Вконтакте Facebook Twitter Лента RSS

Скрещивания видов растений. Что такое гибридное растение Как скрещивают растения разных видов. Скрещивание растений — технология скрещивания и преимущества гибридных сортов Сохранение и использование генетического разнообразия культур

Выращивание растений в домашних условиях очень распространенное хобби. Но большинство любителей не придает значения правилам ухода за растениями. Хотя занимает этот уход совсем мало времени. А результат сторицей окупает все потраченные усилия. Ведь если все сделать правильно, то растения здоровыми, отлично расти и радовать своим внешним видом. Поэтому каждому любителю природы, занимающемуся выращиванием растений, нужно знать ответы хотя бы на главные вопросы, связанные с этим занятием.

Как скрещивать растения? Скрещивание растений производиться для того, чтобы получить новый сорт с необходимыми для селекционера признаками. Поэтому первым делом нужно определиться, какие качества в новом растении желаемы. Затем производиться подбор родительских растений, каждое из которых обладает одним или несколькими такими доминирующими качествами. Имеет смысл использовать растения, которые выросли в разных регионах – это делает более богатой их наследственность. Но все же, прежде чем приступать к занятию селекцией, все же следует ознакомиться со специализированной литературой, например, с описанием методов работы И. В. Мичурина.

Как спасти растение? Бывают случаи, когда растение начинает по каким-то причинам гибнуть. Первым признаком обычно становиться болезненное состояние листьев. Тогда нужно проверить в каком состоянии стебель. Если он стал слишком мягким, хрупким или подгнил, то остается надежда, что здоровы корни. Но если и они испортились, то это значит, что растение умерло. В других случаях можно попытаться его спасти. Для этого придется срезать поврежденную часть. Но полностью стебли не срезают, оставляя хотя бы несколько сантиметров над грунтом. Затем нужно поместить растение так, чтобы вдвое сократить получаемую им норму солнечного времени и умеренно поливать его, когда почва совсем сухая. Такие меры помогут растению бороться с болезнью и через несколько месяцев появятся новые ростки.

Как ухаживать за комнатными растениями? Чтобы растения были здоровыми и выглядели красиво, нужно соблюдать несколько обязательных правил. Во-первых, необходимо их правильно поливать. Нельзя заливать растение, лучше уж недолить. Делать это нужно когда земля сухая. Вода должна быть комнатной температуры. Нужно помнить, что тропические растения требуют еще и ежедневного опрыскивания. Другим, важным условием для жизни растений, является освещение. Обязательно следует разузнать освещение какой интенсивности и продолжительности требуется для растения и обеспечить для него необходимые условия. Температура - это третий важный для жизни и здоровья растений фактор. Большинству из них подходит комнатная температура. Но некоторые виды более холодных регионов нуждаются в понижении температуры зимой. Это можно обеспечить поставив цветок на застекленный балкон.

Спрашивает Олег
Отвечает Елена Титова, 01.12.2013

Олег спрашивает: "Здравствуйте, Елена! Скажите, пожалуйста, скрещивание учёными различных видов растений, овощей и фруктов не является ли вмешательством в творение Божье и грехом? Успешные подобные скрещивания не ставят ли под удар Креационизм? Ведь если получилось скрестить различные растения, то со временем получится скрестить и различных животных, кошку с собакой, например. А значит есть вероятность того, что из одного более простого живого существа появилось более сложное и так вплоть до появления человека?".

Приветствую, Олег!

Ученые-селекционеры в основном проводят внутривидовые скрещивания (гибридизацию) для появления желательных признаков (для человека, конечно) у животных, растений и микроорганизмов, чем добиваются создания новых или улучшенных пород, сортов, штаммов.

Внутри вида скрещивание особей идет относительно легко из-за сходства их генетического материала и анатомо-физиологических особенностей. Хотя это не всегда так, например, в естественных условиях невозможно скрещивание крохотной собачки чихуахуа и огромного мастифа.

А вот уже на пути скрещивания особей разных видов (а тем более разных родов) встают молекулярно-генетические барьеры, препятствующие развитию полноценных организмов. И выражены они тем сильнее, чем дальше отстоят друг от друга скрещиваемые виды и роды. В силу значительно различающихся геномов родителей у гибридов могут возникать несбалансированные наборы хромосом, неблагоприятные сочетания генов, нарушаться процессы деления клеток и образования гамет (половых клеток), может произойти гибель зиготы (оплодотворенной яйцеклетки) и др. Гибриды могут быть частично или полностью стерильны (бесплодны), с пониженной жизнеспособностью вплоть до летальности (хотя в некоторых случаях в первом поколении наблюдается резкое усиление жизнеспособности – гетерозис), могут появляться аномалии развития, в частности, репродуктивных органов, или так называемые химерные ткани (генетически разнородные) и т.д. Видимо, поэтому Господь предупреждал Свой народ: "... скота твоего не своди с иною породою; поля твоего не засевай двумя родами [семян]" ().

В естественных условиях случаи межвидового скрещивания крайне редки.

Примеры искусственной отдаленной гибридизации есть: мул (лошадь+осел), бестер (белуга+стерлядь), лигр (лев+тигрица), тайгон (тигр+львица), леопон (лев+самка леопарда), плумкот (слива+абрикос), клементин (апельсин+мандарин) и др. В некоторых случаях ученым удается снять негативные последствия отдаленной гибридизации, например, получены плодовитые гибриды пшеницы и ржи (тритикале), редьки и капусты (рафанобрассика).

А теперь Ваши вопросы. Является ли искусственная гибридизация вмешательством в Божье творение? В определенном смысле – да, если человек создает вариант, отличный от природного, что можно сравнить, скажем, с использованием женщинами декоративной косметики для улучшения своего внешнего вида. Является ли искусственная гибридизация грехом? А потребление мясной пищи является грехом? Господь по жестокосердию нашему допускает умерщвление живых существ ради пищи. Вероятно, также по нашему жестокосердию он допускает и селекционное экспериментирование ради улучшения потребительских свойств нужных людям продуктов. В этом же ряду – и создание лекарственных препаратов (при этом используются и умерщвляются лабораторные животные). Как ни печально, все это реальная действительность общества, где царит грех и правит «князь мира сего».

Ставят ли успешные скрещивания под удар креационизм? Ни в коей мере. Напротив.

Вы знаете, что все размножается «по роду своему». Библейский «род» не есть биологический вид современной систематики. Ведь богатое разнообразие видов появилось после Потопа вследствие произошедшей изменчивости признаков наземных организмов из Ноева ковчега и водных обитателей, выживших вне ковчега, при адаптировании их к новым условиям окружающей среды. Сложно очертить библейский «род», генетический потенциал которого значителен и был задан изначально при сотворении. Он может включать такие современные таксоны, как вид и род, но, вероятно, не выше (под)семейства. Возможно, например, что большие кошки из современных систематических родов семейства кошачьи восходят к одному исходному «роду», а мелкие кошачьи – к одному или двум другим. Понятно, что выделившиеся из библейского «рода» виды и роды включают свой в некоторой степени обедненный и измененный (по отношению к исходному) генетический материал. Сочетание этих не вполне комплементарных частей (в межвидовых и межродовых скрещиваниях) встречает препятствия на молекулярно-генетическом уровне, а значит, не позволяет дать начало полноценному организму, хотя в редких случаях в пределах библейского «рода» такое может получиться.

О чем это говорит? О том, что никаких скрещиваний «кошки с собакой» и «вплоть до человека» не может быть в принципе.

Еще момент. Сравните 580 тысяч нуклеотидных пар, 482 гена в ДНК одноклеточной микоплазмы и 3,2 миллиарда нуклеотидных пар, порядка 30 тысяч генов в ДНК человека. Если вообразить гипотетический путь «от амебы до человека», задумайтесь, откуда появлялась новая генетическая информация? Естественным путем ей взяться неоткуда. Мы знаем, что информация возникает только из разумного источника. Так кто же Автор амебы и человека?

Божьих благословений!

Читайте еще по теме "Творение":

Кентавры в мире растений. Достижения российских, европейских и американских учёных. Как появилась слива и всеми любимая клубника.

Создание новых сортов пшеницы. Главное достижение российских ученых - капусторедька.

Еще один, не менее древний способ получения новых сортов растений и пород животных - это скрещивание, или, как говорят ученые, гибридизация между собой разных видов. Представьте себе, что в руках агронома оказалось два растения, каждое из которых обладает какими-то полезными свойствами. Естественно, очень заманчивой выглядит идея получить одно растение, которое совмещало бы в себе признаки их обоих. Как осуществить эту идею? Конечно, скрестить между собой оба эти растения. Этим приемом люди начали пользоваться еще в далекой древности, сначала неосознанно - просто отбирая время от времени возникающие в природе естественные гибриды, затем - целенаправленно скрещивая разные формы. Примеров тому огромное множество. Взять хотя бы такое всем известное культурное растение, как слива. Наверное, мало кто из вас знает, что в дикой природе нет такого вида растений. Слива - это гибрид, возникший в результате естественной гибридизации двух других видов - терна и алычи, и сочетающий свойства и того, и другого растения. В горах Кавказа и сейчас иногда можно обнаружить дикие гибриды этих видов. Обыкновенная вишня - это тоже результат межвидовой гибридизации в природе. Она появилась еще в глубокой древности от скрещивания черешни со степной вишней - неказистым кустарником, не превышающим в высоту 1-2 метров.

Но, как известно, люди очень редко довольствуются только тем, что дает им природа. Очень быстро они научились сами скрещивать различные дикие виды растений, в результате чего появились такие гибриды, которых природа никогда не знала. Перечислим лишь несколько примеров. Так, любимая всеми садовая земляника (ее у нас часто неправильно называют клубникой) произошла от гибридизации двух диких видов земляники - чилийской и виргинской. И хотя предки ее родом из Америки, выведена она все же в Европе. Широко использовал межвидовую гибридизацию американский селекционер Бербанк. Пожалуй, одним из самых примечательных его достижений было создание четырехвидового гибрида карликового съедобного скороспелого каштана, дающего плоды уже на второй год после посева.

Подлинной сенсацией стало в свое время создание американским генетиком Н.Борлоугом так называемых короткостебельных пшениц. Исследователь случайно обнаружил в коллекции пшениц США чрезвычайно низкорослую пшеницу, которую издавна выращивали в Индии. Наличие короткого стебля - очень важное качество для зерновой культуры - в противном случае большая часть питательных веществ идет на рост стебля, а не на образование зерна. Вот и получалось: соломы много, а зерна - не очень. Борлоуг скрестил эту пшеницу с другой карликовой формой - на этот раз японской (у нее удалось обнаружить целых три гена карликовости). На основе этих двух форм американскому селекционеру удалось вывести сразу несколько превосходных карликовых и полукарликовых сортов пшеницы, которое в настоящее время повсеместно выращиваются в тропических и субтропических районах земного шара. Только благодаря этому достижению генетики и селекции удалось поднять урожаи зерна в два, а кое-где и в три раза!

Чрезвычайно трудной, однако успешно завершившейся, была работа английских селекционеров по гибридизации дикорастущего диплоидного вида ежевики с тетраплоидной культурной ежевикой, отличавшейся необыкновенно вкусными плодами, но крайне позднеспелой. Вначале исследователям повезло: случайно была найдена ежевика без шипов. Но, несмотря на многочисленные усилия по скрещиванию этих двух видов, удалось получить всего лишь четыре гибридных сеянца и, увы, все с шипами. Кроме всего прочего, три из них были триплоидными (то есть с тройными наборами хромосом) и, соответственно, семян не дали. Но последний сеянец обрадовал ученых - он оказался плодоносящим тетраплоидом. Когда дождались плодоношения, посеяли и вырастили новое потомство, было обнаружено, что 37 растений без шипов, а 835 несут шипы. Из первых отобрали одно и скрестили с колючим культурным сортом. В новом потомстве на каждые три растения с шипами пришлось по одному без шипов. Из бесшипных селекционерам приглянулось только одно растение - оно и стало родоначальником знаменитого английского сорта Мертон Торн лесс.

Однако подлинным шедевром селекции по праву считается получение настоящих растительных «кентавров» - гибридов между растениями, принадлежащими не только к разным видам, но и к разным родам. Самые известные из таких опытов - это работы российского селекционера Г.Д.Карпеченко. В результате генетического эксперимента, проведенного исследователем, на свет появилось новое растение - капусторедька. На его побегах покачивались наполовину капустные, наполовину редечные плоды. Давайте поподробнее познакомимся с историей его создания.

Каждый селекционер, который пытался скрещивать разные виды растений, знает, что самое трудное - это не получить новый гибрид . а добиться того, чтобы он начал давать семена. Ведь если новый сорт не сможет размножаться, все труды окажутся напрасными - полученное растение рано или поздно погибнет, не оставив после себя потомков. Почему же плодовитые гибриды - это очень большая редкость? Чтобы ответить на этот вопрос, нам опять, в который раз, придется обратиться к механизму образования половых клеток - гамет. Вспомним, что каждая гамета, и мужская, и женская возникает в результате особого процесса деления клеток, который называется мейоз. Во время мейоза уменьшается число хромосом в клетках, поэтому гаметы несут ровно в два раза меньше хромосом, чем клетки родительского организма. Но в самом начале мейоза происходит еще одно очень важное событие - парные или, как говорят ученые, гомологичные хромосомы плотно прижимаются друг к другу и обмениваются между собой кусочками ДНК. А что будет, если хромосомы «не узнают» друг друга и не смогут обменяться генами? А ничего - нормальные гаметы возникнуть не смогут.

А теперь представим себе гибрид . возникший при скрещивании двух разных видов растений или животных. Каждая хромосома из пары гомологичных хромосом в его клетках происходит от разных организмов. В случае с капустой и редькой на каждую «капустную» хромосому приходится одна «редечная» - оба эти растения несут в половых клетках по 9 хромосом. Но гены капусты ничего общего с генами редьки не имеют (эти растения вообще относятся к разным биологическим родам). Значит, даже если удастся получить гибридное растение (например, путем «насильственного» опыления цветов капусты пыльцой редьки), хромосомы «не узнают» друг друга, и гибриды окажутся не способными к размножению.

Неужели нет никакой возможности получить способный к размножению гибрид? Как известно, безвыходных ситуаций не бывает. Ведь никто не говорил, что у гибридных растений вообще не образуются гаметы - нет, они все-таки появляются, но несут не строго определенное число хромосом (9, как полагается капусте и редьке), а случайное, например, 5 или 8. Значит, существует очень маленькая вероятность того, что появится гамета с 18 хромосомами - 9 капустных и 9 редечных хромосом окажутся в одной клетке. Из массы скрещиваний капусты с редькой, окончившихся неудачей, в одном случае Карпеченко получил растение, которое выросло и даже зацвело, после чего завязалось одноединственное семечко. Это и был тот самый счастливый случай: все 18 хромосом попали в одну гамету.

Необычная гамета случайно встретилась с гаметой, также несущей 18 хромосом, в результате выросло растение с 36 хромосомами, то есть обычный одинарный набор из 9 хромосом повторялся у него 4 раза (мы уже знаем, что такие растения обычно называют тетраплоидами). Таким образом, здесь мы опять сталкиваемся с уже знакомым нам явлением полиплоидии - увеличения количества хромосом. Деление клеток и образование гамет у этого гибрида прошло благополучно - каждая из девяти редечных хромосом теперь нашла себе пару, то же самое было и с капустными хромосомами. Потомство такие организмы давали. Когда из семени выросло первое гибридное растение, его природа проявилась самым удивительным образом: половина плодов оказалась капустной, а другая половина - редечной. Капусторедька вполне оправдала свое название. Но Карпеченко не остановился на достигнутом. Гамету полученного гибрида он соединил с нормальной редечной гаметой. Теперь редечных хромосом оказалось вдвое больше, чем капустных, что не замедлило сказаться и на плодах: две трети каждого плода имели редечную форму и только одна треть - капустную. Так благодаря полиплоидии впервые сумели преодолеть природную нескрещиваемость двух разных родов.

Список растительных «кентавров» вовсе не ограничивается капусто-редечными гибридами. Так, в результате скрещивания двух зерновых культур - ржи и пшеницы - ученые получили целый ряд форм, объединенных общим названием тритикале. Тритикале обладает хорошей урожайностью, зимостойкостью и устойчивы ко многим болезням пшеницы. Благодаря гибридизации пшеницы и злостного полевого сорняка - пырея - селекционеры получили ценные сорта растений - пшенично-пырейные гибриды, устойчивые к полеганию и обладающие высокой урожайностью. Другой известный российский селекционер - И.В.Мичурин - скрестил вишню пенсильванскую (очень морозостойкий в отличие от привычной нам вишни вид) с черемухой и синтезировал новое растение, которое назвал церападусом. Лишь гораздо позднее обнаружилось, что церападусы самопроизвольно возникают на Памире, но чуть иначе.

Цель: Изучить возможности проведение гибридологического анализа на объекте горох (Pisum sativum L.).

Для проведения гибридологического анализа на летней полевой практике можно использовать сорта (линии) разных видов растений, но лучше - имеющих хозяйственное значение с учетом климатических условий района. Для скрещивания обычно используются генетические коллекции культурных растений: генетическая коллекция мутантных внутривидовых форм, чистых линий, сортов. Чистые (гомозиготные) линии имеются у посевного гороха, кукурузы, томатов, пшеницы, ржи, ячменя, люпина и т. д.

Лучшим объектом для проведения скрещиваний является горох (Pisum sativum L., 2n=14). Растение самоопыляющееся, перекрестное опыление происходит редко. Цветки с прицветниками, обоеполые, пятилепестные. Цветок состоит из паруса, двух крыльев и двух сросшихся лепестков - лодочки (рис.1,2). Пестик простой, составлен одним плодолистиком. Столбик пестика сплюснут и изогнут почти под прямым углом вверх, завязь верхняя. В цветке имеется 10 тычинок, 9 из них (редко все 10) срастаются нитями в трубочку, и одна тычинка свободна.

Период цветения у гороха - до двух недель, в зависимости от сорта и погодных условий этот срок может продолжаться от 3 до 40 дней. Самоопыление происходит в бутоне до раскрытия цветка. Созревшие пыльники обычно растрескиваются в бутоне, и пыльца собирается в верхней части лодочки, попадая на рыльце по мере роста пестика.

Цветки раскрываются последовательно снизу вверх, первыми зацветают нижние цветки Перед посадкой гороха тщательно подготавливают. Глубина заделки семян 5-7 см, расстояние между растениями около 10-12 см, между рядами - около 20 см.

Методика скрещивания. Она состоит из следующих операций: подготовки соцветия к скрещиванию, кастрации цветков и опыления.

Ход работы. Главным моментом скрещивания на горохе является кастрация цветка - удаление пыльников из цветка материнского растения до их созревания. Кастрацию обычно проводят в фазе бутонизации (бутоны светло-зеленой окраски).

Опыление кастрированного цветка материнского растения желательно проводить свежесобранной пыльцой или использовать пыльцу сорванного отцовского цветка. Для опыления берут пыльцу только что распустившегося цветка отцовского растения.

Через несколько дней после опыления, когда начинают формироваться бобы, изоляторы снимают. Семена, созревшие в бобах в год скрещивания, являются уже гибридами первого поколения (), на них можно наблюдать доминирование одного из признаков (по форме или окраске семян).

1. Вылущить бобы с растения материнского сорта, подсчитать число семян; убедиться, что все семена имеют желтую окраску.

2. Вылущить бобы с растения отцовского сорта, подсчитать число семян; убедиться, что все семена имеют зеленую окраску.

3. Вылущить бобы трех растений с семенами первого поколения (); убедиться, что все семена имеют желтую окраску, и подсчитать число полученных семян. Определить, какая окраска (желтая или зеленая) доминантная и какая рецессивная.

4. Вылущить бобы 10 растений гороха с семенами второго поколения (), подсчитать число желтых и зеленых семян, вычислить отношение между ними. Затем вычислить теоретически ожидаемое отношение желтых и зеленых семян. Данные лучше записать в таблицу (табл.1).

Таблица 1

Гибридологический анализ при моногибридном скрещивании гороха

Проанализировано

растений

Получено семян

Расщепление

Родительские сорта и гибриды

В том числе

Теоретически ожидаемое

Фактически полученное

Неистощимый 195

> Московский 559

(общие данные анализа, полученные всей группой студентов)

В таблицу вписываются все данные по анализу расщепления у гибридов и, полученные всеми студентами. Следует иметь в виду, что чем больше получено семян, тем фактические данные расщепления лучше согласуются с теоретически ожидаемым расщеплением.

Гибридологический анализ у гороха при дигибридном скрещивании

Дигибридным называется скрещивание, при котором родительские формы отличаются одна от другой по двум парам изучаемых альтернативных признаков. У гибридов и анализируется наследование только двух пар признаков или двух пар генов, определяющих их развитие.

Для гибридологического анализа при проведении дигибридного скрещивания были взяты сорта гороха уже, рекомендованные при моногибридном скрещивании: «Московский 558», имеющий гладкие зеленые семена и «Неистощимый 195» с морщинистыми желтыми семенами. . Семена гибридов первого поколения были гладкими и желтыми.

При анализе характера расщепления по окраске и форме семян у гороха были выполнены следующие задания:

Вылущить семена из бобов 5 или более материнских растений сорта «Неистощимый 195», подсчитать число семян и убедиться, что все они желтые и морщинистые;

Вылущить семена 5 или более отцовских растений сорта «Московский 559», они должны быть все гладкими и зелеными;

Вылущить семена гибридов, они все должны быть желтыми и гладкими. Определить какие признаки доминантные, какие - рецессивные;

Вылущить семена и распределить их на четыре фенотипических класса по сочетанию признаков окраски и формы семян: желтые гладкие, желтые морщинистые, зеленые гладкие и зеленые морщинистые;

Чтобы определить характер наследования каждой пары признаков (аллелей) у дигибрида, надо рассчитать расщепление по каждой из них отдельно: на желтые-зеленые и гладкие-морщинистые, - оно должно быть 3:1. Как следует из таблицы 4, соотношение желтых и зеленых семян 1075:365, или 2,94:1, близкое 3:1. Это означает, что признаки окраски и формы семян у гороха наследуются независимо.

Таблица 4

Гибридные семена по окраске и форме образуют 4 фенотипических класса в следующих количественных соотношениях: примерно всех полученных семян будут желтыми гладкими (А- В-), - желтыми морщинистыми (А- вв), - зелеными гладкими (аа В-) и - зелеными морщинистыми (аа вв), или близкие к отношению 9:3:3:1.

Методика проведения скрещивания у злаковых (пшеницы и ржи)

Пшеница (Triticum L.) - род травянистых протерогиничных растений. В культуре возделывают главным образом сорта мягкой (6п=42) и твердой (4п=28) пшениц.

Соцветие пшеницы - сложный колос, состоящий из одинаковых 3-7 цветковых колосков, сидящих в выемках колосового стержня. Цветок пшеницы имеет 3 тычинки и двухлопастное рыльце. Скрещивание начинают с кастрации цветка женских растений.

При опылении в кастрированные материнские цветки либо закладывают треснувшие пыльники, либо наносят пыльцу непосредственно на рыльце пинцетом, кисточкой или плоской тонкой палочкой. Нанесение пыльцы более -надежно

Методика проведения скрещивания у яблони

Яблоня (Malus Mill) - род растений семейства розановые (Rosaceae). Род включает 36 видов. Наиболее широко распространена яблоня домашняя, или культурная. Большая часть сортов диплоидны (2п=34), около четверти сортов триплоидны (3п=51), и единичные сорта тетраплоидны (4п=68).

Строение цветка. Цветки у яблони собраны в зонтиковидные соцветия (рис. 6). Цветок крупный, белый, снаружи розовый. Тычинок много. Пестик с пятью сросшимися при основании столбиками. Пыльники желтые. Чашечка пятираздельная. Завязь нижняя, пятигнездная; в каждом гнезде по 4-6 семяпочек. Яблоня цветет с апреля до июня в зависимости от зоны. Рыльце созревает раньше пыльников, что гарантирует перекрестное опыление, осуществляемое пчелами, шмелями. Продолжительность цветения 8-12 дней.

Техника опыления. На цветке оставляют 2-3 бутона, остальные удаляют. Оставляют бутоны, достигшие окончательной величины, лепестки которых еще не начали раздвигаться. Лепестки осторожно раздвинуть пинцетом, захватить верхнюю часть тычиночной нити с пыльником и извлечь. Удалять лучше по одному пыльнику, чтобы не повредить рыльце пестика. На кастрированные бутоны надеть общий изолятор.

Пыльцу для опыления можно приготовить в день кастрации. Собрать только начавшие распускаться бутоны растения отцовского сорта в бумажный пакетик. У яблони, чтобы опылить 5-10 цветков, достаточно пыльцы одного бутона.

Оценка плодовитости растений по пыльцевым зернам

У высших цветковых растений гаметофит редуцирован и сведен до образования зародышевого мешка (макроспорогенез) и прорастания пыльцы (микроспорогенез). Образование микроспор происходит в микроспорангиях. Зрелые микроспоры у семенных растений называются пыльцой, это совокупность пыльцевых зерен - пылинок, служащих для полового воспроизведения. Анализ микроспорогенеза, а также морфологии зрелых пыльцевых зерен позволяет оценить уровень плодовитости растений. Это особенно важно, когда изучается генетический контроль плодовитости, при выявлении ЦМС у растений, гибридизации и полиплоидии.

Нарушения морфологии пыльцы, резкое снижение ее количества в пыльниках и нарушение прорастания могут быть следствием различных генетических причин.

Существуют специальные методы анализа фертильности растений по прорастанию пыльцевых зерен. В природе пыльца, попадая на рыльце пестика, прорастает, образуя пыльцевую трубку. Прорастает пыльца под влиянием особых веществ, содержащих сахара, которые выделяются клетками зрелого рыльца.

Прорастание пыльцы у некоторых растений при С наблюдается уже через 15-20 мин. Пыльцевые трубки развиваются не одновременно, у одних пылинок трубка короче, у других - длиннее.

Проросшие пыльцевые зерна на покровном стекле можно окрасить ацетоорсеином и увидеть в трубках один или два (в зависимости от длины трубки) ядра (спермия).

Кроме проращивания пыльцы, аномальные клетки можно обнаружить, проводя их морфологический анализ с помощью окрасок. Например, содержащую крахмал пыльцу окрашивают йодом: берут пыльник любого растения с полностью созревшими пыльцевыми зернами и кладут на предметное стекло. С помощью препаровальной иглы разрывают пыльник и распределяют пыльцевые зерна по поверхности стекла. На стекло наносится капля 0,5 % спиртового раствора йода, выявляющего наличие крахмала по специфической синей окраске пыльцевых зерен. Их можно окрашивать ацеторсеином и изучать зерна с аномальной формой, слабоокрашенные, “невыполненные” т. е. долю абортивных клеток.

Задание 1. Используя пыльцу самых различных видов растений,студенты провели анализ изменчивости ее морфологии в капле воды без окраски (прижизненно), применив окраску йодом, ацетокармином.

Задание 2. В период цветения ржи и других культурных растений и окончательного созревания пыльцы у форм с различным генотипом (диплоиды, полиплоиды, анеуплоиды), у форм, произрастающих в различных условиях среды (обратите внимание на те погодные условия, при которых происходил мейоз или процессы завершения морфогенеза пыльцы), определите частоту проявления аномальных зрелых пыльцевых зерен. Классифицируйте аномальные клетки: резкие отклонения в размере, нарушение формы, нарушение цитоплазмы (ее сжатие и отслоение от оболочки и др.). Абортивные пыльцевые зерна часто имеют одно ядро. Для анализа частоты абортивной пыльцы окраску проводите ацеторсеином или ацетокармином.

Человек в своем стремлении улучшить природу движется все дальше. Благодаря современным достижениям генетики аграрии получают все больше необычных и интересных гибридов, способных удовлетворить самые смелые желание потребителей.
Кроме того глобализация приводит к распространению видов растений, нехарактерных для данной климатической зоны. У нас уже давно вышли из экзотики ананасы и бананы, стали привычными гибридные нектарины и миниолы и т.д.

Желтый арбуз (38 ккал, витамины А, С)


Снаружи это привычный полосатый арбуз, но при этом ярко-желтый внутри. Еще одной особенностью является очень небольшое количество косточек. Этот арбуз результат скрещивания дикого (желтого внутри, но совершенно невкусного) с культурным арбузом. Результат получился сочный и нежный, но менее сладкий, чем красный.
Выращивают их в Испании (округлые сорта) и Таиланде (овальные). Есть сорт «Лунный» выведенный селекционером Соколовым из Астрахани. Этот сорт как раз отличается очень сладким вкусам с некоторыми экзотическими нотками, похожими на привкус манго или лимона, или тыквы.
Есть и украинский гибрид на основе арбуза («кавуна») и тыквы («гарбуза») – «кавбуз». Он больше похож на тыкву с ароматом арбуза и идеален для приготовления каш.

Фиолетовый картофель (72 ккал, витамин С, витамины группы В, калий, железо, магний и цинк)


Картошка с розовой, желтой или фиолетовой кожурой уже никого не удивляет. Но ученым из Colorado State University удалось получить картошку с фиолетовым окрасов внутри. Основой сорта стала андский высокогорный картофель, а цвет вызван высоким содержанием антоцианов. Эти вещества являются сильнейшими антиоксидантами, свойства которых сохраняются и после приготовления.
Назвали сорт «Фиолетовое величество», его уже активно продают в Англии и начинают в Шотландии, климат которой наиболее подошел сорту. Популяризации сорта способствовал английский кулинар Джейми Оливер. Эта фиолетовая картошка с привычным вкусом великолепно смотрится в виде пюре, непередаваемого насыщенного цвета, запеченной, и конечно фри.

Капуста романеско (25 ккал, каротин, витамин С, минеральные соли, цинк)


Неземной вид этого близкого родственника брокколи и цветной капусты, прекрасно иллюстрирует понятия «фрактала». Его нежно-зеленые соцветия имеют конусообразную форму и располагаются по спирали на кочане. Эта капуста родом из Италии, в широкой продаже она находится около 10 лет, а ее популяризации способствовали голландские селекционеры, слегка улучшившие овощ, известный итальянским домохозяйкам с XVI века.

В романеско мало клетчатки и много полезных веществ, за счет этого она легко усваивается. Что интересно, при приготовлении этой капусты не возникает характерного капустного запаха, который дети так не любят. Кроме того, экзотический вид космического овоща вызывает желание его пробовать. Готовят романеско как обычную брокколи - варят, тушат, добавляют в пасту и в салаты.

Плуот (57 ккал, клетчатка, витамин С)


От скрещивания таких видов растений как сливы (plum)и абрикосы (apricot) получены два гибрида плуот, который внешне больше похож на сливу, и априум, больше напоминающий абрикос. Оба гибрида названые по первым слогам английский названий видов-родителей.
Внешне плоды плуота окрашены в розовый, зеленый, бордовый или фиолетовый цвет, внутренность - от белого до насыщенно-сливового. Вывели эти гибриды в питомнике Dave Wilson Nursery 1989 году. Сейчас в мире уже два сорта априума, одиннадцать сортов плуота, один нектаплама (гибрида нектарина и сливы), одни пичплама (гибрида персика и сливы).
Используют плоуты для приготовления сока, десертов, домашних заготовок и вина. На вкус этот фрукт намного слаще и сливы, и абрикоса.

Арбузный редис (20 ккал, фолиевая кислота, витамин С)


Арбузный редис полностью соответствует своему названию – он яркий малиновый внутри и покрыт бело зеленой кожицей снаружи, точно как арбуз. Формой да и размером тоже (диаметр 7-8см) он напоминает некрупную редьку или репку. По вкусу он вполне обычный – горький у шкурки и сладковатый к середине. Правда более твердый, не такой сочный и хрустящий как обычный.
Он чудесно смотрится в салате, просто нарезанный ломтиками с кунжутом или солью. Так же рекомендуют делать из него пюре, запекать, добавлять к овощам для жарки.

Йошта (40 ккал, антоцианы, обладающие антиоксидантными свойствами, витамины С, Р)


Скрещивание таких видов растений как смородина (johannisbeere) и крыжовник (stachelbeere) дало ягоду йошту с плодами близкого к черному цвету, размером с вишню, кисло-сладким немного вяжущим вкусом, приятно отдающие смородиной.
Еще Мичурин мечтал создать смородину размерами с крыжовник, но при этом не колючую. Он успел вывести крыжовник «Мавр черный» темно-фиолетового цвета. К 1939 году в Берлине Пол Лоренц так же занимался выведением подобных гибридов. В связи с войной эти работы были остановлены. И только в 1970 году удалось получить идеальное растение Рудольфу Бауэру. Теперь есть два сорта йошты: «Черный» (коричнево-бордового цвета) и «Красный» (блекло-красного цвета).
За сезон с куста йошты получают 7-10 кг ягод. Используют их в домашних заготовках, десертах, для ароматизации газировки. Йошта хорошо помогает при желудочно-кишечных заболеваниях, для выведения из организма тяжелых металлов и радиоактивных веществ, улучшения кровообращения.

Брокколини (43 ккал, кальций, витамины А, С, железо, клетчатка, фолиевая кислота)


В семействе капуст в результате скрещивания обычной брокколи и китайской брокколи (гайлана) получили новую капусту похожую на спаржу на макушке с головкой брокколи.
Брокколини немного сладковата, не имеет резкого капустного духа, с перечной ноткой, нежная на вкус, напоминает спаржу одновременно и брокколи. В нем множество полезных веществ и при этом низкокалориен.
В США, Бразилии, странах Азии, Испании, брокколини привычно используют как гарнир. Его подают свежим, политым маслом или слегка обжаривают в масле.

Нэши (46 ккал, антиоксиданты, фосфор, кальций, клетчатка)


Еще один результат скрещивания растений – это нэши. Получили его от яблока и груши в Азии несколько столетий назад. Там его называют азиатской, водяной, песочной или японской грушей. Выглядит плод как круглое яблоко, а на вкус как сочная, хрустящая груша. Цвет нэши - от бледно-зеленого до оранжевого. В отличии от обычной груши нэши тверже, поэтому лучше хранится и транспортируется.
Нэши достаточно сочное, потому его лучше использовать в салатах или соло. Так же хорош в качестве закуски к вину вместе с сыром и виноградом. Сейчас выращивают порядка 10 популярных коммерческих сортов в Австралии, США, Новой Зеландии, Франции, Чили и на Кипре.

Юзу (30 ккал, витамин С)


Юзу (японский лимон) это гибрид мандарина и декоративного цитруса (ичангской папеды). Фрукт размером с мандарин зеленого или желтого цвета с бугристой кожицей имеет кислый вкус и яркий аромат. Его используют японцы еще с VII века, тогда буддийские монахи завезли с материка на острова этот фрукт. Юзу популярен в кулинарии Китая и Кореи.
У него совершенно необычный аромат - цитрусовый, с цветочными оттенками и нотами хвои. Чаще всего применяют для отдушки, цедру используют в качестве приправы. Эту приправу добавляют к мясным и рыбным блюдам, в суп мисо, лапшу. Так же с цедрой готовят джемы, алкогольные и безалкогольные напитки, десерты, сиропы. Сок похож на лимонный (кислый и ароматный, но более мягкий) и является основой соуса понзу, так же используют в качестве уксуса.
Имеет и культовое значение в Японии. 22 декабря в праздник зимнего солнцестояния принято принимать ванны с этими плодами, которые символизируют солнце. Его аромат отгоняет злые силы, защищает от простуды. В эту же ванну окунают животных, а водой потом поливают растения.

Желтая свекла (50 ккал, фолиевая кислота, калий, витамин А, клетчатка)


Отличается эта свекла только от обычной только цветом и тем, что не пачкает руки при приготовлении. По вкусу она такая же сладкая, ароматная, хороша в запеченном виде и даже в чипсах. Листья желтой свеклы можно использовать в свежем виде для салатов.

Но человек только учится преобразовывать виды растений, а природа уже давно творит

Селекция - наука, разрабатывающая пути создания новых и улучшения существующих сортов растений, пород животных и штаммов микроорганизмов.

Создание новых сортов и пород основывается на таких важнейших свойствах живого организма, как наследственность и изменчивость. Именно поэтому генетика - наука об изменчивости и наследственности организмов - является теоретической основой селекции.

Имея свои собственные задачи и методы, селекция твердо опирается на законы генетики, является важной областью практического использования закономерностей, установленных генетикой. Вместе с тем селекция опирается и на достижения других наук. На сегодняшний день генетика вышла на уровень целенаправленного конструирования организмов с нужными признаками и свойствами.

Сорт, порода и штамм - устойчивая группа организмов, искусственно созданная человеком и имеющая определенные наследственные особенности.

Все особи внутри породы, сорта и штамма имеют сходные, наследственно закрепленные морфологические, физиолого-биохимические и хозяйственные признаки и свойства, а также однотипную реакцию на факторы внешней среды.

Основные направления селекции:

  • высокая урожайность сортов растений, плодовитость и продуктивность пород животных;
  • улучшение качества продукции (например, вкус, внешний вид плодов и овощей, химический состав зерна - содержание белка, клейковины, незаменимых аминокислот и т. д.);
  • физиологические свойства (скороспелость, засухоустойчивость, зимостойкость, устойчивость к болезням, вредителям и неблагоприятным климатическим условиям).
  • выведение стрессоустойчивых пород (для разведения в условиях большой скученности - на птицефабриках, фермах и т. п.);
  • пушное звероводство;
  • рыбоводство - разведение рыбы в искусственных водоемах.

ОТЛИЧИЕ КУЛЬТУРНЫХ ФОРМ ОТ ДИКИХ

Культурные формы Дикие формы
развиты признаки, полезные для человека и часто вредные в естественных условиях наличие признаков, неудобных для человека (агрессивность, колючесть и т. п.)
высокая продуктивность низкая продуктивность (мелкие плоды; низкая масса, яйценоскость, удойность)
хуже адаптируются к меняющимся условиям среды высокая адаптивность
не имеют средств защиты от хищников и вредителей (горьких или ядовитых веществ, шипов, колючек и т. п.) наличие естественных защитных приспособлений, повышающих жизнестойкость, но неудобных для человека

основные методы селекции

Основные методы селекции:

  • подбор родительских пар
  • отбор
  • гибридизация
  • искусственный мутагенез

Подбор родительских пар

Данный метод применяется прежде всего в селекции животных, т. к. для животных характерно половое размножение и немногочисленное потомство.

Выведение новой породы - процесс длительный, требующий больших материальных затрат. Это может быть целенаправленное получение определенного экстерьера (совокупности фенотипических признаков), повышение молочности, жирности молока, качества мяса и т. д.

Разводимые животные оцениваются не только по внешним признакам, но и по происхождению и качеству потомства . Поэтому необходимо хорошо знать их родословную. В племенных хозяйствах при подборе производителей всегда ведется учёт родословных, в которых оцениваются экстерьерные особенности и продуктивность родительских форм в течение ряда поколений.

работы И. В. Мичурина

Особое место в практике улучшения плодово-ягодных культур занимает селекционная работа И. В. Мичурина. Большое значение он придавал подбору родительских пар для скрещивания. При этом он не использовал местные дикорастущие сорта (так как они обладали стойкой наследственностью, и гибрид обычно уклонялся в сторону дикого родителя), а брал растения из других, отдалённых географических мест и скрещивал их друг с другом.

Важным звеном в работе Мичурина было целенаправленное воспитание гибридных сеянцев: в определённый период их развития создавались условия для доминирования признаков одного из родителей и подавления признаков другого, т. е. эффективное управление доминированием признаков (разные приёмы обработки почвы, внесение удобрений, прививки в крону другого растения и т. п.).

Метод ментора - воспитание на подвое. В качестве привоя Мичурин брал как молодое растение, так и почки от зрелого плодоносящего дерева. Этим методом удалось придать желаемую окраску плодам гибрида вишни с черешней под названием «Краса севера».

Мичурин применял также отдалённую гибридизацию. Им получен своеобразный гибрид вишни и черемухи - церападус, а также гибрид терна и сливы, яблони и груши, персика и абрикоса. Все мичуринские сорта поддерживают путём вегетативного размножения.

Отбор

Искусственный отбор - сохранение для дальнейшего размножения особей с интересующими селекционера признаками. Формы отбора: массовый и индивидуальный.

  • Интуитивный (бессознательный) отбор - самая древняя форма отбора, используемая ещё древним человеком: отбор особей по фенотипу, т.е. с наиболее полезными сочетаниями признаков.
  • Методический отбор - отбор для размножения особей с чётко определёнными признаками, согласно цели и с учетом их фенотипов и генотипов.
  • Массовый отбор - устранение из размножения особей, не имеющих ценные признаки, либо имеющих нежелательные признаки (например, агрессивных).

Массовый отбор может быть эффективен в том случае, если отбираются качественные, просто наследуемые и легко определяемые признаки. Массовый отбор обычно проводят среди перекрестноопыляемых растений. При этом селекционеры отбирают растения по фенотипу с интересующими их признаками. Недостаток массового отбора заключается в том, что селекционер не всегда может определить лучший генотип по фенотипу.

  • Индивидуальный отбор - выделение отдельных особей с интересующими человека признаками и получение от них потомства.

Индивидуальный отбор более эффективен при отборе особей по количественным, сложно наследуемым признакам. Этот вид отбора позволяет точно оценить генотип благодаря анализу наследования признаков у потомства. Индивидуальный отбор применяют по отношению к самоопыляемым растениям (сорта пшеницы, ячменя, гороха и др.).

Гибридизация

В селекционной работе с животными применяют в основном два способа скрещивания: инбридинг и аутбридинг .

Инбридинг - скрещивание близкородственных форм: в качестве исходных форм используются братья и сестры или родители и потомство.

Результат: получение гомозиготных организмов → разложение исходной формы на ряд чистых линий.

Минусы: пониженная жизнеспособность (рецессивные гомозиготы зачастую несут наследственные заболевания).

Такое скрещивание в определённой степени аналогично самоопылению у растений, которое также приводит к повышению гомозиготности и, как следствие, к закреплению хозяйственно ценных признаков у потомков. При этом гомозиготизация по генам, контролирующим изучаемый признак, происходит тем быстрее, чем более близкородственное скрещивание используют при инбридинге. Однако гомозиготизация при инбридинге, как и в случае растений, ведет к ослаблению животных, снижает их устойчивость к воздействию среды, повышает заболеваемость.

В селекции инбридинг обычно является лишь одним из этапов улучшения породы. За ним следует скрещивание разных межлинейных гибридов, в результате которого нежелательные рецессивные аллели переводятся в гетерозиготное состояние и вредные последствия близкородственного скрещивания заметно снижаются.

Аутбридинг - неродственное скрещивание между особями одной породы или разных пород животных в пределах одного вида.

Результат: получение большого количества гетерозиготных организмов → поддержание полезных качеств и усиление их выраженности в ряду следующих поколений.

Отдалённая гибридизация - получение межвидовых и межродовых гибридов.

Отдалённая гибридизация в селекции животных применяется значительно реже, чем в селекции растений.

Межвидовые и межродовые гибриды животных и растений чаще всего бесплодны, так как нарушается мейоз и гаметогенез не происходит. При этом восстановление плодовитости у животных представляет более сложную задачу, поскольку получение полиплоидов на основе умножения числа хромосом у них невозможно.

Преодоление бесплодия межвидовых гибридов растений впервые удалось осуществить в начале 20-х годов ХХ века советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки занимали как бы промежуточное положение и состояли из двух половинок, из которых одна напоминала стручок капусты, другая - редьки. Каждая из исходных форм имела в половых клетках по 9 хромосом. В этом случае клетки полученного от них гибрида имели 18 хромосом. Но некоторые яйцеклетки и пыльцевые зёрна содержали все 18 хромосом (диплоиды), а при их скрещивании создано растение с 36 хромосомами, которое оказалось плодовитым. Так была доказана возможность использования полиплоида для преодоления нескрещиваемости и бесплодия при отдалённой гибридизации.

Бывает, что бесплодны особи только одного пола. Например, у гибридов высокогорного быка яка и рогатого скота бесплодны (стерильны) самцы, а самки плодовиты (фертильны).

Но иногда гаметогенез у отдалённых гибридов протекает нормально, что позволило получить новые ценные породы животных. Примером являются архаромериносы, которые, как и архары (горные бараны), могут пастись высоко в горах, а как мериносы дают хорошую шерсть. Получены плодовитые гибриды от скрещивания местного (индийского) крупного рогатого скота с зебу. При скрещивании белуги и стерляди получен плодовитый гибрид - бестер, хорька и норки - хонорик, продуктивен гибрид между карпом и карасём.

В природе встречаются гибриды зебры и лошади (зеброид), бизона и зубра (зубробизон), тетерева и куропатки (межняк), зайца-русака и зайца-беляка (тумак), соболя и лисицы (кидус), а также тигра и льва (лигр).

В качестве примеров межродовых гибридов растений можно назвать гибрид пшеницы и ржи (тритикале), пшенично-пырейный гибрид, гибрид смородины и крыжовника (йошта), гибрид брюквы и кормовой капусты (куузика), гибриды озимой ржи и житняка, травянистого и древовидного томатов и др.

Гетерозис - явление повышенной жизнеспособности, урожайности, плодовитости гибридов первого поколения, превышающих по этим параметрам обоих родителей.

Уже со второго поколения гетерозисный эффект угасает. По-видимому, это происходит вследствие снижения числа гетерозиготных организмов и повышения доли гомозигот.

Классическими примерами проявления гетерозиса являются мул (гибрид кобылы и осла) и лошак (гибрид коня и ослицы) (рис. 1,2) . Это сильные, выносливые животные, которые могут использоваться в значительно более трудных условиях, чем родительские формы.

Рис. 1. Мул Рис. 2. Лошак

Продолжительность их жизни значительно выше, чем у родительских видов.

Лошак меньше мула ростом и строптив, поэтому менее удобен для использования в хозяйственной деятельности человека.

Гетерозис широко применяют в промышленном птицеводстве, например - бройлерные цыплята, отличающиеся очень быстрым ростом. Цыплёнок-бройлер - финальный гибрид, полученный в результате скрещивания нескольких линий разных пород кур (мясных родительских форм), проверенных на сочетаемость. Первоначально для такого скрещивания использовали породы корниш (в качестве отцовской формы) и белый плимутрок (в качестве материнской формы).

искусственный мутагенез

Искусственный мутагенез чаще всего используется как метод селекции растений. Он основан на применении физических и химических мутагенов для получения форм растений с выраженными мутациями. Такие формы в дальнейшем используются для гибридизации или отбора.

В селекции растений широко используется полиплоидия.

Полиплоидия - увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации.

Половые клетки большинства организмов гаплоидны (содержат один набор хромосом - n), соматические - диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами, три набора - триплоидами (3n), четыре - тетраплоидами (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, - тетраплоиды, гексаплоиды (6n) и т. д.

Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом - не кратный гаплоидному.

появление полиплоидии

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид. Если обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой - триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.

Благодаря полиплоидии выведены высокоурожайные полиплоидные сорта сахарной свеклы, хлопчатника, гречихи и др. Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях.

Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала.

Получение полиплоидов в эксперименте тесно связано с искусственным мутагенезом. С этой целью используют специальные мутагены (например, алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе.

Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и других культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам.

Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным получить плодовитые полиплоидные гибриды растений (Г. Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б. Л. Астауров, гибрид-тетраплоид тутового шелкопряда).

Шелкопряды Астаурова

Очень редки случаи естественной полиплоидии у животных. Однако, академик Б. Л. Астауров разработал метод искусственного получения полиплоидов от межвидового гибрида шелкопрядов Bombyx mori и В. mandarina. У обоих этих видов n = 28 хромосомам.

При синтезировании тетраплоида использовался метод искусственного партеногенеза. Вначале были получены партеногенетические полиплоиды В. mori - 4 n, 6 n. Все полученные особи оказались фертильными (плодовитыми) самками.

Затем произвели скрещивание партеногенетических самок В. mori (4n) с самцами другого вида В. mandarina (2n). В потомстве от такого скрещивания появлялись триплоидные самки 2n В. mori + 1 n В. mandarina.

Эти самки, стерильные в обычных условиях, размножались путем партеногенеза. При этом партеногенетически иногда возникали 6n самки (4n В. mori + 2n В. mandarina).

В потомстве от скрещивания этих самок с 2n самцами В. mandarina были отобраны 4n формы обоего пола с удвоенным набором хромосом каждого вида (2n В. mori +2n В. mandarina).

Если гибрид 1n В. mori + 1n В. mandarina был бесплодным, то тетраплоид (4n) оказался плодовитым и при разведении дал плодовитое потомство. С помощью полиплоидии, таким образом, удалось синтезировать новую форму шелкопряда.

биотехнология

Биотехнология - наука, изучающая возможность модификации биологических организмов для обеспечения потребностей человека.

Применение биотехнологии (рис. 3):

  • производство лекарств, удобрений, средств биологической защиты растений;
  • биологическая очистка сточных вод;
  • восстановление ценных металлов из морской воды;
  • коррекция и исправление генетических патологий.

Рис. 3. Возможности биотехнологии

Например, включение в геном кишечной палочки гена, ответственного за образование у человека инсулина, позволило наладить промышленное получение этого гормона (рис. 4).

Рис. 4. Биотехнология получения инсулина

В биотехнологии успешно применяются методы генной и клеточной инженерии.

ГЕННАЯ И КЛЕТОЧНАЯ ИНЖЕНЕРИЯ

Генная инженерия - искусственное, целенаправленное изменение генотипа микроорганизмов с целью получения культур с заранее заданными свойствами.

Исследования в области генной инженерии распространяются не только на микроорганизмы, но и на человека. Они особенно актуальны при лечении болезней, связанных с нарушениями в иммунной системе, в системе свертывания крови, в онкологии.

Основной метод генной инженерии: выделение необходимых генов, их клонирование и введение в новую генетическую среду. Например, введение определённых генов с помощью плазмиды в организм бактерии для синтеза ею определённого белка (рис. 5).

Рис. 5. Применение генной инженерии

Основные этапы решения генно-инженерной задачи следующие:

  1. Получение изолированного гена.
  2. Введение гена в вектор (плазмиду) для переноса в организм.
  3. Перенос вектора с геном (рекомбинантной плазмиды) в модифицируемый организм.
  4. Преобразование клеток организма.
  5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Клеточная инженерия - это направление в науке и селекционной практике, которое изучает методы гибридизации соматических клеток, принадлежащих разным видам, возможности клонирования тканей или целых организмов из отдельных клеток.

Включает культивирование и клонирование клеток на специально подобранных средах, гибридизацию клеток, пересадку клеточных ядер и другие микрохирургические операции по «разборке» и «сборке» (реконструкции) жизнеспособных клеток из отдельных фрагментов.

На данный момент удалось получить гибриды между клетками животных, далёких по систематическому положению, например мыши и курицы. Соматические гибриды нашли широкое применение как в научных исследованиях, так и в биотехнологии.

Гибридные клетки, полученные от клеток человека и мыши и человека и китайского хомячка, участвовали в расшифровке генома человека.

Гибриды между опухолевыми клетками и лимфоцитами обладают свойствами обеих родительских клеточных линий: они неограниченно делятся и могут вырабатывать определённые антитела. Такие антитела применяют в лечебных и диагностических целях в медицине.

В эмбриологии для изучения процессов дифференцировки клеток и тканей в ходе онтогенеза используют организмы- химеры , состоящие из клеток с разными генотипами . Их создают путём соединения клеток разных зародышей на ранних этапах их развития.

Клонирование животных - ещё один метод клеточной инженерии: ядро соматической клетки пересаживают в лишённую ядра яйцеклетку с последующим выращиванием зародыша во взрослый организм.

Преимущество клеточной инженерии в том, что она позволяет экспериментировать с клетками, а не с целыми организмами.

Методы клеточной инженерии часто применяют в сочетании с генной инженерией.

работы Н. И. Вавилова

Николай Иванович Вавилов - российский генетик, растениевод, географ.

  1. Н. И. Вавилов организовал 180 экспедиций (20−30 гг. ХХ века) по самым труднодоступным и зачастую опасным районам земного шара с целью изучения многообразия и географического распространения культурных растений.
  2. Им была собрана уникальная, самая крупная в мире коллекция культурных растений (к 1940 г. коллекция включала 300 000 образцов), которые ежегодно размножаются в коллекциях Всероссийского института растениеводства имени Н. И. Вавилова (ВИР) и широко используются селекционерами как исходный материал для создания новых сортов зерновых, плодовых, овощных, технических, лекарственных и других культур.
  3. Создал учение об иммунитете растений.

    Н. И. Вавилов подразделял иммунитет растений на структурный (механический) и химический. Механический иммунитет растений обусловлен морфологическими особенностями растения-хозяина, в частности, наличием защитных приспособлений, которые препятствуют проникновению патогенов в тело растений. Химический иммунитет зависит от химических особенностей растений.

  4. Закон гомологических рядов наследственной изменчивости: у генетически близких видов и родов существуют гены, которые дают сходные признаки. Таким образом, можно предсказать наличие признаков у других видов известного рода.
  5. Установил, что наибольшее разнообразие форм вида сосредоточено в тех районах, где этот вид возник. Н. И. Вавилов выделил 8 центров происхождения культурных растений .

Центры происхождения культурных растений

Центры происхождения культурных растений - географические области, являющиеся родиной дикорастущих предков культурных растений.

Центры происхождения важнейших культурных растений связаны с древними очагами цивилизации и местом первичного возделывания и селекции растений. Подобные очаги одомашнивания (центры доместикации) выявлены и у домашних животных.

Было выделено восемь центров происхождения культурных растений (рис. 6):

1. Средиземноморский (спаржа, маслины, капуста, лук, клевер, мак, свекла, морковь).

2. Переднеазитский (инжир, миндаль, виноград, гранат, люцерна, рожь, дыня, роза).

3. Среднеазиатский (нут, абрикос, горох, груша, чечевица, лен, чеснок, мягкая пшеница).

4. Индо-Малайский (цитрусовые, хлебное дерево, огурец, манго, черный перец, кокосовая пальма, банан, баклажан).

5. Китайский (просо, редька, вишня, яблоко, гречиха, слива, соя, хурма).

6. Центральноамериканский (тыква, фасоль, какао, авокадо, махорка, кукуруза, батат, хлопчатник).

7. Южноамериканский (табак, ананас, томат, картофель).

8. Абиссинский центр (банан, кофе, сорго, твердая пшеница).

В поздних работах Н. И. Вавилова Переднеазиатский и Среднеазиатский центры объединяются в Юго-западноазиатский центр.

Рис. 6. Центры происхождения культурных растений

В настоящее время выделяют 12 первичных центров происхождения культурных растений.

Обычно скрещивание проводят в рамках растений одного рода, однако иногда скрещивают и растения разных родов. Цель таких работ – закрепление и умножение благоприятных характеристик и избавление от неблагоприятных особенностей. Скрещивание проводят в стерильных условиях, где можно полностью контролировать и не допустить самоопыления растений. Во время скрещивания с женского растения удаляют лепестки и тычинки (мужские части), оставшееся закрывают бумажным колпаком, пленкой или очень мелкоячеистой сеткой – все это необходимо, чтобы не допустить самоопыления. Когда пестик (женский орган) станет липким, при помощи кисточки на него наносят пыльцу с мужского растения. Затем цветок снова закрывают колпаком и ждут созревания семян. Созревшие семена собирают и высевают. Получение нового растения и его выведение на рынок иногда занимает около 15 лет. Когда скрещивают два растения и получают новое, так называемый гибрид, надо вырастить и опылить наилучшие экземпляры нового поколения, чтобы убедиться в том, что желаемые особенности закрепились. Затем растения выращивают в нескольких разных местах, чтобы проверить, как они себя чувствуют в садах в условиях разного климата. Елена Премудрая

В гетевские времена, как вспоминал сам Гете, в Карлсбаде - на карте не ищите, теперь это Карлови Вари - на водах отдыхающие любили определять в букетах растения по Линнею. Эти букеты пьющим в тени колоннады минеральные воды (гидрокарбонатно-сульфатно-хлоридно-натриевые - к сведению собирающихся в Karlovy Vary) доставлял ежедневно молодой красивый садовник, вызывающий у бледных одиноких дам повышенный интерес.

Правильное определение каждого растеньица было делом чести и успеха у садовника, поощрявшего за скромную плату невинные ботанические увлечения. Трудно сказать почему - из-за ревности ли к садовнику, или к Линнею, но поэт жестко разошелся с Линнеем в принципах систематики растений. Линней, как известно, искал в растениях различия, Гете же стал искать общее и этим, надо сказать, сделал первый шаг к генетической систематизации растений.

Увлечение женщин ботаникой можно было понять: система Линнея была до изумления проста и понятна. Это вам не «Определитель высших растений европейской части СССР» Станкова-Талиева более чем в тысячу страниц, приводящий студентов в предынфарктное состояние.

Линней, сроду не любивший арифметики, тем не менее заложил ее, можно сказать, в основу своей системы. Он подразделил растения на 24 класса, из которых 13 выделены по числу тычинок. Растения с одной тычинкой в каждом цветке помещены в первый класс, с двумя - во второй и так далее до десятого класса, к которому отнесены растения с десятью тычинками. Класс 11-й включал растения с 11-20 тычинками, 20 и более тычинок в цветке говорило о принадлежности к 12-му и 13-му классу. Эти два класса различали по уровню расположения основания тычинок относительно места прикрепления пестика. Растения 14-го и 15-го классов имеют тычинки неравной длины. В цветах классов 15-20-го тычинки у растений сращены между собой или с пестиком. В 21-й класс были помещены однодомные растения, имеющие частью тычиночные, частью плодущие (пестичные) цветки. В 22-й класс попали двудомные растения, развивающие на одних растениях лишь тычиночные, на других - только плодущие цветки. Класс 23-й включал растения с хаотичным разбросом мужских и женских цветков (в том числе порою и совместном) на растении. В 24-м классе были объединены «тайнобрачные» растения - все бесцветковые растения, начиная с папоротникообразных и кончая водорослями. Названы последние «тайнобрачными» по той причине, что ботаники не знали, как они размножаются. Это сейчас биологам известны их организация и размножение лучше, чем цветковых растений.

Линней отнес 20 из 23 классов к явнобрачным обоеполым цветкам. Именно их он посчитал правилом в растительном царстве, остальные - любопытным исключением. Оно вроде бы логично, для растений удобнее - тычинки и пестики рядом, значит, брак без заминки; итог любви - плод и семя появляются в результате самоопыления, зашифрованного биологами латинским словом autogamia.

Уже после Линнея выяснилось, что некоторые растения имеют лишь с виду обоеполые цветки. Хотя у них в цветках рядом и тычинки, и пестики, но пыльцевые клетки в пыльниках недоразвиты и все растение евнух евнухом - смотреть противно. Другие цветки сами себя не могут оплодотворить, но их пыльца способна к производству потомства при опылении пестиков чужих растений.

Поскольку повелось исстари у ботаников все называть латинскими именами, то совокупность тычинок цветка они наименовали андроцеем, а совокупность пестиков (или просто пестик) - гинецеем. Но так как ни один ученый на уже достигнутом однажды ни за что не остановится, то ботаники в дальнейшем в зависимости от строения цветков подразделили их на обоеполые (содержат андроцей и гинецей) и однополые (содержат либо андроцей, либо гинецей). Если мужские и женские цветки расцветают на одном растении, его называют однодомным (кукуруза), если же на разных - двудомным (конопля). У полигамных видов на одном растении бывают обоеполые и однополые цветки (дыня, подсолнечник). Однако, по-видимому, в пику ученым-ботаникам природа порой подставляет их пытливому оку все формы перехода от одного полового типа цветка и растений к другому, вплоть до пустоцветов, вовсе лишенных тычинок и с недоразвитыми пестиками.

Чрезвычайно раздражающее огородников сорное растение мокрица, или топтун, имеет в двух пятичленных мутовках десять тычинок, из которых обыкновенно 5 внутренних с некоторым добавлением таковых же из внешней мутовки сморщены и лишены пыльцы. Цветковые головки черноголовника (Poterium polygamum) содержат кроме чисто плодущих и чисто тычиночных цветков еще и настоящие обоеполые цветки. Они представляют все примеры перехода от настоящих обоеполых к цветкам чисто материнского типа. Кстати, этот ботанический род исключителен среди розоцветных своей склонностью к ветроопылению.

Необычайно разнообразны также степени обособления среди ложнообоеполых плодовитых и тычиночных цветков. Бодяк, спаржа, хурма, виноград, некоторые скабиозы, камнеломки, валерьяны имеют цветки на первый взгляд обоеполые. В них хорошо развиты пестики, видны и тычинки, в пыльниках которых может быть или отсутствовать пыльца. В последнем случае это ложнообоеполые цветки. Что делать, и в природе «лжедмитрии» встречаются. То же самое можно сказать и о части цветков в кистях конских каштанов и некоторых видов щавеля, а также в цветках в центре корзинок мать-и-мачехи и ноготков, имеющих вид настоящих обоеполых цветков, но чьи завязи не дают всхожих семян, так как рыльце не способно пропускать через себя пыльцевые трубки.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции