследователей в землеведение?

В чем состоит новейший этап развития землеведения?

Каковы современные проблемы землеведения?

ЛИТЕРАТУРА

Аплонов СВ. Геодинамика. - СПб., 2001.

Голубчик М.М., Евдокимов СП., Максимов Г.И. История географии. - Смоленск, 1998.

Джеймс П., Мартин Дж. Все возможные миры. История географических идей. - М., 1988.

Джонстон Р.Дж. География и географы. - М., 1987.

Есаков В. А. Очерки истории географии в России XVIII -начала XX века. - М., 1999.

Исаченко А. Г. Развитие географических идей. - М., 1971.

Жекулин В. С. Введение в географию. - Л., 1989.

Мукитанов Н. К. От Страбона до наших дней. - М., 1985.

Русское географическое общество. 150 лет. - М., 1995.

Саушкин Ю.Г. История и методология географической науки. - М., 1976.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции