Вконтакте Facebook Twitter Лента RSS

Научный метод и научная истина. Методы современного естествознания

2. Структурные уровни организации материи и структура естествознания

Важнейшими свойствами материи являются структурность и системность. Материя структурирована определенным образом на всех масштабно-временных уровнях: от элементарных частиц до Вселенной в целом. Системность означает упорядоченность множества связанных друг с другом элементов, обладающих целостностью по отношению к другим объектам или внешним условиям. Таким образом, система характеризуется внутренними связями более сильными, чем связи с окружающей средой.

Отсюда вытекает необходимость не просто систематизировать, классифицировать различные объекты природы, но и изучать связи между ними, или взаимодействия. Наиболее интересными с принципиальной точки зрения являются так называемые фундаментальные взаимодействия, лежащие в основе всего многообразия видимых и известных науке сил действия одного тела на другое. Каждому из них соответствует свое физическое поле. Их число невелико (в настоящее время три: гравитационное, электрослабое и сильное), и есть надежда, что в результате создания общей теории (суперобъединения) их можно будет свести к одной Универсальной Силе Природы. Эта глобальная проблема стоит на повестке дня со времен А. Эйнштейна, гения которого не хватило для ее решения, хотя он и потратил на это около 30 последних лет жизни. Надежды на такую возможность связаны с тем, что уже существует один универсальный подход к описанию всех видов фундаментальных взаимодействий, а именно, квантово-полевой. Схематически любое взаимодействие двух частиц (тел) в вакууме (т.е. без каких-либо передающих сред) можно описать как обмен этих частиц квантами соответствующего поля, испускаемых одной из них и поглощаемой другой. При этом кванты поля, распространяясь с конечной скоростью (в вакууме со скоростью света), переносят энергию и импульс, что ощущается частицами, поглощающими их, как действие силы. В связи с конечной скоростью распространения квантов поля в пространстве утвердилась концепция «близкодействия». Это означает, что любое действие, любая информация передается от одного тела к другому не мгновенно, а последовательно от точки к точке с конечной скоростью. Господствовавшая до этого противоположная точка зрения – «дальнодействие» – интуитивно, a priori предполагавшая, что информация о положении любой частицы и ее положении распространяется по всей Вселенной мгновенно, не выдержала испытаний опытом и представляет сейчас только историческую ценность.

Частицам присуща масса покоя, в то время как кванты поля ее не имеют. Частицы локализованы в той или иной области пространства, а поля распределены в нем. Но при этом и те и другие одновременно обладают и свойствами волн и свойствами частиц (так называемый «корпускулярно-волновой дуализм»). Возможность превращений вещество - поле - вещество в мире элементарных частиц отражает внутреннее единство материи.

Структура естествознания. Наиболее важные структурные единицы материи можно выстроить в ряд согласно их характерным размерам. Здесь важно понять, что речь идет лишь о порядках величин, характеризующих протяженность типичного представителя в пространстве и продолжительность типичных процессов в нем. Несмотря на общеметодологическое единство естествознания (см. следующий модуль) при изменении характерных размеров и времен на колоссальное число порядков величин возникает необходимость вырабатывать специфические приемы исследования и анализа. Укрупненно и очень условно (в смысле положения границ) природу можно разбить на три «этажа» (или «мира»): микро-, макро- и мега- .

Первый – это мир элементарных частиц, фундаментальных полей и систем, содержащих небольшое число таких частиц. Это - корни естествознания, и в них сосредоточены наиболее принципиальные проблемы мироздания. Макромир - это привычный нам уровень окружающих нас предметов и явлений. Даже он кажется огромным и чрезвычайно разнообразным, хотя это всего лишь небольшая часть природы. Наконец, мегамир составляют объекты, сопоставимые по размерам с Вселенной, размеры которой пока не установлены даже по порядку величины. Более детальное и тоже весьма условное деление этих уровней привело к появлению соответствующих наук в естествознании: физика, химия, биология и т.д. Каждая из них содержит около сотни еще более узких конкретных дисциплин (например, механика, термодинамика, органическая химия, зоология, ботаника, физиология растений и т.д.). Существуют и междисциплинарные разделы науки, например, синергетика (от греческого слова совместный, согласованно действующий) – теория самоорганизации в открытых неравновесных системах, охватывающая все уровни структуры материи и рассматривающая природу как комплексную самоорганизующуюся систему.

Макромир доступен прямому наблюдению, события в нем привычны нам, мы контактируем и взаимодействуем с ним каждый момент времени. Он изучается человеком много тысячелетий и знания о нем имеют прямую практическую полезность. Тем не менее, и в нем существует множество не разгаданных загадок природы и в этой области неуки продолжает трудиться подавляющая часть современных ученых.

Явления в микро- и мегамирах практически не проявляются на бытовом уровне, поэтому множество людей и не подозревают об их существовании. Другим кажется, что в практическом смысле они не имеют никакого значения. Отчасти эту точку зрения можно понять, поскольку действительно, не только влияние, но и само существование элементарных частиц или, скажем, черных дыр в глубинах Вселенной, невозможно установить без сложных приборов. Даже качественные представления о них невозможно вывести из бытового опыта, по аналогии с известными макроскопическими событиями. Тем не менее, мы сами, будучи макроскопическими объектами, состоим на 100% из совокупности элементарных частиц, организованных и связанных между собой определенным образом, и являемся частью гигантской Вселенной. Так что новые знания о микро- и мегамирах важны не только в познавательном или мировоззренческом смысле, но и ведут к боле глубокому и ясному пониманию сущности процессов, протекающих в макромире.

3. Методология и методы естествознания

Методология – это система наиболее важных принципов и способов организации и осуществления какого-либо вида деятельности, а также учение об этой системе. У каждого вида деятельности имеется своя методология, существующая в явном или неявном виде, сформулированная и зафиксированная в каких-либо формах или применяемая стихийно-интуитивно. Принципы – это ключевые положения методологии, а методы – набор конкретных приемов, с помощью которых осуществляется тот или иной вид деятельности (с греческого «методос» – путь к чему-либо).

Методология науки в целом и все научные методы исходят из принципа причинности . Его содержание менялось по мере развития науки, но ключевое положение, на котором зиждется научный подход, остается неизменным: все, что бы не происходило в природе, обусловлено своими причинами. Глобальная задача науки и заключается в выяснении всех значимых причинно – следственных связей в окружающем мире. Они могут быть неодномерны, сложны, непознанны, но это не отменяет их существования. Никакого места произволу, сверхъестественному вмешательству потусторонних сил природа не оставляет.

Очень важно понять, что принцип причинности является основополагающим не только для «точных» наук, но и для истории, социологии, юриспруденции и т.д. Действительно, трудно себе представить, к примеру, следователя, расследующего уголовное преступление и допускающего «чудеса» в виде беспричинного появления или исчезновения улик с места преступления, «сверхъестественного» чутья на завоз денег в банк или внезапного падения курса определенных акций.

Известный французский философ, физик, математик и физиолог 17 века Р. Декарт формулировал понятие метода следующим образом «Под методом я разумею точные и простые правила, строгое соблюдение которых … без лишней траты умственных сил, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что ему доступно». В наше время такому пониманию скорее соответствует термин «алгоритм».

Обычно выделяют несколько групп (уровней) методов познания , в частности, практически во всех классификациях присутствуют:

 Общенаучные методы

 Частнонаучные методы

 Специальные методы

По другим признакам их можно разделить на эмпирические, теоретические и методы моделирования .

В свою очередь, все их можно дифференцировать и дальше. Так, общенаучные эмпирические методы включают наблюдение, эксперимент, измерение.

Наблюдение – простейший их них. На начальных стадиях развития любой науки наблюдения играют важнейшую роль и образуют эмпирический базис науки. Он позволяет провести поиск, сравнение, классификацию объектов и т.п., однако по мере развития науки его ценность падает. Более информативен эксперимент – целенаправленное воздействие на объект в строго контролируемых условиях и изучение его поведения в этих условиях.

Искусство экспериментатора в первую очередь как раз и заключается в создании таких условий эксперимента, которые позволяют «очистить» ситуацию от влияния большого числа побочных факторов и оставить один – два, которыми можно сознательно управлять и целенаправленно воздействовать на объект, изучая его отклики на эти контролируемые воздействия. При этом, зачастую заранее не известно, какие факторы являются важными, а какие – менее важными, все ли неконтролируемые воздействия исключены и не создают ли они помех, сопоставимых или даже больших, чем реакция объекта на контролируемое воздействие. В самой постановке опыта, ограничивающего степени свободы объекта и набор факторов на него действующих, заложена большая опасность «с пеной выплеснуть ребенка из ванночки».

Эксперименты могут быть качественными и количественными. Первые могут помочь в решении принципиальных вопросов: существует ли такой эффект в природе? растет или падает скорость процесса при увеличении давления? постоянна ли данная величина в действительности при изменении условий в широких пределах (например, заряд электрона, скорость света в вакууме и т.п.)? и т.д. Гораздо более информативны количественные эксперименты, включающие измерения. Так, известный английский физик В. Томсон (лорд Кельвин), именем которого названа шкала абсолютных температур, писал «каждая вещь известна лишь настолько, насколько ее можно измерить». Измерение – есть процесс определения количественных характеристик объекта или процесса, выраженных в заранее принятых единицах измерения данной величины (например, в метрах, секундах, граммах, Вольтах, градусах и т.д.).

Среди общенаучных теоретических методов можно выделить абстрагирование, мысленный эксперимент, индукцию, дедукцию и др. Абстрагирование состоит в мысленном упрощении объекта путем игнорирования ряда его несущественных (в данной постановке задачи) признаков и наделении его несколькими (иногда одним, двумя) наиболее существенными, например, материальная точка, береза, неустойчивое состояние. В первом примере игнорируются все геометрические и физические характеристики реального тела (объем, форма, материал и его физические свойства) кроме массы, мысленно сосредотачиваемой в центре масс. Во втором, несмотря на то, что в мире нет двух абсолютно одинаковых берез, - мы все-таки ясно понимаем, что речь идет о разновидности дерева со своими характерными особенностями архитектуры, формы и строения листочков и т.д., в третьем примере подразумевается некоторая абстрактная система (без рассмотрения ее устройства и состава), которая под действием ничтожно малых случайных причин может выйти из своего исходного состояния, характеризующегося некоторым набором параметров, и самопроизвольно перейти в другое, с другим набором характеристик. Конечно, мы теряем при таком рассмотрении множество деталей, характеризующих реальный объект, но взамен получаем простую схему, допускающую широкие обобщения. И впрямь, не можем же мы ставить перед собой задачу изучить каждую березу на Земле, хотя все они чем-то и отличаются друг от друга.

Под материальной точкой в разных задачах может подразумеваться молекула, автомобиль, Луна, Земля, Солнце и т.д. Такая абстракция удобна для описания механического движения, но совершенно непродуктивна при анализе, скажем, физических или химических свойств реального твердого тела. Многие исключительно полезные абстракции пережили века и тысячелетия (атом, геометрическая точка и прямая линия) хотя и наполнялись разными смыслом в разные эпохи. Другие - (теплород, мировой эфир) не выдержали испытания временем и опытом.

Другим методом теоретического анализа является мысленный эксперимент . Он проводится с идеализированными объектами, отражающими наиболее существенные свойства реальных, и в ряде случаев позволяет путем логических умозаключений получить некоторые предварительные результаты, помогающие упростить, сузить фронт дальнейших детальных исследований. Таким методом было решено много принципиальных задач в естествознании. Так, Галилей открыл закон инерции, мысленно понижая, а затем и вовсе исключая силы трения при движении, а Максвелл прояснил суть важнейшего для понимания природы закона – второго начала термодинамики – путем мысленного расположения на пути летящих молекул гипотетического «демона», сортирующего их по скоростям.

Индукция (от латинского inductio – наведение, побуждение, возбуждение) – это метод познания, заключающийся в получении, выведении общих суждений, правил, законов на основании отдельных фактов. Т.е. индукция – это движение мысли от частного к общему и более универсальному. Строго говоря, большая часть наиболее общих законов природы получена методом индукции, т.к. изучить досконально абсолютно все объекты данного типа совершенно нереально. Обычно вопрос заключается лишь в том, сколько же частных случаев необходимо рассмотреть и потом учесть, чтобы на этом основании сделать убедительный обобщающий вывод. Скептики считают, что достоверно доказать этим способом ничего невозможно, поскольку ни тысяча, ни миллион, ни миллиард фактов, подтверждающих общий вывод не гарантируют, что тысяча первый или миллион первый факт не будет противоречить ему.

Метод противоположный по направлению движения мысли – от общего к частному – называется дедукция (от латинского deductio – выведение). Вспомните знаменитый дедуктивный метод сыска Шерлока Холмса. Т.е. дедукция и индукция – взаимодополняющие методы построения логических умозаключений.

Примерно в таком же соотношении между собой находятся методы анализа и синтеза , используемые как в эмпирических так и теоретических исследованиях. Анализ – мысленное или реальное расчленение объекта на составные части и исследование их порознь. Вспомните обычную поликлинику – учреждение для диагностики и лечения болезней человека и ее структуру, представленную кабинетами окулиста, невропатолога, кардиолога, уролога и т.д. Ввиду исключительной сложности человеческого организма гораздо легче научить врача распознавать болезни отдельных органов или систем, а не всего организма в целом. В ряде случаев этот подход дает желаемый результат, в более сложных – нет. Поэтому методы анализа дополняются методом синтеза, т.е. сведения всех знаний о частных фактах в единое связанное целое.

В течение нескольких последних десятилетий интенсивно развивались методы моделирования , являющиеся младшими, но более развитыми братьями метода аналогий . Вывод «по аналогии» осуществляют переносом результатов, полученных на одном объекте, на другой – «аналогичный». Степень этой аналогичности определяют различными критериями, наиболее систематично вводимыми в так называемой «Теории подобия».

Моделирование обычно подразделяют на мысленное, физическое и численное (компьютерное). Мысленное моделирование реального объекта или процесса посредством идеальных объектов и связей – важнейший метод науки. Без мысленной модели невозможно понять, проинтерпретировать результаты эксперимента, «сконструировать» математическую или компьютерную модели явления, поставить сложный натурный эксперимент. Известный по не только блестящим результатам в физике, но и остроумным высказываниям, академик А. Мигдал сказал как-то: «Если математика – это искусство избегать вычислений («чистая», неприкладная математика, как правило, не имеет дел с вычислениями), то теоретическая физика – это искусство вычислять без математики». Конечно же здесь слово «вычислять» не имеет буквального смысла – проведение тщательных, точных вычислений. Подразумевается искусство предвидеть результат в рамках удачной, адекватной модели по порядку величины, или в виде соотношения: если одна величина достигнет какого-то значения, то другая будет равна тому-то, или искомая величина обязана быть больше некоторой критической, или лежать в определенном интервале значений. Как правило, в большинстве задач и реальных проблем высококвалифицированный ученый может прийти к таким заключениям не проводя никаких опытов, а просто построив в уме некоторую качественную модель явления. Искусство в том и состоит, чтобы модель была реалистичной и в то же время простой.

Физическое (предметное) моделирование проводят в тех случаях, когда невозможно или затруднительно (по технологическим или финансовым причинам) провести эксперимент на оригинальном объекте. Например, для определения трудно поддающегося расчетам аэродинамического сопротивления самолета, автомобиля, поезда или гидродинамического сопротивления корабля на стадии проектирования обычно строят модель уменьшенных размеров и продувают ее в специальных аэродинамических трубах или гидравлических каналах. В известном смысле любой натуральный эксперимент можно рассматривать как физическую модель некоторой более сложной ситуации.

Математическое моделирование является важнейшей разновидностью символического моделирования. (К ним так же относятся разнообразные графовые и топологические представления, символьные записи структуры молекул и химических реакций и много другое). В сущности, математическая модель – это система уравнений, дополненная начальными и граничными условиями и другими данными, взятыми из опыта. Для того, чтобы такое моделирование было результативным, необходимо, во-первых, составить адекватную изучаемому явлению мысленную модель, отражающую все существенные стороны явления, а во-вторых, решить чисто математическую задачу, зачастую имеющую очень высокий уровень сложности.

Наконец, в последние десятилетия большую популярность приобрели компьютерные методы моделирования. Обычно – это численные методы, т.е. не дающие решения задачи в общем виде, как в математическом моделировании. Это означает, что каждый конкретный численный вариант одной и той же задачи требует нового расчета.

Частные и специальные методы представляют интерес для представителей конкретных научных дисциплин, и мы их рассматривать не будем.

Методологические основы естествознания. Перейдем теперь к обсуждению наиболее важных и общих для естествознания методологических принципов научного творчества, идеалов, критериев и норм науки . Важнейшими из них являются следующие:

1. Материалистическая основа мировоззрения, объективность, убежденность в познаваемости природы рациональными методами. В свою очередь, эти требования напрямую связаны с важнейшей методологической концепцией обусловленности всего происходящего в действительности причинно-следственными связями.

2. Использование строго определенных понятий, характеристик, величин. Вместе с тем, необходимо понимать, что абсолютно строго определить ни один объект или процесс невозможно. Что такое шариковая ручка, которой Вы сейчас подчеркиваете текст? Где граница между ней и окружающим воздухом снаружи и между ней и чернилами внутри на бумаге? Что такое процесс подчеркивания текста? Это физический процесс переноса чернил на бумагу, или химический процесс взаимодействия молекул чернил с молекулами бумаги, или интеллектуальный процесс отбора и выделения наиболее значимых фрагментов текста? Очевидно выбор зависит от характера задачи и спектра ожидаемых результатов. Здесь таятся большие опасности субъективизма, поскольку в самой постановке задачи уже закладывается ограниченный набор возможных решений.

3. Воспроизводимость результатов в аналогичных условиях. Этот принцип подразумевает, что если условия наблюдения некоего явления воссоздать в другом месте (лаборатории, производстве) или в одном и том же, но спустя некоторое время, то явление или процесс повторится снова. Т.е. вопрос заключается лишь в строгости условий опыта, точности воспроизведения всех обстоятельств. Как уже говорилось, абсолютно точно ничего воспроизвести и измерить невозможно, но абстрагируясь от несущественных деталей, можно сколько угодно раз повторить главный, принципиальный результат.

4. Последней инстанцией в борьбе теорий, идей, концепций является опыт (эксперимент). Лишь он – верховный судья в вопросе, что есть Истина, а не самые изящные, логичные или авторитетные суждения. Не стоит здесь усматривать противопоставления теории и опыта. Чисто теоретически было открыто множество объектов, законов (например, электромагнитные волны, многие элементарные частицы, астрономические объекты и т.д.), но все эти открытия получили статус строгих научных фактов только после экспериментального подтверждения. Такое понимание соотношения роли теории и практики в естествознании возникло не сразу. Лишь в раннем Средневековье в борьбе со схоластическими методами укрепилось требование экспериментальной проверки любых умозаключений, какими бы авторитетами они не высказывались и логически стройными и безупречными не казались. Наиболее ярко и кратко этот принцип сформулировал, пожалуй, английский мыслитель 16-17 вв Фрэнсис Бэкон: «Критерий истины – практика» в своем труде «Новый Органон» (1620 г.), написанном, как бы, в продолжение и развитие знаменитого труда Аристотеля, точнее, сборника логических и методологических трудов «Органон» (от латинского инструмент, орудие) в 4 веке до н.э. В более художественной форме этот же принцип выражен в знаменитой фразе И.Гете: «Теория, мой друг, суха, но зеленеет жизни древо».

5. В предыдущем модуле уже шла речь о стремлении количественно охарактеризовать и описывать окружающую действительность. В современном естествознании количественные методы, математический аппарат играют большую и все возрастающую роль. Так что «математизацию» знаний о природе можно считать практически обязательным требованием.

6. В начале этого модуля обсуждалась роль моделирования как общенаучного метода изучения Природы. В связи с желанием «математизировать» естествознание, создание моделей того или того характера становится практически обязательным на всех стадиях исследования, будь то обдумывание идеи или мысленного эксперимента, натурной экспериментальной установки и опыта, обработки и интерпретации полученных результатов. Пытаясь выразить эту ситуацию в лаконичной форме афоризма, можно утверждать «Современное естествознание – это мир количественных моделей». Без разумного, осторожного, квалифицированного упрощения реальной ситуации, процесса, объекта никаких результативных математических подходов сделать невозможно.

7. Уже в Средние Века было очевидно, что лавинное нарастание различных фактов, данных, теорий требует их систематизации и обобщения. Иначе поток информации захлестнет и утопит принципиальные, ключевые положения в море частностей. Вместе с тем, новые понятия, объекты, принципы, «сущности» необходимо вводить в науку с величайшей осторожностью, тщательно проверяя, не сводятся ли они к известным, не являются ли всего лишь их разновидностями. Этот строгий фильтр оберегает науку от неоправданного распухания, делает ее в широком смысле «интернациональной», прозрачной, доступной для понимания и освоения разными слоями общества. Опасность противоположного подхода стала очевидной тоже на заре классического естествознания, и в присущей тому времени афористичной форме требование лаконизма, общности, универсальности сформулировал английский философ 14 в. Оккам: «сущности не следует умножать без крайней необходимости» или в более вольном переводе «не изобретай лишних сущностей ». Часто этот важнейший методологический принцип науки называют «бритвой Оккама », отсекающей лишние, непродуктивные и загромождающие науку искусственно введенные «сущности».

8. Необходимость интеграции, универсализации знаний, сведение их к как можно меньшему числу фундаментальных принципов – идеал, к которому стремились мыслители, начиная со времен Древней Греции. Одновременно в этом усматривали и высшую эстетичность науки, отражающую гармоничность устройства мира. «Сведение множества к единому – в этом первооснова красоты» - так лаконично формулировал этот принцип еще Пифагор за 5 веков до н.э.

9. Поскольку наука – это не свод закостеневших правил, законов, теорий, а динамически развивающийся и непрерывно обновляющийся живой организм, регулярно возникает вопрос о соотношении устоявшегося «старого» знания и появляющегося «нового». С одной стороны, если некоторый закон, теория, учение путем многочисленных проверок, контрольных экспериментов, приложений к практическим задачам получили статус не гипотезы, а достоверной истины, то они уже вошли в золотой фонд науки. С другой стороны, если появились новые данные или теории, противоречащие старым, но описывающие родственные явления лучше, полнее или те, которые не могли быть объяснены в рамках старых представлений, последние должны уступить место новому. Но как уступить? Просто тихо удалиться в архивы истории науки, освободив нишу, или оставаться в строю, но в другом качестве, определенным образом взаимодействуя с новыми представлениями? Трудно себе представить, чтобы, скажем, такая могучая теория как классическая механика сэра И. Ньютона, три века доказывавшая свою справедливость и плодотворность (как в мире движения пылинок, шариков, паровых двигателей, кораблей, так и в мире планет) оказалась ошибочной или ненужной после создания квантовой механики. Нильс Бор – гениальный датский физик – один из создателей квантовой механики, обдумывая эту проблему, сформулировал в 1918 г. важнейший методологический подход: принцип соответствия . Вкратце он заключается в том, что более универсальная новая концепция, теория (если она не спекулятивна, а справедлива в действительности), не должна перечеркивать хорошо освоенное и многократно проверенное старое учение, а вобрать его в виде частного случая (рис. 3.3). При этом обычно легко можно сформулировать условия (границы применимости) внутри которыхи старая (обычно более простая теория) будет давать правильные результаты. Их, конечно, можно получить и из более общей, но более сложной новой теории, но это не оправдано с точки зрения трудозатрат. В таком соотношении находится не только классическая и квантовая механика, но и, например, термодинамика равновесных систем и синергетика (теория самоорганизации в открытых неравновесных системах), классический электромагнетизм Фарадея – Максвелла и квантовая электродинамика, механика движения с небольшими (сравнительно со скоростью света) скоростями и специальная теория относительности Эйнштейна (механика движения с околосветными скоростями), дарвинизм и генетика и многое другие разделы естествознания. Это конечно не исключает отмирания и забвения идей, понятий, теорий, не выдержавших испытаний экспериментом (например, теория теплорода, вечный двигатель и т.д.), но в подавляющем большинстве случаев противоречия в науке снимаются в согласии с принципом соответствия.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

В основе методов Е. заложен принцип единства эмпирических и теоретических сторон, которые взаимосвязаны и взаимообусловлены. Их разрыв или преимущественное развитие одной за счет другой закрывает путь к правильному познанию природы: теория становится беспредметной, опыт - слепым.

Методы Е. могут быть подразделены на группы: общие, особенные, частные.

Общие методы касаются всего Е., любого предмета природы, любой науки. Это - различные формы диалектического метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например метод восхождения от абстрактного к конкретному и др.

Те системы отраслей Е., строение которых соответствует действительному историческому процессу их развития (биология и химия) фактически следуют этому методу. Диалектический метод в биологии, географии, химии - это сравнительный метод, с его помощью раскрывается всеобщая связь явлений. Отсюда - сравнительные анатомия, эмбриология, физиология. В зоо-, фито- и физической географии он уже давно успешно применяется. В Е. диалектический метод выступает и как исторический, в астрономии на него опираются все прогрессивные космогонические гипотезы - звездные и планетарные; в геологии (как основа исторической геологии), в биологии этот метод лежит в основе Дарвинизма. Иногда оба метода сочетаются в единый сравнительно-исторический метод, который глубже и содержательнее каждого из них в отдельности. Этот же метод в его применении к процессу познания природы, особенно к физике, связан с принципом соответствия и способствует построению современной физической теории.

Особенные методы также применяются в Е., но касаются не его предмета в целом, а лишь одной из его сторон (явлений, сущности, количественной стороны, структурных связей) или же определенного приема исследований: анализ, синтез, индукция, дедукция. Особенными методами служат наблюдения, эксперимент и, как его частный случай, - измерение. Исключительно важны математические приемы и методы как особые способы исследования и выражения, количественных и структурных сторон и отношение предметов и процессов природы, а также метода статистики и теории вероятностей.

Роль математических методов в Е. неуклонно возрастает по мере все более широкого применения персональных компьютеров. Происходит ускоренная компьютеризация современного Е. Современное Е. широко использует методы моделирования природных процессов и промышленного эксперимента.

Частные методы - это специальные методы, действующие в пределах отдельной отрасли Е., где они возникли.

В ходе прогресса Е. методы могут переходить из более низкой категории в более высокую: частные - превращаться в особенные, особенные - в общие.

Методы физики, использованные в других отраслях Е., привели к созданию астрофизики, кристаллофизики, геофизики, химической физики, физической химии, биофизики. распространение химических методов привело к созданию кристаллохимии, геохимии, биохимии и биогеохимии. Зачастую применяется комплекс взаимосвязанных частных методов к изучению одного предмета, например молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.

Важнейшая роль в развитии Е. принадлежит гипотезам, которые и являются формой развития Е.

Методы естествознания

Методы естествознания могут быть подразделены на следующие группы:

Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования: анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент. В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланированному образцу. Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс. Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в «чистом» виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины. Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в области физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете. Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Моделирование - метод научного познания, основанный на изучении каких- либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмешательства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на другой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моделью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание. Таким образом, сущность моделирования как метода познания заключается в замещении объекта исследования моделью, причем в качестве модели могут быть использованы объекты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений.

Современной науке известно несколько типов моделирования:

1) предметное моделирование, при котором исследование ведется на модели, воспроизводящей определенные геометрические, физические, динамические или функциональные характеристики объекта-оригинала;

2) знаковое моделирование, при котором в качестве моделей выступают схемы, чертежи, формулы. Важнейшим видом такого моделирования является математическое моделирование, производимое средствами математики и логики;

3) мысленное моделирование, при котором вместо знаковых моделей используются мысленно-наглядные представления этих знаков и операций с ними. В последнее время широкое распространение получил модельный эксперимент с использованием компьютеров, которые являются одновременно и средством, и объектом экспериментального исследования, заменяющими оригинал. В таком случае в качестве модели выступает алгоритм (программа) функционирования объекта.

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части. Расчленение имеет целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи частей друг с другом. Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от нерасчлененного описания изучаемого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента. Непосредственной основой индуктивного умозаключения является повторяемость признаков в ряду предметов определенного класса. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широкого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы. Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Суть неполной индукции состоит в том, что она строит общий вывод на основании наблюдения ограниченного числа фактов, если среди последних не встретились такие, которые противоречат индуктивному умозаключению. Поэтому естественно, что добытая таким путем истина неполна, здесь мы получаем вероятностное знание, требующее дополнительного подтверждения.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез. Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или ложность которого еще не установлены. Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фактами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, систематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам. Гипотеза должна быть либо подтверждена, либо опровергнута. Для этого она должна обладать свойствами фальсифицируемости и верифицируемости. Фальсификация- процедура, устанавливающая ложность гипотезы в результате экспериментальной или теоретической проверки. Требование фальсифицируемости гипотез означает, что предметом науки может быть только принципиально опровергаемое знание. Неопровержимое знание (например, истины религии) к науке отношения не имеет. При этом сами по себе результаты эксперимента опровергнуть гипотезу не могут. Для этого нужна альтернативная гипотеза или теория, обеспечивающая дальнейшее развитие знаний. В противном случае отказа от первой гипотезы не происходит. Верификация - процесс установления истинности гипотезы или теории в результате их эмпирической проверки. Возможна также косвенная верифицируемость, основанная на логических выводах из прямо верифицированных фактов.

Частные методы - это специальные методы, действующие либо только в пределах отдельной отрасли науки, либо за пределами той отрасли, где они возникли. Таков метод кольцевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.


Тема 2. Современная организация научной работы .

Важную роль в успехе научного исследования играет правильная организация научной работы, а также своевременный поиск источников финансирования научно-исследовательской работы.

Классификация наук - многоступенчатое, разветвленное деление наук, использующее на разных этапах деления разные основания. Все науки обычно делятся на три группы: естественные науки, социальные и гуманитарные науки, формальные науки.

К естественным наукам относятся физика, химия, науки биологического ряда и др. Некоторые естественные науки, как, напр., космология, рассматривают исследуемые ими объекты в развитии и оказываются, т.о., близкими к гуманитарным наукам, а именно к наукам исторического ряда. Др. естественные науки, как, к примеру, география или физическая антропология, формулируют сравнительные оценки и тяготеют к таким социальным наукам, как социология и экономическая наука. Поле естественных наук является, т.о., весьма разнородным. Различия отдельных естественных наук настолько велики, что невозможно выделить какую-то одну из них в качестве парадигмы «естественно-научного познания». Идея неопозитивизма о том, что физика является тем образцом, на который должны ориентироваться все др. науки (исключая формальные), является контрпродуктивной. Физика не способна служить в качестве образца даже для самих естественных наук. Ни космология, ни биология, ни тем более физическая антропология не похожи в своих существенных чертах на физику. Попытка распространить на эти научные дисциплины методологию физики, взятую в сколь-нибудь полном объеме, не может привести к успеху, тем не менее определенное внутреннее единство естественных наук имеется: они стремятся описывать исследуемые ими фрагменты реальности, а не оценивать их; даваемые данными науками описания обычно формулируются в терминах не абсолютных, а сравнительных понятий (временной ряд «раньше-позже-одновременно», пространственные отношения «ближе-дальше», каузальное отношение, отношение «вероятнее, чем» и т.п.).

В число социальных наук входят экономическая наука, социология, политические науки, социальная психология и т.п. Для этих наук характерно, что они не только описывают, но и оценивают, причем очевидным образом тяготеют не к абсолютным, а к сравнительным оценкам, как и вообще к сравнительным понятиям. К гуманитарным наукам относятся науки исторического ряда, лингвистика (индивидуальная), психология и др. Одни из этих наук тяготеют к чистым описаниям (напр., история), другие - сочетают описание с оценкой, причем предпочитают абсолютные оценки (напр., психология). Гуманитарные науки используют, как правило, не сравнительные, а абсолютные категории (временной ряд «было-есть-будет», пространственные характеристики «здесь-там», понятие предопределенности, или судьбы и т.п.). Область социальных и гуманитарных наук еще более разнородна, чем область естественных наук. Идея отыскать научную дисциплину, которая могла бы служить образцом социогуманитарного познания, нереалистична. История, старающаяся избегать оценок и всегда обсуждающая прошлое только с т.зр. настоящего, не может служить образцом для социологии или экономической науки, включающих явные и неявные сравнительные оценки и использующих временной ряд «раньше-одновременно-позже», не предполагающий «настоящего»; политические науки не способны дать каких-то образцов для психологии или лингвистики и т.д. Поиски парадигмальной социальной или гуманитарной дисциплины еще более утопичны, чем поиски «образцовой» естественной науки.

Между собственно социальными и гуманитарными науками лежат науки, которые можно назвать нормативными: этика, эстетика, искусствоведение и т.п. Эти науки формируют, подобно социальным наукам, оценки (и их частный случай - нормы), однако даваемые ими оценки являются, как правило, не сравнительными, а абсолютными. В использовании абсолютных оценок нормативные науки напоминают собственно гуманитарные науки, всегда рассуждающие в координатах абсолютных категорий.

К формальным наукам относятся логика и математика. Их подход к исследуемым объектам настолько абстрактен, что получаемые результаты находят приложение при изучении всех областей реальности.

Приведенная классификация наук опирается на две оппозиции: «оценка - описание» и «абсолютные понятия - сравнительные понятия». Все науки сначала делятся на естественные науки, тяготеющие к описанию в системе сравнительных категорий, и социальные и гуманитарные науки, тяготеющие к оценке в системе абсолютных категорий; затем последние подразделяются на социальные, нормативные и гуманитарные науки. Такая классификация не является единственно возможной. Существуют многообразные иные основания деления наук.

Магистратура – это вторая ступень высшего профессионального образования, предусматривающая специальную, индивидуальную для каждого студента программу обучения, направленную на подготовку к самостоятельным занятиям научно-исследовательской деятельностью. Подготовка в магистратуре включает сдачу кандидатских и семестровых зачетов и экзаменов, выполнение научных исследований по избранной теме, подготовку и защиту магистерской диссертации. Диплом магистра, выдаваемый высшим учебным заведением лицу, завершившему обучение на второй ступени высшего образования и успешно прошедшему итоговую аттестацию, подтверждает право на обучение в аспирантуре (адъюнктуре) и (или) на трудоустройство с учетом ранее присвоенной квалификации специалиста с высшим образованием и обучения в магистратуре.

Аспирантура.

По оценкам ЮНЕСКО в ХХI в. в высокоразвитых странах число научных работников должно составить 2–5% населения. Таким образом, подготовка научных кадров фактически превратилась в индустрию и осуществляется в сфере послевузовского профессионального образования, которая распределена по всем научным секторам. Основные формы подготовки – аспирантура и докторантура.

Обучение в аспирантуре всегда было престижным, поскольку ее выпускники считаются специалистами высшей квалификации. Само слово «аспирант» происходит от латинского aspirans (aspirantis) – домогающийся чего-нибудь, стремящийся к чему-либо.

Суть обучения в аспирантуре состоит в подготовке ученых. Обучение аспиранта основано на проведении самостоятельного научного исследования. Результаты исследования представляются в диссертации, научном произведении, выполненном, как правило, в форме рукописи и имеющем квалификационный характер. Диссертация должна быть научной квалификационной работой, в которой содержится решение задачи, имеющей существенное значение для соответствующей отрасли знаний, либо изложение научно обоснованных технических, экономических или технологических разработок, обеспечивающих решение важных прикладных задач. Таким образом, исследование аспиранта должно быть направлено на новые решения актуальной задачи.

Исследование аспиранта и работа над диссертацией занимают большую часть времени его обучения. Но, помимо готовой рукописи диссертации, для получения ученой степени необходимы результаты сдачи экзаменов кандидатского минимума (кандидатских экзаменов). Эти экзамены выступают как «надстройка» над проводимым исследованием, так как аспирант должен сначала выявить недостаток знаний, что возможно только после начала исследования, а затем компенсировать его при подготовке к экзаменам, заодно изучая другие вопросы.

На первых этапах обучения у аспиранта есть повод для серьезных раздумий о своей специальности. Этот вопрос нужно обязательно обсудить с научным руководителем. После утверждения специальности следует также поинтересоваться у руководителя о диссертациях, за которые уже присуждены степени и, по его мнению, наиболее ярко демонстрируют требования к этой специальности.

Название ученой степени дополняется названием отрасли науки, к которой относится специальность ученого. Все специальности, в рамках которых проводятся диссертационные исследования, классифицируются по номенклатуре специальностей научных работников. Классификатор называется шифром специальности, и в его состав входят: шифр отрасли науки (2 знака), шифры группы специальностей и самой специальности (также по два знака). Шифр никогда не приводится частично, только все 6 цифр, разделенные точками.

Например:

Номенклатура специальностей утверждается специальными постановлениями, имеющими, как правило, три приложения:

· приложение №1 доступно для всеобщего распространения,

· приложение №2 – для служебного пользования (ДСП),

· приложение №3 секретно (известно, что ученые степени могут также присуждаться в отрасли военных наук).

Отрасли взаимосвязаны, поэтому для многих специальностей предусмотрена возможность присуждения степени по двум или нескольким отраслям наук. Например, диссертация по специальности 08.00.13 – «Математические и инструментальные методы в экономике» может быть представлена на соискание степени кандидата экономических или физико-математических наук, что заранее накладывает на исследование специфические ограничения. В то же время, наличие в аспирантуре специальности само по себе не означает возможность защитить диссертацию по любой из отраслей наук, имеющих к ней отношение. В дополнение к специальности, уже вне рамок аспирантуры должен действовать диссертационный совет, имеющий право присуждения ученых степеней в той или иной отрасли науки. Право присуждения степеней диссертационный совет получает в случае соответствующей специализации ученых, входящих в его состав.

В течение всего срока обучения у аспиранта есть научный руководитель. В зависимости от обстоятельств, научный руководитель может быть для аспиранта наставником, консультантом, посредником, коллегой. Очень важно правильно оценить роль научного руководителя. Он оказывает научную и методическую помощь, контролирует выполнение работы, может оказывать психологическую поддержку, давать рекомендации по поводу участия аспирантов в учебном процессе. Опыт научного руководителя нередко оказывается незаменимым. Нормативами определяется, что объем работы научного руководителя, связанный с одним аспирантом, равен пяти академическим часам ежемесячно.

Общение аспиранта с научным руководителем – наиболее существенное взаимодействие в рамках аспирантуры. Поскольку самостоятельность – важнейшая особенность обучения аспирантов, инициатива в общении всегда должна оставаться за ними. Многие научные руководители, к тому же, расценивают эту инициативу как показатель потенциала аспирантов и крайне редко сетуют на их чрезмерную энергию. Совместная деятельность научного руководителя и аспиранта должна быть нацелена на принятие совместных решений по результатам выполненной аспирантом работы. Таким образом, перед каждой встречей с научным руководителем следует как можно конкретнее представлять, что именно от него требуется: мнение о рабочем плане, рекомендации по использованию методов, помощь в редактировании статьи и т.д.

Стремясь к цели своего исследования, аспирант может стать в выбранной области даже более компетентен, чем его научный руководитель, поэтому аспирант должен заранее понимать, что не всякий его вопрос найдет ответ у научного руководителя.

В процессе обучения аспирант может почувствовать, что научный руководитель удовлетворяет не всем его требованиям. Это, как правило, происходит, когда исследование аспиранта находится «на стыке» специализаций разных кафедр или областей знаний. В таком случае аспирант вправе просить о назначении второго научного руководителя, который сможет консультировать его по вопросам второй специализации. Второй научный руководитель (он может называться научным консультантом) необязательно должен иметь отношение к организации, в которой обучается аспирант, т. е. может и не быть сотрудником или даже внештатным преподавателем данного вуза. Несмотря на то, что работа второго научного руководителя, как правило, не оплачивается, многие ученые, особенно молодые, могут быть заинтересованы участвовать в интересном исследовании. Кроме того, успешная защита диссертации аспирантом – всегда серьезная заслуга его руководителя, даже если он являлся вторым.

Оконченная диссертация представляется на кафедру для предзащиты. Предзащита – обсуждение на заседании кафедры представленной диссертации и принятие решения относительно ее готовности к защите. Как правило, на предзащите аспиранту делаются замечания, требующие внесения изменений в рукопись. С момента предзащиты до защиты обычно проходит не менее трех месяцев. При этом на подготовку к защите после окончания аспирантуры выделяется только один месяц. Далее статус аспиранта уже безвозвратно теряется, а статус кандидата наук появляется только в течение четырех месяцев после поступления дела соискателя в ВАК. Это может иметь нежелательные последствия 2 , поэтому следует заранее запланировать дату предзащиты за 2-3 месяца до окончания обучения.

Формально успешным результатом подготовки аспиранта является присуждение ему научной квалификации – ученой степени кандидата наук. Ученая степень кандидата наук присуждается диссертационным советом по итогам публичной защиты диссертации, а затем утверждается Высшей аттестационной комиссией Республики Беларусь, который оформляет бланк диплома кандидата наук и отправляет его в диссертационный совет. Ученая степень доктора наук присуждается ВАКом по ходатайству диссертационного совета, поэтому все дипломы в РБ, подтверждающие присуждение ученой степени, являются дипломами государственного образца. Общественная аттестация при присуждении ученых степеней в РБ не допускается.

За рубежом ученая степень, близкая по уровню к степени кандидата наук, называется Ph. D. – Doctor of Philosophy, что означает владение обладателем степени методологией науки. Следует отметить, что из названия степени Ph. D. неясно, с какими именно науками имел или имеет дело ученый, т. к. за рубежом не принята жесткая привязка проводимых исследований к специальностям.

Ученым и преподавателям с большим профессиональным опытом присваиваются ученые звания: доцента, старшего научного сотрудника, профессора. Наличие ученого звания доцента и профессора подтверждаются аттестатами государственного образца. Ученые звания доцента и старшего научного сотрудника присуждаются учеными советами вузов, процедура присвоения ученого звания профессора несколько сложнее. На кафедрах существуют также должности профессоров и доцентов, и их не всегда занимают люди, имеющие соответствующие ученые звания, что вполне допустимо. Указывая статус научного руководителя в официальных документах, аспирантам следует быть внимательнее и лучше уточнить все реквизиты.

Помимо ученых званий, существуют также академические звания члена-корреспондента и академика.

Успешно защитившие диссертации аспиранты получают статус молодых ученых. Таких специалистов отличают способности к самообучению, самодисциплине, объективной оценке ситуации. Они часто проницательны в своих суждениях, умеют вносить рациональные идеи, обладают навыками обработки больших объемов информации, ее профессионального анализа, обобщения и изложения.

Какими бы призрачными не выглядели перспективы современных аспирантов, им необходимо иметь общее представление о своей потенциальной научной карьере. Молодыми ученые, по всеобщему признанию, являются до 35 лет и до этого возраста в большинстве объявляемых научных конкурсов они могут выступать на правах аспирантов. Подобные конкурсы имеют различную тематику и проводятся академией наук, общественными организациями, ассоциациями и т. д. В качестве призов победителям могут выступать гранты на обучение и стажировки, почетные дипломы и медали, реже – денежные выплаты. Аспирантам такие конкурсы также могут оказаться полезными как возможность новых знакомств и совершенствования навыков изложения и оформления научных работ.

Другая альтернатива для кандидата наук – продолжение исследований для оформления диссертации на соискание степени доктора наук. Соискатели ученой степени доктора наук по какой-либо специальности необязательно должны быть кандидатами наук именно по этой специальности или в этой отрасли наук. Поэтому кандидат экономических наук может стать доктором технических наук и т. д.

Вполне вероятный путь молодых ученых – преподавательская работа. Она может сочетаться с иной профессиональной деятельностью, это даже предпочтительнее. Любой вуз заинтересован в том, чтобы лекции студентам читали профессионалы, имеющие ученую степень. Такая деятельность всегда имеет достойно оплачиваемый спрос.

Кроме того, кандидатам наук предоставляется льготная возможность присвоения ученого звания доцента по кафедре. Необходимые условия для этого:

· иметь стаж педагогической работы не менее трех лет (возможно, по совместительству, но срок обучения в аспирантуре не учитывается);

· проработать в должности доцента не менее одного календарного года (возможно, по совместительству);

Руководство вузов обычно предполагает занятие выпускниками аспирантуры административных и управленческих должностей. Безусловно, существуют и иные формы партнерских отношений аспирантов и вуза (в фирмах аспирантов могут проходить практику студенты-дипломники, со временем ожидается выполнение силами аспирантов НИР на основе хоз. договоров и т. д.) Наиболее благоприятный сценарий научной карьеры означает для сегодняшних аспирантов получение в возрасте 40 лет ученой степени доктора наук и ученого звания профессора.

Поскольку очные аспиранты уже являются специалистами с высшим профессиональным образованием, с ними устанавливаются кадровые отношения, т.е. обучение в аспирантуре является, по сути, профессиональной деятельностью. Как и положено, в подобных условиях, происходит фиксирование даты зачисления в трудовой книжке.

Методы естествознания

Наименование параметра Значение
Тема статьи: Методы естествознания
Рубрика (тематическая категория) Философия

Методы естествознания могут быть подразделены на следующие группы˸

Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все ᴇᴦο ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования˸ анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент. В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда ᴇᴦο запланированному образцу. Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс. Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в ʼʼчистомʼʼ виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины. Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в сфере физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Там же, с. 152-53). 1) Эмпирическая сторона предполагает функции: собирательную ( , их , их накопление), описательную ( фактов, их первичную систематизацию); 2) теоретическая - функции: объяснения, (генерализующую), (создания новых теорий, выдвижения новых понятий, накопления новых законов), предсказания (прогностическую), что даёт повод называть теории Естествознание «компасом» в научном исследовании.

С теоретическими функциями Естествознание неразрывно связана мировоззренческая функция Естествознание; она направлена на выработку естественно-научной картины мира, исключающей возможность реакционно-идеалистических и религиозных взглядов на природу; 3) производственно-практическая сторона Естествознание проявляет себя как непосредственная производительная сила . Современная показывает, что Естествознание прокладывает пути для развития техники.

Средства Естествознание соответствуют всем ступеням, которые проходит естественно-научное знание и в которых находят своё выражение функции Естествознание: эмпирическое, экспериментальное исследование предполагает целую систему экспериментальной и наблюдательной техники (устройств, в том числе вычислительных приборов, особенно измерительных, установок, ), с помощью которой устанавливаются новые факты. Теоретическое исследование предполагает абстрактную работу учёных, направленную на объяснение фактов (предположительное - с помощью проверенное и доказанное - с помощью теорий и законов науки); на понятий, обобщающих опытные данные. То и другое вместе (нередко с выходом в область опытных полузаводских и экспериментальных установок, конструкторских бюро) осуществляют проверку познанного на .

В основе методов Естествознание лежит единство эмпирических и теоретических сторон. Они и обусловливают друг друга. Их разрыв или хотя бы преимущественное развитие одной за счёт другой закрывает путь к правильному познанию природы: теория становится беспредметной, опыт - слепым.

Методы Естествознание могут быть подразделены на группы: а) общие методы касаются всего Естествознание, любого предмета природы, любой науки. Это - различные формы диалектического метода, дающего возможность связывать воедино все процесса познания, все его ступени, например метод и др. Те системы отраслей Естествознание, строение которых соответствует действительному историческому процессу их развития (например, и химия), фактически следуют этому методу. Диалектика выступает и в том, что «... способ не может с формальной не отличаться от способа исследования. Исследование должно детально освоиться с материалом, проанализировать различные формы его развития, проследить их внутреннюю связь. Лишь после того как эта работа закончена, может быть надлежащим образом изображено действительное движение. Раз это удалось и жизнь материала получила свое , то может показаться, что перед нами априорная конструкция» ( , см. Маркс К. и , Соч., 2 изд., т. 23, с. 21). Такое особенно часто возникает в формальных, математизированных отраслях Естествознание, например , .

В Естествознание диалектический метод конкретизируется как сравнительный (в , химии), с помощью которого раскрывается всеобщая связь явлений. Отсюда - сравнительные , . В зоо-, фитои физической географии он давно успешно применяется. В Естествознание диалектический метод выступает и как исторический - в (на него опираются все прогрессивные космогонические - звёздные и планетарные), в (как основа исторической геологии, будучи неполно выражен в методе актуализма), в биологии этот метод лежит в основе . Иногда оба метода сочетаются в единый сравнительно-исторический метод, который глубже и содержательнее каждого из них в . Этот же метод в его применении к процессу познания природы, физике, связан с принципом соответствия и способствует построению современных физических теорий.

б) Особенные методы также применяются в Естествознание, но касаются не его предмета в целом, а лишь одной из его сторон (явлений, сущности, количественной , структурных связей) или же определенного приёма исследований: анализ, синтез, индукция, . Особенными методами служат: наблюдение, сравнение и как его частный случай . Исключительно важны математические приёмы и методы как особые способы исследования и выражения количественных и структурных сторон и отношений предметов и природы, а также методы и теории . Роль математических методов в Естествознание неуклонно возрастает по мере всё более широкого применения счётно-вычислительных машин. В целом происходит математизация современного Естествознание С ней связаны методы аналогии, промышленного эксперимента.

в) Частные методы - это специальные методы, действующие либо только в пределах отрасли Естествознание, либо за пределами той отрасли Естествознание, где они возникли. Так, методы физики, использованные в др. отраслях Естествознание, привели к созданию

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции