Вконтакте Facebook Twitter Лента RSS

Малая авиация с вертикальным взлетом. Привет студент

«Ахиллесовой пятой» современной военной авиации являются аэродромы. Даже не столько они, сколько взлетно-посадочные полосы (ВПП). Самый «навороченный» боевой самолет последнего поколения станет бесполезен, если неприятель ее разрушит. Любая современная армия располагает десятком средств для проведения подобной операции. Особенно актуально вышесказанное для фронтовой авиации.

Но есть очень простое решение этой проблемы: сделать так, чтобы взлетная полоса самолету совсем была не нужна. Речь идет о самолетах вертикального взлета и посадки (СВВП), которые способны уходить в небо буквально с крошечного пятачка.

Мысли о создании подобного летательного аппарата посещали конструкторов уже давно, разработка проектов самолетов СВВП началась вскоре после начала авиационной эры. Но технические возможности не позволяли инженерам воплотить свои мечты в реальность.

Первым советским самолетом вертикального взлета и посадки стал Як-36, который поднялся в воздух в 1966 году. Продолжением этого проекта стал серийный Як-38.

Более успешно разработки по СВВП шли в Великобритании. Уже в 1960 году компания Hawker создала прототип самолета, который смог совершить вертикальный взлет. Одной из главных составляющих успеха этого проекта стало создание компанией Rolls-Royce уникального двигателя, способного развивать 3600 килограмм тяги в четыре поворотных сопла, которые и обеспечивали взлет машины. В 1969 году СВВП Hawker Siddeley Harrier GR.1 был принят на вооружение ВВС Великобритании. Сегодня «Харриер» - это уже несколько поколений боевых самолетов, которые стоят на вооружении целого ряда стран (включая Англия и США), участвовавшие в боевых действиях и обладающие высокими летно-техническими характеристиками.

В СССР судьба самолетов вертикального взлета и посадки тесно связана с развитием программы (проекты 1143) строительства авианесущих крейсеров – кораблей, обладавших и ракетным , и авиационным вооружением.

Еще в середине 70-х годов началась разработка палубного истребителя СВВП, способного защитить корабль от налетов вражеской авиации. Опыт создания «вертикалок» в СССР был только в КБ Яковлева и этот опыт нельзя назвать слишком позитивным.

Як-38, принятый на вооружение ВМФ СССР, имел очень низкую тяговооруженность и был оснащен сразу тремя двигателями. Конструкторам пришлось максимально облегчить машину, с нее даже сняли бортовую РЛС. Двигатели не хотели работать синхронно, в условиях южных широт они просто не заводились. Самолет мог взять на борт только бомбы небольшого калибра и неуправляемые ракеты, что уменьшало его боевую ценность практически до нуля. С этими самолетами постоянно случались катастрофы.

Кроме того, для уменьшения взлетной массы Як-38 был вынужден брать ограниченный запас топлива, что значительно уменьшало его радиус действия.

Проект создания нового самолета СВВП Як-141 для нужд флота начался в 1975 году. Государственные испытания были назначены на 1982 год. Новый самолет задумывался как сверхзвуковой истребитель, изначально его планировали оснастить одним двигателем, но позже предпочтение было отдано самолету с комбинированной силовой установкой.

Самолет Як-141 должен был поступить на вооружение авианесущих крейсеров (ТАКР) «Баку», «Ульяновск», «Рига» и «Тбилиси». Также новым истребителем планировали вооружить ТАКР «Минск» и «Киев» после проведения модернизации этих кораблей. Як-141 должен был заменить устаревшие и неудачные Як-38.

Силовая установка состояла из трех двигателей: двух подъемных РД-41 и одного подъемно-маршевого Р-79. Работа силовой установки контролировалась электроникой, она могла обеспечить Як-141 вертикальный или укороченный взлет с корабельной палубы.

В 1980 году военные несколько изменили свои требования к будущему самолету: он должен быть стать многоцелевым – способным не только уничтожать воздушные цели, но и наносить удары по кораблям и наземным объектам противника. То есть, выполнять функции штурмовика.

Из-за проблем с двигателями, испытания Як-141 постоянно переносились. Они начались только в 1987 году, а к 1990 году было построено четыре прототипа истребителя. Полноценные испытания взлета и посадки на корабельную палубу проходили в сентябре 1991 года. За период испытаний были установлены 12 мировых рекордов по скорости и грузоподъемности. Во время испытаний один из самолетов потерпел катастрофу. Летчик катапультировался, но машина восстановлению не подлежала. Причиной авария стала ошибка пилота.

Этот самолет стал не только важным этапом в развитии отечественного авиастроения, но и знаковой машиной в истории мировой авиации – первым самолетом вертикального взлета и посадки, преодолевшим звуковой барьер. Следует отметить, что Як-141 способен взлетать вертикально при полной боевой нагрузке.

Этому самолету сильно не повезло, он появился именно в тот момент, когда огромная страна уже доживала свои последние месяцы, а экономика валилась в пропасть. Имея горький опыт эксплуатации Як-38, военные с большим недоверием относились к «вертикалкам». Не последнюю роль в бесславном конце этого перспективного проекта сыграла и авария Як-141 во время испытаний. Денег на продолжение работ по этому весьма перспективному самолету в 1992 году уже не нашлось.

В КБ Яковлева были созданы проекты еще двух СВВП: Як-43 и Як-201, но они так и остались на бумаге. Разработчики пытались предлагать новую машину иностранным покупателям, но заказов не было. Было недолгое сотрудничество с американцами (Lockheed Martin), но оно также закончилось безрезультатно.

В 2003 году проект истребителя Як-141 был официально закрыт.

Описание

Як-141 – это высокоплан, он выполнен по нормальной аэродинамической схеме и оснащен комбинированной силовой установкой. На 26% фюзеляж самолета выполнен из композитных материалов, часть элементов изготовлена из жаропрочных сплавов на основе титана. В корпусе активно использованы алюминиево-литиевые сплавы, обладающие меньшим весом.

Фюзеляж самолета – типа полумонокок с прямоугольным сечением. Подъемно-маршевый двигатель располагается в его хвостовой части, еще два подъемных – в носовой, непосредственно за кабиной пилота. Носовая часть фюзеляжа имеет заостренную форму.

Крылья – трапециевидной формы, высокорасположенные с прямой стреловидностью и корневыми наплывами. Крыло выполнено таким образом, чтобы самолет мог достигать сверхзвуковых скоростей, вести маневренный воздушный бой и осуществлять длительный крейсерский полет.

Хвостовое оперение – двухкилевое, состоит из рулей направления и цельноповоротных стабилизаторов. Оно крепится к двум выносным балкам, между которыми находится сопло подъемно-маршевого двигателя.

Воздухозаборники прямоугольной формы, они расположены сразу за кабиной пилота. Управление воздушным потоком осуществляется с помощью горизонтального клина.

Шасси – трехопорное, оно способно выдержать падение самолета с высоты пяти метров.

В состав силовой установки Як-141 входит два подъемных двигателя (ПД) РД-41 и один маршево-подъемный (ПМД) Р-79. Также во время проведения маневров при вертикальном взлете используются струйные рули, которые запитываются от подъемно-маршевого двигателя. По своей конструкции Як-141 близок к современному американскому СВВП F-35B , который также оснащен комбинированной силовой установкой.

Подъемные двигатели РД-41 расположены в передней части самолета, в специальном отсеке, сразу за кабиной пилота. Во время горизонтального полета или на стоянке двигатели закрыты специальными створками сверху и снизу. Во время взлета или посадки они раскрываются, обеспечивая двигателям поступление воздуха и открывая сопла. Двигатели установлены под углом 10° к вертикали, сопла могут отклоняться на ±12,5° по вертикали от оси двигателя. РД-41 – это одноконтурный, одновальный турбореактивный двигатель, он может работать на скорости, не превышающей 550 км/ч.

Подъемно-маршевый двигатель Р79В-300 – это двухконтурный турбореактивный двигатель с форсажной камерой и изменяемым вектором тяги. Он находится в задней части корпуса самолета. Роторы этого двигателя вращаются в разные стороны, компрессоры отличаются повышенной газодинамической устойчивостью, в камере сгорания находятся уникальные вихревые горелки. Сопло двигателя – поворотное, с регулируемой площадью сечения, оно может отклонять вектор тяги на 95°. Максимальная тяга Р79В-300 на форсаже — 15 500 кгс.

Як-141 может взлетать тремя разными способами: вертикально, с коротким разбегом и с проскальзыванием (сверхкороткий взлет). Сопло маршевого двигателя при вертикальном взлете отклоняется на максимальный угол, при взлете с коротким разбегом и проскальзыванием он составляет 65°. При взлете с проскальзыванием длина разбега равняется шести метрам.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

По компоновочной схеме

По положению фюзеляжа при взлете и посадке.

  • Вертикальное положение (так называемый tailsitter):
    • с винтами (пример: Convair XFY Pogo, Lockheed XFV);
    • реактивные;
      • с прямым использованием тяги от маршевого реактивного двигателя (пример - X-13 Vertijet);
      • с кольцевым крылом (колеоптер);
  • Горизонтальное положение:
    • с винтами;
      • с поворотным крылом и винтами (ХС-142);
      • с поворотными винтами/вентиляторами на конце крыла (V-22 Osprey , Bell X-22);
      • с отклонением струи от винтов;
    • реактивные;
      • с поворотными двигателями (Bell D-188);
      • с отклонением струи газов маршевого реактивного двигателя (Hawker Siddeley Harrier);
      • с подъёмными двигателями (Dassault Mirage IIIV);

История создания и развития СВВП

Разработка самолётов ВВП началась впервые в 1950-х годах , когда был достигнут соответствующий технический уровень турбореактивного и турбовинтового двигателестроения, что вызвало повсеместную заинтересованность в самолётах этого типа как среди потенциальных военных пользователей, так и в конструкторских бюро . Значительным импульсом в пользу развития СВВП послужило и широкое распространение в ВВС различных стран скоростных реактивных истребителей с высокими взлётными и посадочными скоростями. Такие боевые самолёты требовали длинных взлётно-посадочных полос с твёрдым покрытием: было очевидно, что в случае масштабных военных действий значительная часть этих аэродромов, особенно прифронтовых, будет быстро выведена из строя противником. Таким образом, военные заказчики были заинтересованы в самолётах, взлетающих и садящихся вертикально на любую небольшую площадку, то есть фактически независимых от аэродромов. В значительной мере благодаря такой заинтересованности представителей армии и флота ведущих мировых держав были созданы десятки опытных самолётов ВВП разных систем. Большинство конструкций было изготовлено в 1-2 экземплярах, которые, как правило, терпели аварии уже во время первых испытаний, и дальнейшие исследования над ними уже не проводились. Техническая комиссия НАТО , огласившая в июне 1961 года требования к истребителю-бомбардировщику вертикального взлёта и посадки, дала тем самым импульс развитию сверхзвуковых самолётов ВВП в западных странах. Предполагалось, что в 1960-х - 70-х годах странам НАТО потребуется около 5 тыс. таких самолётов, из которых первые войдут в эксплуатацию уже в 1967 году. Прогноз такого большого количества продукции вызвал появление шести проектов самолётов ВВП:

  • P.1150 английской фирмы «Хоукер-Сиддли » и западногерманской «Фокке-Вульф »;
  • VJ-101 западногерманского Южного Объединения «EWR-Зюд» («Бельков », «Хейнкель », «Мессершмитт »);
  • D-24 нидерландской фирмы «Фоккер » и американской «Рипаблик »;
  • G-95 итальянской фирмы «Фиат »;
  • Мираж III V французской фирмы «Дассо »;
  • F-104G в варианте ВВП американской фирмы «Локхид » совместно с английскими фирмами «Шорт» и «Роллс-Ройс ».

После того как все проекты были утверждены, должен был состояться конкурс , в котором из всех предложенных должны были выбрать лучший проект для запуска в серийное производство , однако, ещё до предоставления проектов на конкурс стало ясно, что он не состоится. Оказалось, что каждое государство имеет свою собственную, отличную от других концепцию будущего самолёта и не согласится на монополию одной фирмы или группы фирм. Например, английские военные поддержали не свои фирмы, а французский проект, ФРГ поддержала проект фирмы «Локхид» и так далее. Однако итоговой каплей стала Франция заявившая, что независимо от результатов конкурса будут работать над своим проектом самолёта «Мираж» III V.

Политические, технические и тактические проблемы повлияли на изменение концепции комиссии НАТО, которая разрабатывала новые требования. Началось создание многоцелевых самолётов. В этой ситуации только два из представленных проектов вышли из стадии предварительного проектирования: самолёт «Мираж» III V, финансируемый французским правительством, и самолёт VJ-101C, финансируемый западногерманской промышленностью. Эти самолёты были изготовлены соответственно в 3 и 2 экземплярах и подверглись испытаниям (4 из них погибли в катастрофах) до 1966 и 1971 годов. В 1971 году по заказу командования авиации ВМС США начались работы над третьим сверхзвуковым самолётом ВВП в западных странах - американским XFV-12A.

В итоге, лишь созданный и производимый СВВП Си Харриер активно и успешно применялся, в т.ч. во время Фолклендской войны . Современной разработкой СВВП является американский F-35 , истребитель пятого поколения. В вопросе разработки F-35 в качестве СВВП компания Локхед Мартин применила ряд технологических решений, реализованных в Як-141 .

Программа СВВП в СССР и России

Однако, недостатки СВВП также оказались значительными. Пилотирование этого типа машин весьма сложно для лётчика и требует от него высочайшей квалификации в технике пилотирования. Особенно это сказывается в полете на режимах висения и переходных - в моменты перехода из висения в горизонтальный полёт и обратно. Фактически, пилот реактивного СВВП должен перенести подъёмную силу, и, соответственно, вес машины - с крыла на вертикальные газовые струи тяги или наоборот.

Такая особенность техники пилотирования ставит сложные задачи перед пилотом СВВП. Кроме того, в режиме висения и переходных режимах СВВП в целом неустойчивы, подвержены боковому скольжению, большую опасность в эти моменты представляет возможный отказ подъёмных двигателей. Такой отказ нередко служил причиной аварий серийных и экспериментальных СВВП. Также к недостаткам можно отнести значительно меньшую в сравнении с самолётами обычной схемы грузоподъёмность и дальность полёта СВВП, большой расход топлива на вертикальных режимах полета, общую сложность и дороговизну конструкции СВВП, разрушение покрытий взлётно-посадочных площадок горячим газовым выхлопом двигателей.

Указанные факторы, а также резкое повышение на мировом рынке цен на нефть (и, соответственно, авиационное топливо) в 70-годах 20-го века привели к практическому прекращению разработок в области пассажирских и транспортных реактивных СВВП.

Из множества предложенных проектов реактивных транспортных СВВП практически был завершен и испытан лишь один [ ] самолёт Dornier Do 31 , однако и эта машина серийно не строилась. Исходя из всего вышеизложенного, перспективы широких разработок и массового применения реактивных СВВП очень сомнительны. В то же время, существует современная конструкторская тенденция к отходу от традиционной реактивной схемы в пользу СВВП с винтомоторной группой (чаще - конвертопланов): в частности, к таким машинам относится производящийся серийно в настоящее время Bell V-22 Osprey и разрабатываемый на его основе

Недавно заместитель министра обороны Юрий Борисов сообщил, что для российских авианосцев может быть создан самолет нового типа: укороченного взлета и посадки или полноценного вертикального взлета. С одной стороны, изобретать ничего особенно не надо: соответствующая машина — Як-141 — была создана еще в последние годы СССР и неплохо себя зарекомендовала. Но насколько сейчас нужен такой самолет российскому флоту?

Самолет Як-141. Фото: WikiMedia Commons

Самолет, который способен взлетать и садиться без разбега, издавна был мечтой авиаторов: для него не требуются длинные взлетно-посадочные полосы, а вполне достаточно небольшой площадки, как для вертолета. Особенно это важно для военной авиации, ведь аэродромы в боевой обстановке часто разрушаются вражескими атаками. Для морской авиации иметь длинные ВПП тем более проблематично, так как их размер лимитируется длиной корабельной палубы.

Между тем перевооружение Российских вооруженных сил предусматривает и строительство новых авианесущих крейсеров. В связи с чем военные и задумались: не оснастить ли такие корабли и самолетами вертикального взлета и посадки?

Стоит заметить, что изобретать велосипед российской оборонке не придется: у нее еще с советских времен накоплен колоссальный опыт в данном направлении. Достаточно сказать, что знаменитому пассажирскому самолету Ан-28 для взлета было достаточно всего 40 метров полосы!

Боевые машины с вертикальным взлетом на вооружении ВВС Советского Союза тоже были, например, штурмовик Як-38; правда, в условиях тропических морей во время дальних походов советских кораблей его двигатели начинали барахлить. Однако более современная разработка КБ Яковлева — самолет Як-141, интенсивные испытания которого начались в конце 80-х годов, поставил целых 12 мировых рекордов для машин своего класса! Увы, этот уникальный самолет не пережил распад СССР, и программа была аккуратно свернута. Впрочем, неполностью: в середине 90-х в рамках заключенного контракта американская компания Lockheed успешно применила разработки "яковлевцев" при создании истребителя-бомбардировщика пятого поколения F-35, среди многих особенностей которого (вроде технологии невидимости для локаторов), была и возможность вертикального взлета.

Но чужая технология без ее авторов не принесла американцам успеха, сравнимого с Як-141: хваленый суперистребитель в рамках устроенного в самих же США испытания проиграл учебный бой почти что допотопному (родом из 70-х годов XX века) F-16. Правда, минимум один "рекорд" новый "Фантом" все же поставил: по дороговизне программы своей разработки, уже превысившей полтора триллиона долларов. Так что даже президент Трамп, известный своим уважительным отношением к перевооружению армии, задумался о том, стоит ли овчинка выделки. А правительства ФРГ и Франции благоразумно предпочли не закупать заокеанскую дорогостоящую игрушку, обойдясь собственными надежными и проверенными машинами четвертого поколения пусть и без возможности вертикального взлета. Думается, в первую очередь потому, что последняя функция в большинстве случаев не так уж критически важна.

Аэродромы противник может разбомбить? Так еще советский комдив Покрышкин во время боев в Германии использовал для своей авиадивизии в качестве взлетной полосы добротный немецкий автобан. К тому же, современная техника позволяет положить (а тем более отремонтировать) такие дороги за считанные часы.

Палуба авианосца слишком коротка? Но ведь эти корабли вошли в широкое применение еще перед Второй мировой войной, когда никаких самолетов вертикального взлета и в помине не было. Для взлета и посадки обычных истребителей и бомбардировщиков применялись другие хитрости.

Сейчас вертикальные машины составляют довольно незначительную долю от существующего самолетного парка авианесущих крейсеров. В том числе и у американцев, где недостатка в "вертикалках" вроде бы нет. А все потому, что недостатки (и весьма значительные) есть у самих "чудо-машин".

Главный из них: необходимость значительно снижать взлетный вес для того, чтобы самолет мог вертикально оторваться от палубы. В связи с чем, например, у единственной по-настоящему массово применявшейся модели — британского истребителя Sea Harrier, радиус полета составлял жалкие 135 километров. Впрочем, его скорость, лишь слегка превосходящая скорость звука, тоже не впечатляла.

И исторический Як-141, и суперсовременный F-35 могут развить максимальную скорость чуть меньше двух тысяч километров в час, в то время как обычный палубный истребитель российского ВМФ Су-33 — 2300 километров. К тому же, радиус действия последнего превосходит в разы аналогичные показатели у своих коллег-"вертикальщиков".

Наконец, самолет вертикального взлета и посадки намного труднее пилотировать как раз из-за смены режимов полета. Достаточно сказать, что один из двух опытных образцов Як-141 разбился во время испытаний именно по этой причине при том, что за его штурвалом находился опытнейший летчик-испытатель, а не рядовой пилот.

Неопределенность в словах замминистра обороны "мы обсуждаем создание самолета с укороченным взлетом и посадкой, возможно, вертикального взлета и посадки" вполне объяснима. С одной стороны, возрождение уникальных наработок яковлевского КБ не составит особой проблемы, за исключением, конечно, необходимой для этого суммы. Понятно ведь, что дополнительные миллиарды долларов для российского военного бюджета выделить будет затруднительно. Но главное, будут ли стоить потенциальные выгоды затраченных усилий? Об этом еще предстоит подумать компетентным структурам.

Экспериментальный реактивный самолет вертикального взлета и посадки X-13 «Vertijet» был создан по заказу ВВС США компанией Ryan Aeronautical в середине 1950-х. Было построено два самолета.
Первый самолет вертикального взлета и посадки (СВВП) X-13 «Vertijet» был построен в 1955 г. и начал проходить наземные испытания на базе ВВС США, где совершил ряд полетов с помощью вспомогательного шасси, позволяющего осуществлять обычные взлет и посадку. Наземные испытания включали 15 часов испытаний на стенде в вертикальном положении и 10 часов - в горизонтальном положении.
Первый полет па режиме висения СВВП Х-13 «Vertijet» совершил в начале 1956 г., а первый полет с переходом от вертикального взлета к горизонтальному полету и затем к вертикальной посадке в ноябре 1956 г.


В 1956 г. фирмой «Ryan» был построен второй экспериментальный самолета с вертикальным взлетом Х-13 с обычным трех опорным шасси, который совершал взлет с разбегом, переходил к полету на режиме висения, а затем совершал посадку с пробегом. В процессе испытаний самолета Х-13 «Vertijet» фирма «Ryan» встретилась с рядом новых проблем, одной из которых стала необходимость преодоления гироскопического эффекта вращающихся масс двигателя и гироскопической прецессии, воздействующих на путевое и продольное управление, что потребовало разработки для X-13 системы автоматической стабилизации. Другой проблемой стал срыв потока на треугольном крыле при углах атаки более 30° на переходных режимах, вызывавший неустойчивость движения самолета.

Самолет Х-13 «Vertijet» выполнен по бесхвостовой схеме с треугольным крылом и одним турбореактивным двигателем и не имеет обычного шасси.
Фюзеляж отличается небольшим удлинением, в носовой части его размещена кабина летчика. При переходе от вертикального взлета к горизонтальному полету и обратно сиденье летчика может наклоняться вперед на 70°. Для улучшения обзора, особенно при вертикальном взлете и посадке, фонарь имел большую площадь остекления, а в кабине было установлено зеркало заднего обзора, как на автомобиле.
Крыло треугольное, высокорасположенное, малого удлинения, размахом 6,4 м со стреловидностью по передней кромке около 60°. Площадь крыла - 17 м2, нагрузка на крыло 215 кг/м2. На крыле имеются элероны, а на концах крыла установлены небольшие вертикальные шайбы.


Особенностью конструкции самолета X-13 «Vertijet» является отсутствие шасси. Для взлета и посадки самолета используется тележка с установленной на ней рампой, последняя может подниматься гидравлическими силовыми цилиндрами и принимать вертикальное положение. При подготовке самолета к взлету рампа опускается, на ней устанавливается самолет, затем она поднимается. Самолет имеет крюк в носовой части фюзеляжа, который зацепляется за трос прицепного устройства на рампе. Кроме того, на экспериментальном самолете на центральной части фюзеляжа установлены вспомогательные ферменные стойки, опирающиеся на рампу. Когда рампа, поднимаясь, занимает вертикальное положение, самолет повисает на крюке «подобно летучей мыши».

При вертикальном взлете с рампы, к которой самолет подвешен на крюке, летчик увеличивает тягу двигателя, самолет при этом перемещается вверх, крюк выходит из зацепления с тросом и самолет вертикально поднимается, а затем постепенно переходит в горизонтальный полет.
Перед посадкой летчик переводит самолет из горизонтального в вертикальное положение, в котором самолет поддерживается тягой двигателя. При уменьшении тяги самолет снижается, затем, управляя тягой двигателя и газовыми и струйными рулями, летчик подводит самолет к рампе, пока не зацепится крюком за трос. После этого рампа вместе с самолетом опускается в горизонтальное положение.


Для того чтобы летчик мог точно определить расстояние до рампы при приближении к ней, на рампе в горизонтальном положении была установлена мерная рейка с нанесенными на ней делениями. Кроме того, сверху рампы расположена площадка, на которой находится оператор, подающий руками сигналы летчику.
По мнению фирмы «Ryan», такой метод взлета и посадки вертикально взлетающих самолетов дает ряд преимуществ, позволяя значительно упростить конструкцию самолета, отказавшись от обычного шасси, и получить экономию в весе конструкции. Тележка с рампой может использоваться также для транспортировки самолета к районам боевых действий и для технического обслуживания.

Силовая установка самолета X-13 «Vertijet» состоит из одного турбореактивного двигателя Rolls-Royce Avon R.A.28, установленного в хвостовой части фюзеляжа, воздух в двигатель поступает через боковые воздухозаборники. Тяга двигателя составляет 4540 кгс, что при взлетной массе самолета 3630 кг позволяет получить тяговооруженность 1,25.
В горизонтальном полете самолет управляется с помощью элеронов и руля направления. На вертикальных режимах самолет управляется с помощью газовых рулей и струйной системы управления: на концах крыла расположены реактивные сопла, к которым подводится сжатый воздух, отбираемый от компрессора турбореактивного двигателя.


Оба СВВП успешно проходили летные испытания, которые завершились без каких-либо летных происшествий в 1958 г., когда разработка СВВП Х-13 «Vertijet» была прекращена ВВС, отдавшими предпочтение СВВП с горизонтальным положением фюзеляжа. Общая стоимость разработки, постройки и испытаний двух экспериментальных СВВП Х-13 превысила 7 млн. долл. Тем не менее ВВС и флот США не раз возвращались к схеме СВВП с вертикальным положением фюзеляжа, предлагая ее использовать для палубных истребителей легких авианосцев, взлетающих с поворотных рамп.

Летно-технические характеристики СВВП Х-13 «Vertijet»
Экипаж, чел.: 1;
Длина, м: 7,14;
Размах крыльев, м: 6,40;
Высота, м: 4,62;
Вес пустого, кг: 2424;
Максимальный взлетный вес, кг: 3272;
Силовая установка: 1 х ТРД Rolls-Royce Avon, взлетная тяга 4540 кгс;
Максимальная скорость, км/ч: 560;
Дальность, км: 307;
Практический потолок, м: 6100;

Самолеты вертикального (укороченного) взлета и посадки

Самолеты вертикального взлета и посадки, летающие на крейсерских (горизонтальных) режимах полета как обычные самолеты, способны, как вертолеты, висеть в воздухе, а также взлетать и садиться вертикально. Для обеспечения режимов ВВП (вертикального взлета и посадки) на таком самолете необходимо иметь специальную силовую установку, обеспечивающую создание подъемной силы, превышающей вес самолета.
Стартовая вертикальная тяговооруженность (отношение подъемной силы, создаваемой двигателями, к весу самолета) современных СВВП находится в пределах 1,05-1,45.
В зависимости от того, каким образом создается подъемная сила на режимах ВВП и сила тяги на маршевых (крейсерских) режимах, можно провести классификацию СВВП (рис. 7.69).
Единая силовая установка (СУ) имеет в своем составе один или несколько подъемно-маршевых двигателей , которые на режимах ВВП создают вертикальную тягу, а на обычных режимах - маршевую тягу. Тяга создается либо воздушным винтом, либо струей газов реактивного двигателя. Изменение направления вектора тяги подъемно-маршевых двигателей может быть конструктивно обеспечено либо поворотом всего двигателя в нужном направлении, например относительно крыла или вместе с крылом, на котором они закреплены, либо за счет изменения направления струи (и вектора тяги) реактивного двигателя.

Принципиальная схема одного из возможных устройств, обеспечивающих изменение направления вектора тяги P с помощью скользящего козырька 1 , проиллюстрирована рис. 7.70.

Составная СУ включает в себя две группы двигателей: одна из них - для создания вертикальной тяги на режимах ВВП (подъемные двигатели ), другая - для создания маршевой тяги (маршевые двигатели ).
Комбинированная СУ также состоит из двух групп двигателей:подъемно-разгонных иподъемно-маршевых , которые (в большей или меньшей мере) участвуют в создании и вертикальной и маршевой тяги.

Выбор типа силовой установки существенным образом влияет на возможность решения специфических проблем, возникающих при проектировании СВВП, и определяет фактически его концепцию, аэродинамическую и конструктивно-силовую компоновку.
Двигатели 1 (рис. 7.71) создают подъемную силу (P=G /2 ), уравновешивающую силу тяжести G самолета. На режимах работы вблизи экрана 2 (поверхности ВПП) струи двигателей 3 создают вокруг самолета сложные течения, обусловленные взаимодействием отраженных от экрана газовых струй 4 с воздушными потоками 5 , текущими в воздухозаборники двигателей. Форма и интенсивность этих течений на

режимах висения вблизи экрана, взаимодействие этих течений с набегающим потоком на режимах ВВП и переходных режимах (от вертикального к горизонтальному движению) зависят от мощности, количества и расположения двигателей (т. е. от компоновки СВВП), что существенным образом влияет на аэродинамические и моментные характеристики СВВП, т. е. определяет его компоновку.
Воздействие газовых струй двигателей вызываетэрозию поверхности аэродрома , степень которой зависит и от типа двигателей, создающих подъемную силу, и от их расположения. Частицы поверхности аэродрома, вымываемые газовыми струями, вместе с высокотемпературными восходящими вверх течениями воздействуют на конструкцию СВВП и, попадая в воздухозаборники двигателей, снижают надежность их работы, ресурс и тяговые характеристики. С целью уменьшения влияния струй на поверхность аэродрома и на самолет часто применяется методика эксплуатации СВВП в режиме укороченного взлета и посадки (УВП), когда дистанции разбега и пробега составляют всего несколько десятков метров. Это позволяет также увеличить весовую отдачу СВВП за счет существенно меньших расходов топлива на режимах взлета и посадки.
Одной из основных проблем, возникающих при разработке СВВП, является обеспечение балансировки, устойчивости и управляемости их на режимах ВВП и переходных режимах, когда поступательная скорость равна нулю либо недостаточно велика для эффективной работы аэродинамических поверхностей, создающих балансирующие и управляющие силы и моменты.
Балансировка, устойчивость и управляемость СВВП на этих режимах обеспечивается либо рассогласованием (модуляцией) тяги двигателей, т.е. увеличением или уменьшением тяги одного двигателя по сравнению с другим, либо с помощью системы струйных рулей , либо комбинацией этих способов.

Рассогласование ΔP тяги (рис. 7.72) маршевых двигателей 3 приводит к возникновению момента рыскания ΔM y , рассогласование ΔP 1 первой группы подъемных двигателей 1 приводит к возникновению момента крена ΔM x . Рассогласование тяги ΔP 1 и ΔP 2 первой и второй группы подъемных двигателей 2 приводит к возникновению момента тангажа ΔM z .
Струйная система управления СВВП (рис. 7.73) включает в себя несколько удаленных от центра масс самолета на максимально возможное расстояние реактивных сопел (1, 5, 6 ), к которым с помощью трубопроводов 4 подводится сжатый воздух от компрессора подъемно-маршевого двигателя 3 . Конструкция сопла 1 позволяет регулировать расход воздуха и, следовательно, тягу. Конструкция сопел 5 и 6 позволяет изменять не только величину, но и направление силы тяги на противоположное (реверсировать тягу сопла).
При сбалансированном по тангажу (относительно оси Z ) самолете (сумма моментов сил тяги сопла 1 , подъемного 2 и подъемно-маршевого двигателя 3 относительно центра масс равна нулю) увеличение силы тяги сопла 1 вызовет кабрирующий момент, уменьшение - пикирующий.

Показанное на рис. 7.73 направление струй из сопел 5 и 6 приводит к кренению самолета на левое крыло и развороту влево.

Управление режимом работы двигателей и струйными рулями для изменения действующих на самолет сил и моментов на режимах ВВП и переходных режимах летчик осуществляет такими же рычагами управления, как и на обычном самолете, т. е. одновременно с созданием управляющих реактивных сил соответствующим образом отклоняются и аэродинамические рулевые поверхности (руль высоты, элероны и руль направления), которые, однако, не создают управляющих сил на малых (доэволютивных) скоростях поступательного движения самолета. С ростом скорости поступательного движения растут и силы на рулевых поверхностях и с помощью автоматики постепенно выключаются из работы системы струйного управления.

Здесь необходимо отметить, что на малых (доэволютивных) скоростях СВВП не обладает собственной устойчивостью, так как малы аэродинамические силы, способные возвратить его в исходное положение при случайных внешних воздействиях. Поэтому устойчивость СВВП на этих режимах (стабилизация его и поддержание состояния балансировки) обеспечивается включенными в систему управления средствами автоматики, которые, реагируя на угловые перемещения самолета при возмущениях, без вмешательства летчика с помощью струйных рулей возвращают самолет в исходное положение балансировки.
Мы перечислили здесь лишь некоторые проблемы формирования облика СВВП, решение которых уже на ранних стадиях проектирования требует взаимодействия проектировщиков различных специализаций.
К настоящему моменту в мире спроектировано, построено и испытано более 50 типов самолетов вертикального (укороченного) взлета и посадки. В большинстве проектов этих самолетов в основу были положены требования военного применения.
Первый отечественный боевой СВВП был создан в ОКБ им. А.С. Яковлева (см. раздел 20.2).
Преимущества СВВП, о которых мы упоминали в начале раздела 7.4, несомненно приведут к созданию СВВП, способных конкурировать с обычными самолетами при перевозках пассажиров и грузов на короткие и средние расстояния.


Гидроавиация

Работы по созданию самолетов, приспособленных для взлета с водной поверхности и посадки на нее, начались практически одновременно с работами по созданию самолетов, базирующихся на земле.
28 марта 1910 года первый полет нагидросамолете (от гидро... (греч. hydor - вода) и самолет) сoбственной конструкции совершил француз А. Фабр.
Исторически сложилось так, что у истоков отечественного воздухоплавания и авиации стояли офицеры военно-морского флота России. Первыми в мире они разработали тактику морской авиации, осуществили с воздуха бомбардировку вражеского корабля, создали проект авианосца, первыми пролетели в небе Арктики.

Географические и стратегические особенности театров военных действий того времени, протяженные морские границы на Балтийском и Черном морях, отсутствие специально оборудованных аэродромов для эксплуатации сухопутных самолетов и в то же время обилие крупных рек, озер, свободных морских пространств обусловили потребность создания морского самолетостроения в нашей стране.
Развитие гидроавиации началось с постановки сухопутного самолета на поплавки. Первые поплавковые гидросамолеты (рис. 7.74) имели два основных поплавка 1 и дополнительный 2 (вспомогательный) поплавок в хвостовой или носовой части.
В зависимости от того, каким способом обеспечивается базирование и эксплуатация самолета с поверхности акваторий (от лат. aqua - вода) - гидродромов , можно провести классификацию гидросамолетов (рис. 7.75).
Поплавковые схемы применяются в настоящее время для легких самолетов, хотя уже в 1914 году совершил первый полет четырехмоторный тяжелый самолет "Илья Муромец" (см. рис. 19.1), поставленный на поплавки по трехпоплавковой схеме с хвостовым поплавком, в 1929 году в перелете по маршруту Москва - Нью-Йорк самолета "Страна Советов" (см. рис. 19.7) 7950 км - от Хабаровска до Сиэтла самолет летел над водой, и на этом участке сухопутное шасси заменялось поплавковым по двухпоплавковой схеме .

Рост размеров и масс гидросамолетов и, как следствие, рост размеров поплавков позволил размещать в них экипаж и оборудование, что привело к созданию гидросамолетов типа "летающая лодка" однолодочной схемы и двухлодочнойсхемы - катамаран (от тамильского каттумарам , буквально - связанные бревна).
Интегральная схема наиболее целесообразна для тяжелых многоцелевых океанских гидросамолетов. Частично погруженное в воду крыло позволяет уменьшить размеры лодки и повысить аэрогидродинамическое совершенство гидросамолета.
Самолет-амфибия (от греч. amphibios - ведущий двойной образ жизни) приспособлен для взлета с земли и воды и посадки на них.
Таким образом, технические решения, обеспечивающие базирование и эксплуатацию самолета с водной поверхности, фактически определяют облик (аэродинамическую схему) гидросамолета.
Сложность и количество проблем, которые должны решить проектировщики при создании гидросамолета, существенно возрастают, поскольку помимо высоких аэродинамических и взлетно-посадочных характеристик обычного самолета должны быть обеспечены и заданные ТЗ мореходные качества.
Оценить мореходные качества гидросамолета позволяют методы научной дисциплины "Гидромеханика", изучающей движение и равновесие жидкостей, а также взаимодействие между жидкостями и твердыми телами, полностью или частично погруженными в жидкость.
Мореходные качества (мореходность) гидросамолета характеризуют возможность его эксплуатации в акваториях с определенными гидрометеорологическими условиями - скоростью и направлением ветра, направлением, скоростью движения, формой, высотой и длиной волн воды.
Мореходность гидросамолета оценивается предельным волнением акватории, при котором возможна безопасная эксплуатация.
Аналогично тому, как для оценки летных характеристик самолета (см. раздел 3.2.2) применяется международная стандартная атмосфера (МСА), для характеристики волнения акватории используется определенная шкала (математическая модель), устанавливающая связь между словесной характеристикой волнения, высотой волны и баллом (от 0 до IX) - степенью волнения .
В соответствии с этой шкалой, например, слабое волнение (высота волны до 0,25 м) оценивается баллом I, значительное волнение (высота волны 0,75-1,25 м) оценивается баллом III, сильное волнение (высота волны 2,0-3,5 м) оценивается баллом V, исключительное волнение (высота волны 11 м) оценивается баллом IX.
Мореходные качества (мореходность ) гидросамолета включают в себя такие характеристики гидросамолета, как плавучесть , остойчивость , управляемость , непотопляемость и т. п.
Эти качества определяются формой и размерами находящейся под водой водоизмещающейчасти (лодки или поплавка) гидросамолета, распределением масс гидросамолета по длине и высоте.
В дальнейшем при рассмотрении мореходных характеристик гидросамолета, если их без особой оговорки в равной мере можно отнести к лодке и поплавку, будем использовать термин "лодка". Плавучесть - способность гидросамолета плавать в заданном положении относительно водной поверхности.
Гидросамолет, как и любое другое плавающее тело, например судно, поддерживается на плаву архимедовой силой

Р = W ρ в g = G ,

Сила тяжести гидросамолета G приложена в центре масс самолета (ц.м.),сила поддержания (архимедова сила, сила воздействия вытесненной жидкости на лодку гидросамолета) Р приложена в центре масс вытесненного лодкой объема воды, или, по корабельной терминологии (которой широко пользуются проектировщики гидросамолетов), в центре величины (ц.в.).

Очевидно, что для обеспечения равновесия самолета на плаву (рис. 7.76) силы G и P должны лежать на прямой, соединяющей ц.м. и ц.в., в вертикальной продольной плоскости симметрии гидросамолета - диаметральной плоскости лодки (ДП). Очевидно также, что основная плоскость лодки (ОП) - горизонтальная плоскость, проходящая через нижнюю точку поверхности лодки перпендикулярно к диаметральной плоскости, и, соответственно, нижняя строительная горизонталь лодки (НСГ), строительная горизонталь самолета (СГС) и палуба 1 - верхняя поверхность лодки в общем случае не параллельны плоскости водной поверхности и линии соприкосновения поверхности воды с корпусом лодки гидросамолета W о L о .

Линия соприкосновения спокойной поверхности воды с корпусом лодки гидросамолета W о L о при полной взлетной массе и выключенных двигателях - грузовая ватерлиния (от голл. water - вода и lijn - линия). Грузовая ватерлиния (ГВЛ) при плавании в пресной воде не совпадает с ГВЛ при плавании в морской воде, поскольку плотность пресной речной или озерной воды ρ в =1000 кг/м 3 , плотность морской воды ρ в = 1025 кг/м 3 .
Соответственно,осадкаТ (расстояние от ГВЛ до самой нижней части лодки, характеризующее погружение лодки ниже уровня воды) при одинаковой взлетной массе гидросамолета в пресной воде будет больше, чем в морской.
Значения осадок носом и кормой определяют посадку лодки гидросамолета относительно поверхности воды - дифферент лодки (от лат. differens (differetis) - разница) - наклон ее в продольной плоскости, который измеряется углом дифферента φ 0 или разностью между осадками кормы и носа. Если разность равна нулю, говорят, что лодка "сидит на ровном киле"; если осадка кормы больше осадки носа - лодка "сидит с дифферентом на корму" (как показано на рис 7.76), если меньше - лодка "сидит с дифферентом на нос".
Остойчивость (аналог термина "устойчивость" в морской терминологии) при плавании - способность гидросамолета, отклоненного внешними возмущающими силами от положения равновесия, возвращаться в исходное положение после прекращения действия возмущающих сил.
Очевидно, что при плавании частично или вполне (полностью) погруженного в воду тела нет никаких других сил для возвращения его в положение равновесия, кроме силы тяжести G и равной ей силы поддержания Р . Следовательно, только взаимное положение этих сил определит остойчивость или неостойчивость плавающего тела, что иллюстрирует рис. 7.77.

Если центр масс тела расположен ниже центра величины (рис. 7.77,а), при отклонении от положения равновесия возникает стабилизирующий момент ΔМ = Gl , возвращающий тело в исходное положениеостойчивого равновесия .
Если центр масс тела расположен выше центра величины (рис. 7.77,в), при отклонении от положения равновесия возникает дестабилизирующий момент ΔМ = Gl , и тело не может самостоятельно возвратиться в исходное положение неостойчивого равновесия .
Если положение центра масс тела совпадает с положением центра величины (рис. 7.77,б ), тело находится в безразличном равновесии.
Следует отметить, что положение центра величины существенным образом зависит от формы погруженной части тела и угла отклонения его от исходного положения равновесия.
Остойчивость гидросамолета (как и остойчивость судна) принято определять взаимным положением центра масс и метацентра - центра кривизны линии, по которой смещается центр величины водоизмещающего тела при выведении его из равновесия.
Метацентр - от греч. meta - между, после, через - составная часть сложных слов, означающих промежуточность, следование за чем-либо, переход к чему-либо другому, перемену состояния, превращение и лат. - centrum средоточие, центр.
Различают поперечную и продольную остойчивость гидросамолета (при наклонении самолета соответственно в поперечной и продольной плоскостях).
Поперечная остойчивость. Рассмотрим случай поперечного наклонения - отклонение диаметральной плоскости лодки (ДП) от вертикали, например под воздействием порыва ветра.
Гидросамолет (рис. 7.78,а) находится на плаву в состоянии равновесия, сила тяжести G и сила поддержания Р равны, лежат в диаметральной плоскости, размер а определяет возвышение центра масс над центром величины.

От боковой составляющей порыва ветра V в (рис. 7.78,б ) возникнет кренящий момент М кр в , зависящий от скоростного напора, площади и размаха наветренной (обращенной в ту сторону, откуда дует ветер) консоли крыла, площади боковой проекции гидросамолета. Под действием этого момента самолет накренится на некоторый малый (будем считать - бесконечно малый) угол γ и новое положение лодки определит новую грузовую ватерлинию W 1 L 1 , плоскость которой наклонена на угол γ от исходной ватерлинии W о L о .
Форма подводной (водоизмещающей) части лодки изменится: объем, ограниченный в каждом поперечном сечении лодки фигурой 1 , выйдет из-под воды, а равный ему объем, ограниченный в каждом поперечном сечении лодки фигурой 2 , уйдет под воду. Таким образом, величина поддерживающей силы не изменится (Р = W ρ в g = G ) С о в точку С 1 . Точка М о пересечения двух смежных линий действия архимедовых сил при бесконечно малом угле γ между ними и является начальным метацентром .
Метацентрический радиус ρ 0 определяет начальную кривизну линии смещения центра величины лодки при крене.
Мерой поперечной остойчивости гидросамолета является значение метацентрической высоты h о = ρ о - а :
- если h о > 0 - лодка остойчива;
- если h о = 0 - равновесие безразличное;
- если h о < 0 - лодка неостойчива.
В рассмотренном примере h о < 0. Нетрудно видеть, что перпендикулярные к поверхности воды и равные силы Р и G будут составлять пару с плечом l , причем момент этой пары М кр G = Gl совпадает по направлению с возмущающим моментом М кр в и увеличивает угол крена. Таким образом, гидросамолет, показанный на рис. 7.78,б , при действии внешних возмущений не возвращается к исходному положению, т. е. не обладает поперечной остойчивостью.
Очевидно, что для обеспечения поперечной остойчивости центр масс должен находиться ниже самого низкого положения метацентра.
Большинство современных гидросамолетов выполнено по классической аэродинамической схеме с фюзеляжем - лодкой, которой придаются соответствующие формы для выполнения взлета с воды и посадки на воду, высокорасположенным крылом с установленными на нем или на лодке двигателями для максимального удаления их от водной поверхности с целью исключить при движении по воде заливание крыла водой и попадание ее в двигатели и на винты самолетов с винтомоторной силовой установкой, поэтому в большинстве случаев центр масс самолета выше метацентра (как на рис. 7.78,б ) и однолодочный гидросамолет в поперечном отношении неостойчив.
Проблемы поперечной остойчивости гидросамолета однопоплавковой или однолодочной схемы могут быть решены применением подкрыльных поплавков (рис. 7.79).

Подкрыльный поплавок 1 устанавливают на пилоне 2 по возможности ближе к концу крыла 3 .Опорные (поддерживающие) подкрыльные поплавки не касаются воды при движении гидросамолета на ровной воде 4 и обеспечивают остойчивое положение гидросамолета с углами крена 2-3° при стоянке,несущиеподкрыльные поплавки частично погружены в воду и обеспечивают стоянку без крена.
Водоизмещение поплавка выбирается таким образом, чтобы под воздействием ветра с определенной скоростью V в гидросамолет, находящийся на скате волны 5 , соответствующей предельному волнению акватории, заданному в ТЗ на проектирование, накренился на определенный угол γ . В этом случае восстанавливающий момент поплавка, определяемый поддерживающей силой поплавка Р п и расстояниемb п от диаметральной плоскости поплавка до диаметральной плоскости лодки, М п = Р п b п , должен парировать (уравновесить) кренящие моменты М кр в от ветра и М кр G от неостойчивой лодки.

Продольная остойчивость определяется такими же условиями, как и поперечная. Если под действием какого-либо внешнего возмущения гидросамолет (рис. 7.80) получит продольное наклонение от исходного положения, определяемого ватерлинией W о L о , например увеличение на угол Δφ дифферента на нос, это определит новую грузовую ватерлинию W 1 L 1 .
Объем лодки 1 выйдет из-под воды, а равный ему объем 2 уйдет под воду, при этом значение поддерживающей силы не изменится (Р = W ρ в g = G ) , однако центр величины сместится из исходного положения С 0 в точку С 1 . Точка М о * пересечения двух смежных линий действия поддерживающих сил при бесконечно малом угле Δφ между ними определит положение начального продольного метацентра .
Мера продольной остойчивости гидросамолета - продольная метацентрическая высота H о = R о - а .
Обеспечить продольную остойчивости гидросамолета проще, чем поперечную, в том смысле, что сильно развитая в длину лодка почти всегда обладает естественной продольной остойчивостью (H о > 0).
Отметим, что пикирующий момент от силы тяги двигателя, линия действия которой обычно проходит выше центра масс самолета, заглубляет носовую часть лодки, уменьшает угол начального дифферента, т. е. заставляет лодку принять некоторый дифферент на нос, что определит новую грузовую ватерлинию , которая называется "упорной" .
Гидростатические силы (силы поддержания), обеспечивающие плавучесть и остойчивость лодки в состоянии покоя, естественно, в большей или меньшей мере проявляются и в процессе движения по воде.
Весьма важной характеристикой гидросамолета, определяющей его мореходность, является способность преодолевать сопротивление воды и развивать необходимую скорость движения по воде при минимальных затратах мощности.
Гидродинамическая сила сопротивления воды движению лодки в режиме плавания определяется трением воды в пограничном слое (сопротивление трения) и распределением гидродинамического давления потока воды на лодку (сопротивление формы, связанное с образованием вихревых течений - его иногда называют водоворотным сопротивлением) и зависит от скорости движения (скоростного напора ρ в V 2 /2 ), формы и состояния поверхности лодки.
Здесь уместно напомнить, что плотность воды ρ в больше плотности воздуха на уровне моря примерно в 800 раз!
К этому сопротивлению добавляется волновое сопротивление, которое, в отличие от волнового сопротивления, связанного с необратимыми потерями энергии в скачке уплотнения при полете с закритическими скоростями (см. раздел 5.5), возникает при движении тела вблизи свободной поверхности жидкости (поверхности раздела воды и воздуха).
Волновое сопротивление - часть гидродинамического сопротивления, характеризующая затрату энергии на образование волн.
Волновое сопротивление в воде (тяжелой жидкости) возникает при движении погруженного или полупогруженного тела (поплавка, лодки) вблизи свободной поверхности жидкости (т. е. границы воды и воздуха). Движущееся тело оказывает добавочное давление на свободную поверхность жидкости, которая под влиянием собственной силы тяжести будет стремиться вернуться к исходному положению и придет в колебательное (волновое) движение. Носовая и кормовая части лодки образуют взаимодействующие между собой системы волн, оказывающие существенное влияние на сопротивление.
В режиме плавания равнодействующая сил гидродинамического сопротивления практически горизонтальна.
Форма водоизмещающей части гидросамолета (как и форма судна) должна обеспечить способность движения по воде с минимальным сопротивлением и, как следствие, с минимальными затратами мощности (ходкость судна , по морской терминологии).
При проектировании гидросамолетов (как и судов) для выбора форм и оценки гидродинамических характеристик используются результаты испытаний путем буксировки ("протаски") динамически подобных моделей в опытовых бассейнах (гидроканалах ) или в открытых акваториях.
Однако, в отличие от судна, комплекс характеристик мореходности гидросамолета значительно шире, основной из них является способность производить безопасные взлеты и посадки на взволнованной поверхности с определенной высотой волны, при этом скорости хода по воде гидросамолетов во много раз превышают скорости морских судов.
Благодаря особой форме днища лодки гидросамолета возникают гидродинамические силы, поднимающие носовую часть и вызывающие общее значительное всплытие лодки.
Следовательно, движение гидросамолета, в отличие от судна, происходит при переменном водоизмещении и угле дифферента лодки (фактически угле набегания водяного потока на днище, аналогичном углу атаки крыла). На скоростях движения по воде, близких к скорости отрыва при взлете, водоизмещение практически равно нулю - гидросамолет идет в режиме глиссирования (от франц. glisser - скользить) - скольжения по поверхности воды. Характерная особенность режима глиссирования заключается в том, что равнодействующая сил гидродинамического сопротивления воды имеет настолько большую вертикальную составляющую (гидродинамическую силу поддержания ), что лодка большей частью своего водоизмещающего объема выходит из воды и скользит по ее поверхности. Поэтому обводы (очертания наружной поверхности) лодки гидросамолета (рис. 7.81) существенно отличаются от обводов судна.

Основное отличие состоит в том, что днище (нижняя поверхность лодки, которая является основной опорной поверхностью при движении гидросамолета по воде) имеет один или несколькореданов (франц. redan - уступ), первый из которых, как правило, располагается вблизи центра масс гидросамолета, а второй в кормовой части. Прямые в плане реданы (рис. 7.81,а ) создают в полете значительно большее сопротивление, чем заостренные (стреловидные, оживальные) реданы (рис. 7.81,б ), гидродинамическое сопротивление и брызгообразование которых существенно меньше. Со временем ширина второго редана постепенно уменьшалась, межреданная часть днища стала сходиться в одной точке (рис. 7.81,в ) на корме лодки.

В процессе развития гидроавиации изменялась и форма поперечного сечения лодки (рис. 7.82). Лодки с плоским днищем (рис. 7.82,а ) и с продольными реданами (рис. 7.82,б ), слабокилеватые (т. е. с небольшим наклоном участков днища от центральной килевой линии к бортам - рис. 7.82,в ) и с вогнутым днищем (рис. 7.82,г ) постепенно уступали место килеватым лодкам с плоскокилеватым днищем (рис. 7.82,д ) или с более сложным (в частности, криволинейным) профилем килеватости (рис. 7.82,е ).
Здесь следует отметить, что гидросамолеты не имеют амортизаторов (см. раздел 7.3), способных поглощать и рассеивать энергию ударов при посадке на воду. Поскольку вода - практически несжимаемая жидкость, то сила удара о воду соизмерима с силой удара о землю. Основное назначениекилеватости - заменить собой амортизатор и при

постепенном погружении в воду клиновой (килеватой) поверхности при посадке смягчить посадочный удар, а также удары воды о днище лодки при движении на взволнованной поверхности воды.
Характерные обводы лодки современного гидросамолета представлены на рис. 7.83. Лодка имеет поперечную и продольную килеватость днища.
Поперечная килеватость лодки (или угол, образуемый килем и скулами) выбирается исходя из условий обеспечения приемлемых перегрузок на взлетно-посадочных режимах и обеспечения динамической путевой остойчивости.
Угол поперечной килеватости носовой части лодки начиная от первого редана β р н плавно увеличивается к носу лодки (на виде спереди А-А - наложенные сечения по носовой части лодки) таким образом, что формируется волнорез в носовой частим лодки, "разваливающий" встречную волну и уменьшающий волно- и брызгообразование.
Скула (линия пересечения днища и борта лодки) препятствует прилипанию воды к бортам. Для создания приемлемого волно- и брызгообразования применяют выгиб носовых скул , т. е. профилировку днища носовой части лодки по сложным криволинейным поверхностям.

Днище межреданной части лодки (на виде сзади Б-Б - наложенные сечения по кормовой части лодки) обычно плоскокилеватое - значение угла β р м постоянно. Углы поперечной килеватости на редане обычно порядка 15-30°.
Продольная килеватость лодки γ л = γ н + γ м определяется углом продольной килеватости носовой части γ н и углом продольной килеватости межреданной части γ м .

Длина, форма и продольная килеватость носовой части (γ н @ 0¸3° ), влияющие на продольную остойчивость и угол начального дифферента, выбираются такими, чтобы исключить зарывание носом и заливание палубы водой при высоких скоростях хода.
Продольная килеватость межреданной части (γ м @ 6¸9° ) выбирается так, чтобы обеспечить устойчивое глиссирование, посадку на сушу при максимально допустимом угле атаки и сход на воду (для самолета-амфибии) по существующимслипам (англ. slip , букв. - скольжение) - уходящим в воду наклонным береговым площадкам для схода амфибии на воду и выхода на берег.
При достаточной продольной килеватости межреданной части отрыв при взлете с воды может происходить "с подрывом" (увеличением угла атаки) на максимально допустимом коэффициенте подъемной силы.
Отрыв с воды при взлете осложнен тем, что кроме сил сопротивления воды движению лодки, рассмотренных выше, между днищем лодки и водой действуют силы сцепления (подсасывания), особенно в задней части лодки.
Назначение редана - уничтожить подсасывающее действие воды (подсос) при разбеге, уменьшить этим сопротивление воды, дать возможность лодке "отлипнуть&qu

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции