Вконтакте Facebook Twitter Лента RSS

Температура самовозгорания. Процесс горения и его виды


Вопрос 1: Самовоспламенение веществ и материалов.
Самовоспламенение -процесс возникновения горения в результате того, что горючая смесь нагревается из вне до такой температуре, выше которой она загорается самостоятельно, без дополнительного внешнего влияния.

Самовоспламеняющиеся вещества и смеси.

Самовоспламенение - распространенный процесс, присущий очень многим веществам. Обычно самовоспламенение веществ происходит при достижении определенной температуры, которая называется температурой самовоспламенения. Но существуют вещества и смеси способные самовоспламенятся и при комнатной (и даже ниже) температуре без воздействия видимого источника тепла. Такие реакции выглядят довольно эффектно.

Механизм работы таких смесей - самоускоряющаяся экзотермическая реакция протекающая с воспламенением смеси. Вследствие этого, время воспламенения таких смесей зависит от внешней температуры (чем она выше, тем время воспламенения меньше). По понятным причинам хранение готовых смесей не рекомендуется. При очень высокой скорости развития процесса самовозгорания могут быть получены и самодетонирующие смеси (например, смесь алюминиевой пыли, угля и перекиси водорода или смесь нитрата аммония с перманганатом калия), но из-за их капризного поведения показывать опыты с их применением или даже готовить такие смеси не рекомендуется! Следует иметь ввиду, что самовоспламеняющаяся смесь может образоватся и тогда когда этого не ожидает и сам экспериментатор. Для их возникновения подходит практически любая экзотермическая реакция проходящая в отсутствии или при минимальном количестве растворителя. Например, описан случай самовоспламенения смеси сульфата меди с порошком железа и опилками.

По скорости воспламенения вещества и смеси можно разделить на: воспламеняющиеся немедленно (1-2 секунды после смешивания реагентов), воспламеняющиеся через непродолжительное время (0,1-5 минут после смешивания реагентов) и воспламеняющиеся через продолжительное время (более 5 минут после смешивания реагентов). Следует заметить, что эта классификация очень условна, вследствие сильной зависимости времени воспламенения от внешних условий (состав смеси, температура воздуха, влажность воздуха и реагентов, их концентрация). Большинство смесей и веществ воспламеняются немедленно после смешивания или попадания на воздух.

По условиям воспламенения вещества и смеси можно разделить на несколько групп:

1. Вещества и смеси воспламеняющиеся в парах или газах отличных от воздуха.

Таких веществ и смесей очень много, например:

Все органические вещества, металлы, неметаллы и многие соединения в газообразном фторе, трехфтористом хлоре, фториде кислорода, диоксидифториде самовоспламеняются. В частности можно наблюдать самовоспламенение слегка подогретой воды в фторе, стекла в трехфтористом хлоре.

В газообразном хлоре самовоспламеняются: порошок сурьмы (горит красивыми белыми искорками), красный и белый фосфор, скипидар на развитой поверхности (например на вате).

В парах брома самовоспламеняются: сурьма, фосфор.

2. Вещества и смеси самовоспламеняющиеся при соприкосновении с воздухом.

Обычно это химически активные вещества, например:

Металлические рубидий и цезий, пирофорные металлы (пирофорное железо, никель), многие простейшие металлорганические вещества (метилнатрий, метиллитий), водород в присутствии платинированного асбеста.

3. Вещества и смеси самовоспламенение которых активируется водой.

Обычно это смеси, в которых вода служит растворителем для одного из компонентов, после растворения которого начинается сильноэкзотермическая реакция приводящая к воспламенению смеси. Также это могут быть вещества реагирующие с водой с большим выделением тепла.

Например: диэтилцинк, триэтилалюминий.

Основным параметром, характеризующим степень пожарной опасности вещества при самовоспламенении является:

температура самовоспламенения - наименьшая температура системы, при которой происходит резкое увеличение скорости экзотермической реакции, приводящее к появлению пламенного горения.

На температуру самовоспламенения влияют три основные группы факторов:

вид горючего вещества;

состав горючей смеси;

условия, в которых находится горючая смесь.

К первой группе факторов относятся:

теплотворная способность горючего вещества Qн и строение молекулы (определяется таким показателем, как средняя длина углеродной цепи lср).

Ко второй группе относятся:

концентрация горючего вещества в смеси φгв;

концентрация кислорода в окислительной среде φок;

наличие негорючих газов в смеси φнг;

присутствие катализаторов или ингибиторов горения.

К третьей группе можно отнести:

давление в системе P;

объем горючей системы Vгс;

площадь теплоотдачи S;

коэффициент теплоотдачи α;

начальная температура смеси То.

Все факторы, увеличивающие интенсивность тепловыделения горючей системы приводят к снижению температуры самовоспламенения.

Все факторы увеличивающие теплоотдачу горючей системы приводят к увеличению температуры самовоспламенения.

Данные о температуре самовоспламенения используют при оценке пожаровзрывоопасности веществ. Чем ниже температура самовоспламенения вещества, тем легче возникнет горение и тем выше его пожарная опасность.

По температуре самовоспламенения определяют группу взрывоопасных смесей паров и газов с воздухом в соответствии с ДНАОП 0.00–1.32–01 „Правила устройства электроустановок. Электрооборудование специальных установок“ для выбора взрывозащищенности электрооборудования.

Значение температуры самовоспламенения используют при разработке мероприятий по обеспечению пожаро- и взрывобезопасности технологических процессов в соответствии с требованиями ГОСТ 12.1.004–91 для определения допустимой температуры нагрева рабочих поверхностей технологического оборудования.

Вывод: Для обеспечения безопасности технологических процессов, в которых возможен контакт горючих веществ с нагретыми поверхностями, необходимо поддерживать безопасные температуры рабочих аппаратов (tбез≤ 0,8tсв) для предотвращения самовоспламенения веществ.

Вопрос 2: Самовозгорание веществ и материалов.

Самовозгорание - возникновение горения в результате превышения скорости тепловыделения за счет протекания внутренних экзотермических процессов над скоростью теплоотдачи в окружающую среду.

В зависимости от причины, вызывающей процесс первоначального саморазогрева вещества, различают четыре вида самовозгорания: микробиологическое, химическое, физическое, тепловое.

Не следует рассматривать перечисленные виды самовозгорания изолированно друг от друга, в чистом виде. В большинстве случаев процесс самовозгорания - это комбинация различных процессов, имеющих определенную первопричину.

Химическое самовозгорание возникает в месте контакта взаимодействующих веществ, реагирующих с выделением тепла. В зависимости от характера окислителя, вступающего в реакцию с горючим материалом, этот вид самовозгорания можно подразделить на самовозгорание при контакте с кислородом воздуха, при контакте с водой и при контакте с химическим окислителем.

Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами и пр. Поэтому хранение веществ и материалов должно всегда отвечать требованиям их совместимости.

Другой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность разогреваться под действием влаги до больших температур и расщеплять влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

Физическое самовозгорание является следствием тепловыделения физических процессов. К таким относятся: адсорбция - поглощение газов на поверхности твердых веществ, абсорбция - растворение паров и газов в жидкостях, тепловыделение при трении.

Микробиологическое самовозгорание характерно для материалов, в которых возможна жизнедеятельность микроорганизмов. В основном - это растительные материалы. Самовозгорание происходит, как правило, в глубине материала при длительном хранении и определенной влажности хранимого материала. В процессе протекания данного вида самовозгорания на разных его этапах могут проходить и другие процессы, характерные для ранее перечисленных видов самовозгорания. Наиболее характерным примером является самовозгорание прошлогодних скирд сена.

Тепловое самовозгорание возникает при нагревании вещества до температуры, обеспечивающей его термическое разложение и дальнейшее самоускоряющееся самонагревание за счет теплоты экзотермической реакции окисления продуктов термического разложения в объеме горючего материала. Сам процесс протекает в глубине материала в форме тления, которое затем может переходить в пламенное горение на поверхности.

Часто мы становимся свидетелями тления и горения угля в кучах, торфа, неоднократно отмечены случаи самовозгорания толи в рулонах, целлофана и целлулоида, бумаги, а также материалов, содержащих нитроцеллюлозную основу, при хранении в больших кипах и пакетах. Температура самонагревания торфа и бурого угля составляет 50-60°С, хлопка 120°С, бумаги 100°С, поливинилхлоридного линолеума 80°С и т.д. Для большинства горючих веществ температура самонагревания не превышает 150°С.

Общее требование пожарной безопасности для случаев теплового самовозгорания формулируется довольно просто: безопасной температурой длительного нагрева вещества считается температура, не превышающая 90% температуры его самонагревания.

Основными параметрами, характеризующими степень пожарной опасности вещества при самовозгорании являются:

температура самонагревания вещества τсн - минимальная температура среды, выше которой при благоприятных условиях возможно развитие экзотермического процесса самонагревания, связанного с термическим разложением и окислением определенного объема (массы) горючего вещества.

период индукции τинд - время от момента достижения температуры самонагревания в очаге самовозгорания до момента возникновения горения.

Обычно процесс самовозгорания протекает при температуре окружающей среды не менее 10°С (при более низких температурах увеличивается интенсивность теплоотдачи так, что тепловыделение может быть недостаточным для возникновения горения). Однако, чем меньше рассеивается тепло (в случае большого скопления горючего материала), тем при более низкой температуре окружающей среды возможно самонагревание вещества.

Как правило, самовозгорание возникает в том случае, когда отношение внешней поверхности материала (площади теплоотдачи) к объему небольшое, а площадь поверхности реагирования много больше внешней поверхности материала. В противном случае за счет большого теплоотвода саморазогрев и самовозгорание будут невозможны.

Меры профилактики самовозгорания надо направлять на уменьшение потерь самовозгорающегося полезного ископаемого при выемке и снижение его сорбционной способности к кислороду путем обработки антипирогенами (например, 5-10%-ным раствором жидкого стекла с гелеобразующей добавкой). Пропускать через выработанное пространство или целик полезного ископаемого большое количество воздуха очень трудно. Еще труднее контролировать равномерность его прохождения. Поэтому более надежной мерой предупреждения самовозгорания является изоляция выработанных пространств или целиков полезного ископаемого с целью прекращения прохода воздуха через них.

Для отопления пламенных печей используют жидкое топливо, которое хранят в подземных расходных и напорных баках. Бункеры для угля рассчитывают на запас не более одних суток и оборудуют тепловыми датчиками и системой автоматической подачи в бункеры углекислого газа при превышении температуры 60 "С для предупреждения самовозгорания.

Основными мерами предупреждения самовозгорания масляных отложений и нагаров являются своевременное удаление и предотвращение накопления их в коммуникациях.

Вывод по вопросу:

Способность склонных к самовозгоранию материалов распространять тление внутри своей массы и поглощать продукты горения создает особую опасность возникновения пожара от самовозгорания. Опасность заключается в том, что не всегда можно своевременно обнаружить пожар.


Вывод по занятию:

Знание веществ склонных к самовозгоранию, самовоспламенению и их пожароопасных свойств позволяет эффективно применять меры противопожарной защиты. Именно это является залогом безопасной производственной деятельности объекта, где используются вещества и материалы склонные к самовозгоранию и самовоспламенению.

Рассмотрев вопрос возникновения горения в результате нагрева горючей смеси до их температуры самонагревания стоит обратить внимание на то, что в природе существует большое количество горючих веществ и материалов, температура самонагревания которых равна или ниже обычной температуры в помещениях. Так, алюминевая пудра при соприкосновении с воздухом способна окисляться и при этом самонагреваться до возникновения пламенного горения даже при температуре окружающего воздуха 10 0 С. Такой процесс возгорания веществ и материалов получил название самовозгорание. Согласно стандартам ГОСТ и СЭВ самовозгорание – это: 1) резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения; 2) возгорание в результате самоинициируемых экзотермических процессов.

Самовозгорание как начальная стадия горения принципиально не отличается от самовоспламенения (см. рис. 2.4). Склонность веществ и материалов к самовозгоранию можно охарактеризовать как функцию теплоты сгорания соединения, скорости реакции окисления, теплопроводности, теплоёмкости, влажности, наличия примесей, объёмной плотности, удельной поверхности, теплопотерь и т. д. Самовозгоранием считается, если процесс самонагревания веществ и материалов происходит в интервале температур от 273 К до 373 К, т. е. при более низких температурах, чем при самовоспламенении.

Рис. 2.4. Схема возникновения горения

Температурой самонагревания называется самую низкую температуру вещества, при которой возникает его самонагревание, заканчивающееся самовоспламенением. Самовозгорающиеся вещества делят на три группы: масла, жиры и другие продукты растительного происхождения; самовозгорающиеся химические вещества; ископаемые горючие материалы.

Причиной самонагревания, приводящей к воспламенению, может быть ряд факторов: микробиологический процесс, адсорбция, полимиризация, теплота химических реакций. Условно самовозгорание классифицируют по начальным причинам самонагревания и различают: тепловое самовозгорание, микробиологическое и химическое самовозгорания (см. рис. 2.5).

Рассмотрим более подробно каждый вид самовозгорания.

Тепловое самовозгорание. Тепловым называется самовозгорание, вызванное самонагреванием, возникшим под воздействием внешнего нагрева вещества, материала, смеси выше температуры самонагревания. Тепловое самовозгорание возникает при нагревании вещества до температуры, обеспечивающей его термическое разложение идальнейшее самоускоряющееся самонагревание за счет тепла экзотермических реакций в объеме горючего. При этом большую роль играют реакции окисления продуктов термического разло­жения. Сам процесс протекает в форме тления в глубине мате­риала, которое затем переходит в пламенное горение на поверх­ности. К тепловому самовозгоранию имеют склонность многие вещества и материалы, в частности масла и жиры, каменные угли и некоторые химические вещества. Самонагревание масел и жиров растительного, животного и минерального происхождения возникает в результате окислительных процессов под действием кислорода воздуха при развитой поверхности контакта с ними. Минеральные масла – машинное, трансформаторное, соляровое и другие, которые получают при переработке нефти. Они представляют собой главным образом смесь предельных углеводородов и окисляются на воздухе только при высоких температурах. Отработанные минеральные масла, подвергавшиеся нагреву до высокой температуры, могут содержать непредельные соединения, которые способны к саморазогреву, т. е. могут самовозгораться.

Рис. 2.5. Схема развития процесса самовозгорания твердых веществ и материалов. Импульсы самонагревания (самовозгорания): 1 – тепловой, 2 –химический, 3 – микробиологический

Растительные масла (хлопковое, льняное, подсолнечное и др.) и животные (сливочное, рыбий жир) по своему составу отличаются от минеральных. Они представляют собой смесь глицеридов жирных кислот: пальмитиновой С 15 Н 31 СООН, стеариновой C 17 Н 35 СООН, олеиновой С 17 Н 33 СООН, линолевой С 17 Н 31 СООН, линоленовой С 17 Н 29 СООН и др. Пальмитиновая и стеариновая кислоты являются предельными, олеиновая, линолевая и линоленовая – непредельными. Глицериды предельных кислот, а следовательно, масла и жиры, содержащие их в большом количестве, окисляются при температурах свыше 150 0 С, что означает следующее: они не способны самовозгораться (см. табл. 2.3). Масла, содержащие большое количество глицеридов непредельных кислот, начинают окисляться при температурах значительно ниже 100 0 С, следовательно, они способны самовозгораться.

Таблица 2.3.

Состав жиров и масел

Название жиров и масел

Глицериды кислот, % (масс.)

пальмитиновой и стеариновой

олеи-новой

лино-левой

линоле-новой

Подсолнечное

Хлопковое

Масла и жиры самовозгораются только при определённых условиях: а) при наличии в составе масел и жиров значительного количества глицеридов непредельных кислот; б) при наличии большой поверхности их окисления и малой теплоотдачи; в) если жирами и маслами пропитаны какие-либо волокнистые горючие материалы; г) промасленные материалы имеют определённую уплотнённость.

Различная способность растительных масел и животных жиров к самовозгоранию объясняется тем, что они содержат глицериды различного состава, строения и не в одинаковом количестве.

Глицериды непредельных кислот способны окисляться на воздухе при обычной температуре помещений за счёт наличия в их молекулах двойных связей:


Пероксиды легко разлагаются с образованием атомарного кислорода, который очень реакционноспособен:

Атомарный кислород взаимодействует даже с трудноокисляющимися компонентами масел. Одновременно с окислением протекает и реакция полимеризации непредельных соединений


Процесс идёт при низкой температуре с выделением тепла. Чем больше глицерид имеет двойных связей, тем больше он присоединяет молекул кислорода, тем больше выделяется тепла в процессе реакции, тем больше его способность к самовозгоранию.

О количестве глицеридов непредельных кислот в масле и жире судят по йодному числу масла, т. е. по количеству йода, поглощённому 100 г масла. Чем выше йодное число, тем большая способность этого жира или масла к самовозгоранию (см. табл. 2.4).

Самое большое йодное число имеет льняное масло. Волокнистые материалы, пропитанные льняным маслом, при всех прочих одинаковых условиях самовозгораются быстрее, чем материалы, пропитанные другими маслами. Олифы, приготовленные на основе растительных масел, имеют меньшее йодное число, чем основа, но способность к самовозгоранию у них выше. Это объясняется тем, что в олифу добавляется сиккатив, ускоряющий её высыхание, т. е. окисление и полимеризацию. Полунатуральные олифы, представляющие собой смеси окисленного льняного или других растительных масел с растворителями, имеют небольшие йодные числа и мало способны к самовозгоранию. Синтетические олифы совершенно не способны самовозгораться.

Таблица 2.4.

Иодные числа жиров и масел

Жиры рыб и морских животных имеют высокое йодное число, но обладают незначительной способностью к самовозгоранию. Это объясняется тем, что в их составе присутствуют продукты, замедляющие процесс окисления.

Способность промасленных материалов к самовозгоранию увеличивается с присутствием в них катализаторов, ускоряющих процесс окисления и полимеризацию масел. Повышение температуры окружающей среды также способствует ускорению этих процессов. Катализаторами для самовозгорания масел являются соли различных металлов: марганца, свинца, кобальта. Наиболее низкая температура, при которой на практике наблюдали самовозгорание масел и жиров, составляла 10-15 0 С.

Индукционный период самовозгорания промасленных материалов может составлять от нескольких часов до нескольких дней. Это зависит от объёма промасленного материала, степени его уплотнения, вида масла или жира и их количества, температуры воздуха и других факторов.

Ископаемые угли (каменный, бурый), которые хранятся в кучах или штабелях, способны самовозгораться при низких температурах. Основными причинами самовозгорания является способность углей окисляться и адсорбировать пары и газы при низких температурах. Процесс окисления в угле при низких температурах идёт достаточно медленно и тепла выделяется мало. Но в больших скоплениях угля теплоотдача затруднена, и самовозгорание угля всё же происходит. Самонагревание в штабеле угля первоначально происходит во всём объёме, исключая только поверхностный слой толщиной 0,3-0,5 м, но по мере повышения температуры оно приобретает очаговый характер. Рост температуры в очаге самовозгорания до 60 0 С идёт медленно и может прекратиться при проветривании штабеля. Начиная с 60 0 С, скорость самонагревания резко увеличивается, такая температура угля называется критической . Склонность углей к самовозгоранию в штабелях различна, она зависит от количества выхода из них летучих веществ, от степени измельчения, присутствия влаги и пирита. Согласно нормам хранения все ископаемые угли по их склонности к самовозгоранию делятся на две категории: А – опасные, Б – устойчивые.

К категории А относят бурые и каменные угли, за иск­лючением марки Т, а также смеси разных категорий. Наиболее опасны в отношении самовозгорания уг­ли марок ОС (кузнецкие), Ж (ткварчельские), Г (ткибульские), Д (печерские, кузнецкие и донецкие), Б (райчихинские, украинские, ленировские, ангренские и др.). Эти угли нельзя хранить долго. К категории Б относят антрацит и каменные угли мар­ки Т. Устойчивы при длительном хранении все антрациты и угольные брикеты, угли марок Т (донецкие, кузнецкие), Ж (печерские и сучанские), Г (сучанские), Д (чернеховские).

Для предотвращения самовозгорания углей при хранении нормами установлено: 1) ограничение высоты штабелей угля; 2) уплотнение угля в штабеле с целью ограничения доступа воздуха во внутренний объём штабеля.

Выполнение этих мероприятий сводит к минимуму скорость процессов окисления и адсорбции, рост температуры в штабеле, препятствует проникновению в штабель атмосферных осадков и естественно снижает возможность самовозгорания.

Также к тепловому самовозгоранию имеют склонность многие химические вещества . Сульфиды железа FeS, FeS 2 , Fe 2 S 3 способны самовозго­раться, поскольку могут реагировать с кислородом воздуха при обычной температуре с выделением большого количест­ва тепла:

FeS 2 + О 2 → FeS + SO 2 + 222,3 кДж.

Отмечены случаи самовозгорания пирита или серного колчедана (FeS 2) на складах сернокислотных заводов, а также в рудниках. Самовозгоранию пирита способствует влага. Предпо­лагается, что реакция в этом случае протекает по сле­дующему уравнению.

Наименование параметра Значение
Тема статьи: Самовозгорание.
Рубрика (тематическая категория) Образование

Самовозгорание представляет собой процесс низкотемпературного окисления дисперсных материалов, заканчивающийся тлением или пламен-ным горением . Склонность к самовозгоранию веществ определяется ком-плексом их физико-химических свойств : теплотой сгорания, теплоемкостью, теплопроводностью, удельной поверхностью, объёмной плотностью и условиями теплообмена с внешней средой.

Для развития процесса самовозгорания: решающее значение имеет возможность накопления в материале тепла, выделяющегося при окислении (или деятельности микроорганизмов). Чем лучше условия аккумуляции теп-ла, тем раньше при более низкой температуре начинается самовозгорание.

Процессы самовозгорания развиваются в материалах при довольно низ-кой температуре (до 250 о С ) в течение длительного времени. В таких услови-ях для поддержания процесса самовозгорания недостаточно тепла, выде-ляющегося при окислении внешней поверхностью. Обязательным условием является вовлечение в реакцию окисления или разложения всœей массы мате-риала. И чем больше масса, тем легче развивается в ней процессы самонагре-вания и самовозгорания. Увеличение температуры окружающей среды со-кращает время до самовозгорания.

Можно выделить два механизма самовозгорания :

Тепловое самовозгорание состоит в следующем. Многие дис-персные материалы взаимодействуют с кислородом воздуха уже при обыч-ной температуре. В условиях , благоприятствующих накоплению тепла в мас-се материала, происходит повышение температуры. Это в свою очередь по-вышает скорость реакций окисления, повышая при этом температуру и т. д. В итоге может произойти самовозгорание материала .

Тепловое самовозгорание – физико-химический процесс, скорость ко-торого зависит 1 ). от скорости химической реакции,2 ). поступления кислорода к реагирующей поверхности и от 3 ).интенсивности теплообмена материала с окружающей средой.

При хранении дисперсных материалов на воздухе кислород проникает вовнутрь материала между частицами. Попадая в поры, кислород адсорбируется в поверхностном слое, что вызывает повышение температуры. Наличие развитой поверхности твердого материала с адсорбированным на ней кислородом является необходимым условием для начала теплового самовозгорания.

Существенную роль в развитии процесса самовозгорания играют по-ристость и адсорбционная способность материала . Чем больше пор, тем больше развита поверхность контакта и адсорбция на ней кислорода. По этой причине наиболее склонны к самовозгоранию материалы с большей пористостью.

Саморазогрев массы материала неоднороден . Вследствие разных условий теплоотвода, а).центральная зона объёма нагревается быстрее, чем поверхность, и на начальной стадии самовозгорания характерно сохранение внешнего вида материала, хотя внутри происходит обугливание . Далее на обугленной поверхности развиваются процессы тления , которые могут перейти в пламенное горение . Поскольку промежуточным продуктом при самовозгорании большинства органических веществ является уголь , то главную роль играют закономерности самовозгорания угля.

Следует отметить, что значительную роль в самовозгорании угля игра-ет его способность адсорбировать пары воды из окружающего воздуха. Установлено, что при этом уголь может нагреваться до 65-70 о С . К примеру, при адсорбировании 0,01 г Н 2 О выделится 22,6 Дж тепловой энергии.

Ускорению процесса самовозгорания способствует А).накопление тепла, б).развитая поверхность, в).легкая воспламеняемость, то есть малая энергия активации, и г).повышение температуры. Вместе с тем, самовозгорание развивается и при наличии в веществе д).примеси.

К примеру, в случае если в аммиачной селитре (NH 4 NO 3) примесей нет, то ее пе-ревозка и хранение безопасны. Температура разложения лежит в пределах 200 о С . Но при малых добавках органики или частиц металлов начинается автокаталитическое разложение , и селитра самовозгорается при 110 о С . Считают, что автокатализ вызывают выделяющиеся СО 2 и водяной пар. Добавка масел в селитру также вызывает взрывчатое её разложение (в связи с этим её применяют для приготовления взрывчатки).

Большую роль в опасности самовозгорания !!! играет длительность периода до самовозгорания . У разных веществ она различна.

Микробиологическое самовозгорание. К микробиологическому са-мовозгоранию склонны, главным образом, материалы растительного происхождения. Οʜᴎ служат питательной средой для бактерий и грибов.

Возможности развития микробиологического процесса ограничены, так как температура самонагревания материала не должна превышать 75 о С . По-скольку при более высокой температуре микроорганизмы, как правило, по-гибают. Примерами микробиологического самовозгорания можно назвать обугливание пшеницы в буртах , самонагрев навозной кучи и т. п .

В самовозгорании угля могут участвовать и адсорбция, и микроорга-низмы (в начальной стадии), и примеси. Так, существовали теории, что при-чинами самовозгорания угля является сульфиды желœеза (FeS), карбонаты же-леза Fe(CO) 4 и др.
Размещено на реф.рф
Сегодня считают, что в основном влияют при-меси желœеза, независимо от вида его химических соединœений.

Основными показателями, характеризующими опасность самовозгора-ния веществ, являются рассмотренные нами в теме 4:

· температура самонагревания;

· температура тления;

· условия теплового самовозгорания;

· способность взрываться и гореть при контакте с водой, кислородом воздуха и другими окислителями .

Последний показатель качественно характеризует особую пожарную опасность веществ, называемую пирофорностью.

К пирофорным относятся вещества,имеющие температуру самовос-пламенения ниже температуры окружающей среды , в отличие от большинства веществ, которые самовоспламеняются только в результате нагрева извне. Само возгорающие вещества очень пожароопасны .

Самовозгорающие вещества можно разделить на три группы:

1. Самовозгорающиеся при соприкосновении с воздухом: фосфор, сер-нистые металлы, порошок магния, уголь, са­жа и др.
Размещено на реф.рф
К примеру, в трассирую-щих пулях, фейерверках используются самовозгорающиеся вещества.

2. Воспламеняющиеся при соприкосновении с водой - ϶ᴛᴏ щелочные металлы, их карбиды, и др.
Размещено на реф.рф
К примеру, карбид кальция, применяемый в аце-тиленовых генераторах. Негашеная известь не горит, но выделяющееся при её реакции с водой тепло может нагреть материалы до температуры само-воспламенения.

3. К третьей группе относятся органические соединœения, которые вос-пла­меняются при контакте с кислородом и другими окислителями (хлором, бромом, окислами азота); это масла . Сюда относятся и вещества, получаемые в результате эндотермических реакций, к примеру, ацетилен, которые при воздействии тепла или удара разлагаются с возможным возникновением взрыва.

Самовозгорание. - понятие и виды. Классификация и особенности категории "Самовозгорание." 2014, 2015.

Теоретические вопросы.. 3

1. Практическое значение температуры самовоспламенения как показателя пожарной опасности. От каких факторов зависит температура самовоспламенения?. 3

2. Какое горение называется тлением? Обязателен ли приток кислорода для тления? Перечислить показатели пожарной опасности твердых горючих материалов. 5

Расчетная часть задания. 10

1. Общие сведения. 10

2. Физико-химические свойства. 10

3. Расчет характеристик горения. 12

Вещество. 17

Список использованной литературы.. 18


Теоретические вопросы

1. Практическое значение температуры самовоспламенения как показателя пожарной опасности. От каких факторов зависит температура самовоспламенения?

Основными показателями пожарной опасности являются температура самовоспламенения и концентрационные пределы воспламенения.

Температура самовоспламенения - самая низкая температура технологической среды, при которой в условиях специальных испытаний происходит резкое увеличение скорости экзотермических реакций, заканчивающихся пламенным горением.

Применяемость показателя в зависимости от агрегатного состояния вещества

Область применения

Температура самовоспламенения

Самовоспламенение - резкое увеличение скорости экзотермических объемных реакций, сопровождающееся пламенным горением и/или взрывом.

Значение температуры самовоспламенения следует применять при определении группы взрывоопасной смеси по ГОСТ 12.1.011 для выбора типа взрывозащищенного электрооборудования, при разработке мероприятий по обеспечению пожаровзрывобезопасности технологических процессов в соответствии с требованиями ГОСТ. 12.1.004 и ГОСТ 12.1.010, а также необходимо включать в стандарты или технические условия на вещества и материалы.

Сущность метода определения температуры самовоспламенения заключается во введении определенной массы вещества в нагретый объем и оценке результатов испытания. Изменяя температуру испытания, находят ее минимальное значение, при котором происходит самовоспламенение вещества.

Температура самовоспламенения зависит от фракционного состава и от преобладания углеводородов того или иного класса. Чем ниже пределы кипения той или иной фракции, т. е. чем она легче, тем она менее опасна с точки зрения самовоспламенения, т. к. температура самовоспламенения уменьшается с увеличением средней молекулярной массы нефтепродукта. Тяжелые нефтяные остатки сомавоспламеняются при С, а бензины при температуре выше 500 0С.

В производственных условиях самовозгораются каменный уголь, торф, опилки, некоторые горючие жидкости, обычно в виде тонких пленок, получающихся при нанесении жидкости на ворсистые поверхности (хлопок, вата и т. п.). К этим жидкостям относятся растительные масла, скипидар. На предприятиях имеются случаи самовозгорания обтирочных материалов, промасленной спецодежды, поэтому спецодежду необходимо развешивать так, чтобы обеспечить доступ воздуха, промасленные обтирочные материалы собираются в несгораемую тару с крышками и ежесменно удаляются, сжигаются или уничтожаются.

Самовозгорание угля и торфа обнаруживается по белому налету на их поверхности, по появлению пара и дыма, по оседанию слоя угля или торфа в месте их складирования, а зимой - по таянию снега. Опасные по самовозгоранию угли хранятся в штабелях высотой не более 2.5 м (в подвале 1 м) и шириной до 20 метров. При укладке уголь послойно уплотняется катками.

2. Какое горение называется тлением? Обязателен ли приток кислорода для тления? Перечислить показатели пожарной опасности твердых горючих материалов.

Тление - беспламенное горение твердого вещества (материала) при сравнительно низких температурах (°С), часто сопровождающееся выделением дыма.

Горение - экзотермическая реакция окисления вещества, сопровождающаяся, по крайней мере, одним из трех факторов: пламенем, свечением, выделением дыма.

Температура тления - температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления.

Значение температуры тления следует применять при экспертизах причин пожаров, выборе взрывозащищенного электрооборудования и разработке мероприятий по обеспечению пожарной безопасности технологических процессов, оценке пожарной опасности полимерных материалов и разработке рецептур материалов, не склонных к тлению.

Сущность метода определения температуры тления заключается в термостатировании исследуемого вещества (материала) в реакционном сосуде при обдуве воздухом и визуальной оценке результатов испытания. Изменяя температуру испытания, находят ее минимальное значение, при котором наблюдается тление вещества (материала).

Тление не может происходить без притока кислорода и оттока продуктов горения. У тления есть своя конвективная газовая струя.

Перечень показателей пожарной опасности технологических сред

Показатель пожарной опасности технологической среды

Для твердых материалов

Область применения

Группа горючести

Для определения способности технологических сред к горению

Температура вспышки

Температура воспламенения

При определении группы горючести и оценки пожарной опасности технологических сред

Температура самовоспламенения

При определении группы взрывоопасной смеси для выбора типа взрывозащищенного электрооборудования

Концентрационные пределы распространения пламени (воспламенения)

При определении концентраций горючих газов, паров и пылей, при которых возможно распространение пламени

Температурные пределы распространения пламени (воспламенения)

При определении пожаробезопасных температурных режимов работы оборудования. Для расчетной оценки концентрационных пределов распространения пламени

Температура тления

При разработке мероприятий по обеспечению пожарной безопасности технологических сред, склонных к тлению

Условия теплового самовозгорания

При выборе безопасных условий хранения и переработки технологических сред, склонных к самовозгоранию


Продолжение таблицы

Минимальная энергия зажигания

При разработке мероприятий по обеспечению пожарной безопасности и электростатической искробезопасности технологических сред

Кислородный индекс

При обеспечении безопасности технологических сред, связанных с обращением полимерных материалов

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами

При определении категории помещений по взрывопожарной и пожарной опасности. При выборе безопасных условий совместного хранения и транспортирования технологических сред. При выборе средств пожаротушения

Нормальная скорость горения смеси (для пылей - эффективная нормальная скорость распространения пламени)

При разработке и создании огнепреградителей, предохранительных мембран и других разгерметизирующих устройств

Удельная скорость выгорания

При определении продолжительности горения жидких технологических сред в резервуарах, интенсивности тепловыделения и подачи огнетушащих веществ

Коэффициент дымообразования

Для классификации технологических сред по дымообразующей способности

Индекс распространения пламени

Для классификации технологических сред по способности распространять пламя по поверхности

Показатель токсичности продуктов горения полимерных материалов

Для оценки токсичности технологических сред, содержащих полимеры


Продолжение таблицы

Минимальное содержание кислорода

При разработке мероприятий по обеспечению пожарной безопасности технологических сред с пониженным содержанием кислорода

Минимальная флегматизирующая концентрация флегматизатора

При разработке мероприятий по обеспечению пожарной безопасности технологических сред с наличием разбавителя (флегматизатора, ингибитора)

Максимальное давление взрыва

Скорость нарастания давления взрыва

При разработке мероприятий по взрывозащите технологического оборудования (расчет предохранительных клапанов, мембран и т. п.)

Критическая поверхностная плотность теплового потока

При разработке мероприятий по снижению способности технологических сред воспламеняться под действием теплового излучения пламени и определении категорий помещений по пожарной опасности

Длина распространения пламени по струе аэрозоля

Для оценки пожарной опасности жидких технологических сред в распыленном состоянии

При оценке пожарной опасности аварийного истечения технологических сред


Продолжение таблицы

Минимальная концентрация негорючего разбавителя в воздухе, при которой существует диффузионное пламя

При оценке последствий аварийного истечения парогазовых технологических сред

Удельная теплота сгорания

При оценке пожарной опасности технологических сред и определении категорий помещений и наружных установок по взрывопожарной и пожарной опасности

Индекс пожаро-взрывоопасности

Для оценки пожарной опасности технологических сред в технологическом оборудовании

Способность к экзотермическому разложению

Для термодинамически нестабильных технологических сред, способных вызвать резкий рост температуры и давления при разложении

Способность к воспламенению при адиабатическом сжатии

Параметр, характеризующий способность технологической среды к воспламенению при адиабатическом сжатии в смеси с воздухом или другим окислителем

Излучающая способность пламени

Для оценки плотности теплового потока от пламени при горении технологических сред

Безопасный экспериментальный максимальный зазор

При выборе степени взрывозащиты электрооборудования

Примечание. Знак “+” обозначает применяемость, знак “-” - неприменяемость показателя пожарной опасности для технологической среды.

Расчетная часть задания

1. Общие сведения

Название вещества.

СН3ОН – Метиловый спирт, метанол, древесный спирт, гидроксильное произведение метана СН4.

2. Физико-химические свойства

Агрегатное состояние; внешний вид, цвет, запах; плотность;. температура плавления; температура кипения; растворимость в воде; коэффициент молекулярной диффузии пара; удельное электрическое сопротивление; диэлектрическая проницаемость; предельно допустимая концентрация ПДК (справочные данные).

Свойства водных растворов метилового спирта в зависимости от его концентрации

Показатель

Концентрация, % по массе

Плотность, г/см3

Температура замерзания, 0С

2.1. Расчет относительной плотности паров по воздуху (Dвозд)

(при К < 0 жидкость не горит, при К > 0 жидкость не горит).

3. Расчет характеристик горения

3.1. Определение характера свечения пламени.

Метанол служит растворителем и промежуточным продуктом в производстве красителей. Но главным потребителем его является производство пластмасс, для которого нужны большие количества метаналя (формальдегида). Метаналь же получается при окислении метанола кислородом воздуха. В промышленности смесь паров метанола и воздуха при 400 0С пропускают над медным или серебряным катализатором.

Чтобы смоделировать этот процесс, согнем в спираль кусочек медной проволоки диаметром 0,5 - 1 мм и щипцами внесем его в несветящуюся зону пламени горелки Бунзена. Проволока раскаляется и покрывается слоем оксида меди (II). Поместим полученный нами раньше метанол (10 капель) в достаточно широкую пробирку и опустим в него раскаленную медную спираль. Вследствие нагревания метанол испаряется и под влиянием катализатора - меди - соединяется с кислородом с образованием метаналя (мы узнаем его по характерному резкому запаху). При этом поверхность медной проволоки восстанавливается. Реакция происходит с выделением тепла. При больших количествах паров метанола и воздуха медь остается разогретой до тех пор, пока реакция не завершится.

3.5. Объем и состав продуктов горения (теоретический)

По уравнению реакции горения (для 1 кг горючего вещества при нормальных условиях).

МО2 = 32 кг/моль, МСН2О = 30 кг/моль, МН2О = 18 кг/моль.

Из 64 кг СН2ОН получается 60 кг СН2О

Из 1 кг СН2ОН х кг СН2О

х = 0,94 кг СН2О

При получении 60 кг СН2О образуется 36 кг Н2О

При получении 0,94 кг СН2О у кг Н2О

у = 0,56 кг Н2О

3.6. Стехиометрическая концентрация в паровоздушной смеси

3.6.1. Объемная концентрация (%).

Стехиометрическая концентрация (об. %) определяется по формуле:

3.6.2. Массовая концентрация (кг/м3, г/м3).

Массовое стехиометрическое отношение дает отношение массы воздуха к массе топлива.

3.7. Концентрационные пределы распространения пламени

Нижний (верхний) концентрационный предел распространения пламени - минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Значения концентрационных пределов распространения пламени необходимо включать в стандарты или технические условия на газы, легковоспламеняющиеся индивидуальные жидкости и азеотропные смеси жидкостей, на твердые вещества, способные образовывать взрывоопасные пылевоздушные смеси (для пылей определяют только нижний концентрационный предел). Значения концентрационных пределов следует применять при определении категории помещений по взрывопожарной и пожарной опасности в соответствии с требованиями норм технологического проектирования ; при расчете взрывобезопасных концентраций газов, паров и пылей внутри технологического оборудования и трубопроводов, при проектировании вентиляционных систем, а также при расчете предельно допустимых взрывобезопасных концентраций газов, паров и пылей в воздухе рабочей зоны с потенциальными источниками зажигания в соответствии с требованиями ГОСТ 12.1.010, при разработке мероприятий по обеспечению пожарной безопасности объекта в соответствии с требованиями ГОСТ 12.1.004.

Допускается использовать экспериментальные и расчетные значения концентрационных пределов распространения пламени.

Сущность метода определения концентрационных пределов распространения пламени заключается в зажигании газо-, паро - или пылевоздушной смеси заданной концентрации исследуемого вещества в объеме реакционного сосуда и установлении факта наличия или отсутствия распространения пламени. Изменяя концентрацию горючего в смеси, устанавливают ее минимальное и максимальное значения, при которых происходит распространение пламени.

Нижний предел (jн) в % об. вычисляют по формулам

http://pandia.ru/text/78/079/images/image024_25.gif" width="440" height="24">

Верхний предел распространения пламени (jв) в % об. вычисляют в зависимости от величины стехиометрического коэффициента кислорода (b) по формулам:

http://pandia.ru/text/78/079/images/image026_26.gif" width="145" height="20 src=">при b ³ 8

где hj, qs- коэффициенты, учитывающие химическое строение вещества;

т j - число связей j -го элемента;

mC, mH, mCl , mO - число атомов соответственно углерода, водорода, хлора и кислорода в молекуле вещества.

b = m С + m S + 0,25(m H - m X) - 0,5m O + 2,5m p, (36)

где m С, m S, m H, m X, m O, m p - число атомов соответственно углерода, серы, водорода, галоида, кислорода и фосфора в молекуле жидкости.

hi: hC-H = 1,39, hC-O = 1,40, hO-H = 1,25

681 " style="width:511.05pt;border-collapse:collapse;border:none">

Вещество

Константы уравнения Антуана

Диэлектр. прониц.

tКИПЕНИЯ, 0С

DН образ. кДж/моль

DН исп. кДж/моль

Метанол СН3ОН

lgр = 7,3,454/(245,818 + t)

Список использованной литературы

1. ГОСТ 12.1.044-89. Пожаровзрывоопасность веществ и материалов.

2. Номенклатура показателей НПБ 23-2001. Пожарная опасность технологических сред.

3. Глинка и упражнения по общей химии. Учеб. пособ. для вузов / Под ред. и Х. М. рубинов. – 23-е изд., испр. – Л.: Химия, 1985. – 264 с.

4. Глинка химия: Учеб. пособ. для вузов. – 24-е изд., испр. / Под ред. . – Л.: Химия, 1985. – 704 с.

5. Химия: Справ. материалы / , ; Под. ред. . – 2-е изд., перераб. – М.: Просвещение, 1988. – 223 с.

6. Хомченко задач по химии. – М.: Новая волна, 2002. – 256 с.

7. Хомченко по химии для поступающих в вузы. – 4-е изд., испр. и доп. – М.: Новая волна, 2004. – 480 с.

При определении температуры вспышки смесь вспыхивает и сейчас же гаснет. Если же продолжать нагревание жидкости, можно вновь наблюдать вспышку паров, при этом вспыхнувший продукт будет спокойно гореть в течение некоторого времени. Соответствующая этому наинизшая температура называется температурой воспламенения . Температуру воспламенения определяют на том же приборе (в открытом тигле), что и температуру вспышки.

Понятие температуры самовоспламенения

Если нефтепродукт нагреть до высокой температуры, а затем привести его в соприкосновение с воздухом, то он может самопроизвольно воспламениться. Температуру, при которой соприкосновение нефтепродукта с воздухом вызывает его воспламенение и устойчивое горение без поднесения источника огня, называют температурой самовоспламенения . Температура самовоспламенения нефтепродуктов зависит не от испаряемости, а от их химического состава. Наибольшей температурой самовоспламенения обладают ароматические углеводороды, а также богатые ими нефтепродукты, наименьшей - парафиновые. Чем выше молекулярная масса углеводородов, тем ниже температура самовоспламенения, так как она зависит от окислительной способности. С повышением молекулярной массы углеводородов их окислительная способность возрастает, и они вступают в реакцию окисления (обусловливающую горение) при более низкой температуре.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции