Вконтакте Facebook Twitter Лента RSS

Никелирование. Никелирование химическое Никелированные детали

Никелирование – это процесс нанесения на металлическую поверхность очень тонкого слоя никеля.

Толщина никелевого слоя, в зависимости от поставленной задачи, размеров детали и дальнейшего ее использования, находится в диапазоне от 0,8 до 55 мкм.

Никелевое черное напыление защищает металлический предмет от разрушительного воздействия внешней среды – окисления, коррозии и реакции с солью, щелочью и кислотой.

Предметами, которым может потребоваться такая защита, являются:

  • металлические изделия, которые будут находиться на открытом воздухе;
  • кузовные детали автотехники и мототехники, в том числе и из алюминия;
  • медицинское и стоматологическое оборудование;
  • изделия, имеющие длительный контакт с водой;
  • декоративное металлическое ограждение, в том числе и из алюминия;
  • предметы, подвергающиеся контакту с сильнодействующими химическими веществами и прочее.

Как можно заметить, технология различного никелирования применяется не только в промышленности, а черное вполне может потребоваться в домашних условиях, своими руками.

Рассмотрим основные методы нанесения защитного слоя своими руками в домашних условиях, металлы, позволяющие наносить никель, тонкости и особенности каждого процесса.

На практике применяются два способа нанесения никелевого слоя — электролитический и химический.

Не будем изучать тонкости промышленного процесса, а опишем проведение в домашних условиях.

Технология нанесения никелевого слоя представлена на видео.

Электролитическое никелирование

Перед электролитическим никелированием (по-другому его еще называют гальваническое) нужно выполнить электрохимическое меднение детали или заготовки.

Есть два метода, включающие гальваническое — с погружением в раствор электролита и без погружения.

В первом случае, предмет из металла тщательно обрабатывается наждачной бумагой, с него удаляется оксидная пленка, производится промывка сначала в теплой воде для удаления растворителя, а затем в содовом растворе и опять в воде.

В стеклянную емкость поместите два анода из меди и деталь, зафиксировав ее проволокой между пластинами анодов.

Электрохимическое меднение в домашних условиях будем производить с помощью электролита, состоящего из воды с включением 20%-го медного купороса и 2% серной кислоты.

Через полчаса обработки током на детали будет тонкий слой меди, а чем дольше будет производиться электрохимическое меднение, тем толще будет слой.

Если деталь большая или отсутствуют подходящие стеклянные емкости, то можно использовать электрохимическое меднение без погружения в электролит.

Для этого делаем кисточку из меди (можно применить многожильный медный провод, конечно, сняв изоляцию только на концах), которую присоединяем к плюсу источника тока и фиксируем с помощью деревянной палочки.

Зачищенную обезжиренную пластинку из металла положим в достаточно широкую стеклянную емкость, зальем раствором электролита (можно взять насыщенный медный купорос) и подсоединим к минусу источника тока.

Теперь макаем кисточку в электролит и проводим возле поверхности детали. Важно постоянное наличие раствора на медной кисточке.

Через некоторое время вы заметите, что на поверхности обрабатываемой детали появился медный слой. Чем толще будет нанесено покрытие из меди, тем меньшее количество пор останется.

Так, например, на 1 кв.см при однослойном нанесении меди будет несколько десятков сквозных пор, а при трехслойном их практически не будет.

Добейтесь нужной толщины меди и можно приступать к следующему этапу.

Нанесение никелевого слоя (гальваническое) производится аналогично процессу меднения с погружением в электролит.

Так, деталь, подвешенная на проводке, и никелевые аноды опускаются в электролит, проволоки от анодов подключаются к плюсу, а проволока от детали – к минусу.

  • Сернокислые никель, натрий и магний в пропорциях 14:5:3, 0,5% поваренной соли и 2% борной кислоты;
  • 30% сульфата никеля, 4% хлорида никеля и 3% борной кислоты.

Сухие смесь заливаем одним литром нейтральной воды, тщательно перемешиваем и при необходимости избавляется от выпавшего осадка, и применяем как электролит при электролитическом никелировании.

Гальваническое достаточно проводить в течение получасового воздействия постоянного тока с мощностью 5,8-6 В.

В результате обработки током через электролит мы получим матовый неравномерный слой серого цвета. Чтобы выровнять его, предмет из металла необходимо аккуратно зачистить и провести полировку.

Эта технология не может быть применена для деталей с шершавым покрытием или имеющих узкие и глубокие отверстия.

В этом случае нужно использовать химический метод никелирования или чернения деталей.

Технология чернения заключается в том, что на металл наносится промежуточное покрытие из цинка или никеля, а сверху деталь покрывается тонким, не более 2мкм, черное покрытие из никеля.

Декоративное металлическое ограждение, сделанное из деталей с черным никелированием, будет хорошо сохраняться и красиво смотреться.

В некоторых случаях требуется провести никелирование и хромирование.

Метод химического никелирования

Технология химического никелирования деталей заключается в том, что заготовку из металла погружают в кипящий раствор на определенный срок, за который на ее поверхность оседают частички никеля.

Электрохимическое воздействие отсутствует, ток не понадобится.

Технология направлена на получение прочного сцепления никелевого слоя с металлом (особое качество сцепления поверхности и нанесенного слоя наблюдается при никелировании стали и железа).

Химическое никелирование различных деталей реально проводить в условиях гаража или небольшой мастерской.

Рассмотрим пошагово:

  • В эмалированной посуде смешивают сухие реактивы и заливают их водой;
  • Доводят полученную жидкую смесь до кипения и только тогда доливают гипофосфит натрия;
  • Погружают в емкость с жидкостью заготовку так, чтобы она не касалась краев и дна. Фактически потребуется установка химического никелирования, которую можно сделать самостоятельно из эмалированного таза соответствующего размера и диэлектрического кронштейна, на который будет подвешиваться заготовка;
  • В зависимости от применяемого раствора, кипение должно продолжаться от часа до трех;
  • Заготовку достают и промывают водой, содержащей погашенную известь, после чего можно произвести полировку.

Все составы для химического никелирования деталей будут содержать в обязательно порядке никель хлористый или сернокислый, натрия гипофосфит различной кислотности и какую-то из кислот.

Технология предусматривает обработку 20 кв.см поверхности в одном литре раствора.

Кислыми составами производят нанесение никелевого слоя на черные металлы, а щелочные лучше подойдут для нержавеющей стали.

Некоторые тонкости:

  • Никелевая пленка, нанесенная на металл без меднения, имеет слабое сцепление с поверхностью. Для его улучшения можно применить термическую обработку, выдержав заготовку при температуре выше 450 градусов;
  • Нагревать до этой температуры закаленные изделия нельзя, при нагреве до 350-400 градусов они будут терять твердость. Эта проблема решается более длительным выдерживанием, но при температуре в диапазоне 250-300ºС;
  • При нанесении никелевого слоя на громоздкие детали возникает необходимость перемешивания раствора, что приводит к потребности проводить постоянную фильтрацию. Это основная сложности при проведении процесса не в промышленных условиях.

Аналогичным образом, но с применением другого состава, можно покрыть детали слоем серебра. Серебрение часто применяется для рыболовных снастей с целью предотвратить потускнение крючков и блесен.

Технология нанесения серебра несложная и отличается от никелирования составом электролита, временем и температурой рабочего раствора (для получения ровного слоя серебра требуется состав, подогретый до 90 градусов).

Растворы серебра можно приготовить из воды, ляписа аптечного и 10% солевого раствора.

Выпавший осадок серебра промыть и смешать с 2% гипосульфитом, профильтровать, добавить меловую пыль и размешивая, добиться сметанообразного состояния.

Этой смесью можно натирать металл до образования на нем слоя серебра.

Хранение этого раствора допускается в течение нескольких суток, раствор серебра, допускающий длительное — до полугода хранение, можно приготовить следующим образом: 15 г ляписа, 55 г лимонной кислоты (годится кулинарная) и 30 г хлористого аммония.

Все компоненты растираются в пыль и смешиваются. Порошок для нанесения серебра хранится в сухом виде.

Для работы мокрой салфеткой коснитесь смеси и разотрите ее по обрабатываемой поверхности.

Напыление серебра наносится на очищенную деталь, но готовить ее специальным способом не нужно.

Приведенные способы нанесения никеля и серебра на металлические детали легко повторить самостоятельно в домашних условиях.

Иногда можно столкнуться с необходимостью никелирования алюминия. Никелирование алюминия процесс достаточно дорогостоящий и ненадежный. Электролит для никелирования алюминия стоит достаточно дорого, но частенько идет пузырями.

Проблема в никелировании алюминия в домашних условиях состоит в слабой адгезии — блестящий никель «рвет» покрытие.

Для химического никелирования алюминия подойдет такой состав:

  1. Никель сернокислый — 20г/л;
  2. Натрий уксуснокислый — 10г/л;
  3. Натрий фосфорноватистокислый — 25г/л;
  4. Тиомочевина, раствор концентрацией 1 г/л — 3мл;
  5. Фтористый натрий — 0,4г/л;
  6. Уксусная кислота — 9мл

Никелирование, которое является достаточно распространенной технологической операцией, выполняют для того, чтобы нанести на поверхность металлического изделия тонкий слой никеля. Толщина такого слоя, величину которого можно регулировать, используя различные приемы, может варьироваться от 0,8 до 55 мкм.

Никелирование используется в качестве защитно-декоративного покрытия, а также для получения подслоя при хромировании

С помощью никелирования металла можно сформировать пленку, обеспечивающую надежную защиту от таких негативных явлений, как окисление, развитие коррозионных процессов, реакции, вызванные взаимодействием с соляной, щелочной и кислотной средами. В частности, очень большое распространение получили никелированные трубы, которые активно используются для производства изделий сантехнического назначения.

Чаще всего никелированию подвергаются:

  • изделия из металла, которые будут эксплуатироваться на открытом воздухе;
  • кузовные детали мото- и автотранспортных средств, в том числе и те, для изготовления которых был использован алюминиевый сплав;
  • оборудование и инструменты, применяемые в общей медицине и стоматологии;
  • изделия из металла, которые длительное время эксплуатируются в воде;
  • ограждающие конструкции, изготовленные из стали или алюминиевых сплавов;
  • изделия из металла, подвергающиеся воздействию сильных химических веществ.

Существует несколько используемых как в производственных, так и в домашних условиях методов никелирования металлических изделий. Наибольший интерес в практическом плане представляют способы никелирования металлических деталей, не требующие применения сложного технологического оборудования и реализуемые в домашних условиях. К таким способам относится электролитическое и химическое никелирование.

Электролитическое никелирование

Суть технологии электролитического никелирования металлических деталей, имеющей и другое название – «гальваническое никелирование», можно рассмотреть на примере того, как выполняется омеднение поверхности изделия из металла. Такую процедуру можно проводить как с применением электролитического раствора, так и без него.

Деталь, которая будет в дальнейшем обрабатываться в электролитическом растворе, подвергается тщательной обработке, для чего с ее поверхности при помощи наждачной бумаги удаляют оксидную пленку. Затем обрабатываемое изделие промывается в теплой воде и обрабатывается содовым раствором, после чего снова промывается водой.

Сам процесс никелирования выполняется в стеклянной емкости, в которую заливается водный раствор (электролит). В составе такого раствора содержится 20% медного купороса и 2% серной кислоты. Обрабатываемую деталь, на поверхность которой необходимо нанести тонкий слой меди, в растворе электролита помещают между двумя анодами из меди. Чтобы запустить процесс омеднения, на медные аноды и обрабатываемую деталь необходимо подать электрический ток, величину которого рассчитывают, исходя из показателя 10–15 мА на один квадратный сантиметр площади детали. Тонкий слой меди на поверхности изделия появляется уже через полчаса его нахождения в растворе электролита, причем такой слой будет тем толще, чем дольше будет протекать процесс.

Нанести медный слой на поверхность изделия можно и по другой технологии. Для этого необходимо изготовить кисточку из меди (можно использовать многожильный провод, предварительно сняв с него изоляционный слой). Такую кисточку, сделанную своими руками, надо зафиксировать на деревянной палочке, которая будет служить ручкой.

Изделие, поверхность которого предварительно зачищают и обезжиривают, помещают в емкость из диэлектрического материала и заливают электролитом, в качестве которого можно использовать насыщенный водный раствор медного купороса. Самодельную кисточку подключают к плюсовому контакту источника электрического тока, а обрабатываемую деталь – к его минусу. После этого приступают к процедуре омеднения. Заключается она в том, что кисточкой, которую предварительно обмакивают в электролит, проводят над поверхностью изделия, не прикасаясь к ней. Наносить покрытие, применяя такую методику, можно в несколько слоев, что позволит сформировать на поверхности изделия слой меди, на котором практически отсутствуют поры.

Электролитическое никелирование выполняется по схожей технологии: при его осуществлении тоже используется раствор электролита. Так же, как и в случае с омеднением, обрабатываемое изделие располагают между двумя анодами, только в данном случае они изготовлены из никеля. Аноды, помещенные в раствор для никелирования, подключаются к плюсовому контакту источника тока, а изделие, подвешенное между ними на металлической проволоке, – к минусовому.

Для осуществления никелирования, в том числе и выполняемого своими руками, используются электролитические растворы двух основных типов:

  • водный раствор, включающий в свой состав сернокислый никель, натрий и магний (14:5:3), 2% борной кислоты, 0,5% поваренной соли;
  • раствор на основе нейтральной воды, содержащий в своем составе 30% сульфата никеля, 4% хлорида никеля, 3% борной кислоты.

Электролит блестящего никелирования с добавкой органических блескообразователей (натриевых солей)

Выравнивающий электролит блестящего никелирования. Подходит для поверхностей с низким классом очистки

Чтобы приготовить электролитический раствор, сухую смесь из вышеуказанных элементов заливают одним литром нейтральной воды и тщательно перемешивают. Если в полученном растворе образовался осадок, от него избавляются. Только после этого раствор можно использовать для выполнения никелирования.

Обработка по данной технологии обычно длится полчаса, при этом используют источник тока с напряжением 5,8–6 В. Результатом является поверхность, покрытая неравномерным матовым цветом серого цвета. Чтобы она стала красивой и блестящей, необходимо ее зачистить и выполнить ее полировку. Следует иметь в виду, что такая технология не может быть использована для деталей, отличающихся высокой шероховатостью поверхности или имеющих узкие и глубокие отверстия. В таких случаях покрытие поверхности металлического изделия слоем никеля следует выполнять по химической технологии, которую также называют чернением.

Суть технологической операции чернения заключается в том, что на поверхность изделия сначала наносится промежуточное покрытие, основой которого может быть цинк или никель, а на верхней части такого покрытия формируется слой черного никеля толщиной не более 2 мкм. Покрытие никелем, выполненное по технологии чернения, смотрится очень красиво и обеспечивает надежную защиту металла от негативного воздействия различных факторов внешней среды.

В отдельных случаях металлическое изделие одновременно подвергают сразу двум технологическим операциям, таким как никелирование и хромирование.

Химическое никелирование

Процедуру химического никелирования изделий из металла выполняют по следующей схеме: обрабатываемую деталь на некоторое время погружают в кипящий раствор, в результате чего на ее поверхности оседают частички никеля. При применении такой технологии электрохимическое воздействие на металл, из которого изготовлена деталь, отсутствует.

Результатом использования такой технологии никелирования является формирование на поверхности обрабатываемой детали никелевого слоя, который прочно связан с основным металлом. Наибольшей эффективности такой способ никелирования позволяет добиться в тех случаях, когда с его помощью обрабатываются предметы, изготовленные из стальных сплавов.

Выполнять такое никелирование в домашних условиях или даже в условиях гаража нетрудно. При этом процедура никелирования проходит в несколько этапов.

  • Сухие реактивы, из которых будет приготовлен электролитический раствор, смешиваются с водой в эмалированной посуде.
  • Полученный раствор доводят до кипения, а затем в него добавляют гипофосфит натрия.
  • Изделие, которое необходимо подвергнуть обработке, помещают в электролитический раствор, причем делают это так, чтобы оно не касалось боковых стенок и дна емкости. Фактически надо изготовить бытовой аппарат для никелирования, конструкция которого будет состоять из эмалированной емкости соответствующего объема, а также диэлектрического кронштейна, на котором будет фиксироваться обрабатываемая деталь.
  • Продолжительность кипения электролитического раствора в зависимости от его химического состава может составлять от одного часа до трех.
  • После завершения технологической операции уже никелированная деталь извлекается из раствора. Затем ее промывают в воде, в составе которой содержится гашеная известь. После тщательной промывки поверхность изделия подвергается полированию.

Электролитические растворы для выполнения никелирования, которому можно подвергать не только сталь, но также латунь, алюминий и другие металлы, обязательно содержат в своем химическом составе следующие элементы – хлористый или сернокислый никель, гипофосфит натрия различной кислотности, какую-либо из кислот.

Чтобы увеличить скорость никелирования изделий из металла, в состав для выполнения этой технологической операции добавляют свинец. Как правило, в одном литре электролитического раствора выполняют никелевое покрытие поверхности, площадь которой составляет 20 см 2 . В электролитических растворах с более высокой кислотностью проводят никелирование изделий из черных металлов, а в щелочных обрабатывают латунь, осуществляют никелирование алюминия или деталей из нержавеющей стали.

Некоторые нюансы технологии

Выполняя никелирование латуни, изделий из стали различных марок и других металлов, следует учитывать некоторые нюансы этой технологической операции.

  • Пленка из никеля будет более устойчивой, если она нанесена на предварительно омедненную поверхность. Еще более устойчивой никелированная поверхность будет в том случае, если готовое изделие будет подвергнуто термической обработке, заключающейся в его выдержке при температуре, превышающей 450°.
  • Если никелированию подвергаются детали из закаленных сталей, то нагревать и выдерживать их можно при температуре, не превышающей 250–300°, иначе они могут утратить свою твердость.
  • При никелировании изделий, отличающихся большими размерами, возникает потребность в постоянном перемешивании и в регулярной фильтрации электролитического раствора. Такая сложность особенно характерна для процессов никелирования, выполняемых не в промышленных, а в домашних условиях.

По сходной с никелированием технологии можно покрыть латунь, сталь и другие металлы слоем серебра. Покрытие из данного металла наносят, в частности, на рыболовные снасти и изделия другого назначения, чтобы предотвратить их потускнение.

Процедура нанесения слоя серебра на сталь, латунь и другие металлы отличается от традиционного никелирования не только температурой проведения и временем выдержки, но также тем, что для нее применяют электролитический раствор определенного состава. При этом выполняют данную операцию в растворе, температура которого составляет 90°.

Никелирование в домашних условиях – процесс несложный. После его проведения металлическая поверхность становится защищенной от коррозии на долгое время. Материал применяется в машиностроительном производстве, в сфере пищевой промышленности, в оптическом производстве.

Конструктивные элементы из черных или цветных металлов защищены от коррозии и меньше подвергаются износу. Если в составе раствора никеля присутствует фосфор, то поверхностная пленка становится прочнее и показатель твердости приближается к хромированной поверхности.

О процессе выполнения

Никелирование – востребованная часть технологии и удачное решение для покрытия обработанного изделия. На деталь наносится тонкий слой жидкого никеля, регулируемой толщины в пределах от 0,8 мкм до 0,55 микрометров. Никелирование металла также выполняет функцию декоративного покрытия.

Этот процесс обеспечит формирование прочной пленки, способствующей обеспечению, в свою очередь, защиты изделия от щелочей и кислот, атмосферных проявлений. Для выпуска сантехнической продукции покрытие труб, кранов, переходников и иных деталей – идеальное решение.

Защиту от внешних воздействий этим методом рекомендуется выполнять для:

  1. Изделий из металла, эксплуатация которых предусматривается под открытым небом.
  2. Кузовов автомобильных средств.
  3. Инструментов и оборудования, которым оснащены стоматологические клиники.
  4. Металлических деталей, если их эксплуатация планируется в водной среде.
  5. Стальных или алюминиевых конструкций, выполняющих функции ограждения.
  6. Изделий, при эксплуатации которых будет взаимодействие с химическими средами.

Всего практикуется несколько уникальных методов выполнения работ. Они нашли применение и в производстве, и в быту. При любом раскладе заинтересовывает процесс проведения этой работы в личных мастерских, ведь не нужно выполнять сложных технологических операций.

К данным методам относят:

  • химическое никелирование;
  • электролитическое нанесение покрытия.

Параметры гальванических покрытий:

Критерий оценки Вид покрытия изделия
гальваническое химическое
Необходимая температура для плавления материала 1450 0 С 890 0 С
Предел удельного сопротивление материала, ОМ х м Примерно 8,5 *10 -5 Примерно 60 *10 -5
Восприимчивость к созданию магнетизма 37 4
Твердость по шкале Виккерса 250 550
Показатель продольной деформации в % От 10 до 30 От 3 до 6
Характеристика прочности при сцеплении с поверхностью материала От 35 до 45 От 35 до 50

Проведение работы

Нанесение на обрабатываемую поверхность тонкой пленки материала способствует созданию блеска и защите от перепада температур и агрессивных воздействий внешних сред.

Перед непосредственным выполнением задачи, металл следует тщательно подготовить, чтобы сцепление никеля с поверхностным слоем было основательным.

Технология подготовки заключается в:

  1. Обработке наждачной мелкозернистой бумагой.
  2. Протирке поверхности щеткой и жесткой щетиной или металлической проволокой.
  3. Промывании водой.
  4. Обезжиривании в растворе кальцинированной соды.
  5. Промывании чистой водой еще раз.

Так как поверхность, обработанная никелем, зачастую быстро теряет свойство отражать свет и тускнеет, то производится ее хромирование. Это покрытие обеспечивает надежность при эксплуатации изделия.

Состав, используемый при нанесении на стальную поверхность, обеспечивает катодную защиту материала. Поэтому никелирование стали гарантирует надежность при эксплуатации изделия. Если поверхность отчасти не защищена слоями никеля, то в скором времени проявится ржавчина, а слой отвердевшего никеля постепенно будет отслаиваться. Металл рекомендует покрывать толстым покрытием никеля.

Покрытие можно наносить на медные и железные поверхности, или сплавы на их основе. Титан или вольфрам и иные металлы тоже можно обработать никелем. Покрывать такие материалы, как свинец, висмут, олово или кадмий не рекомендуется. Перед тем как наносить покрытие на стальную поверхность последнюю следует обработать тонким медным слоем.

Электролитическое никелирование

Его же называют гальваническое никелирование. Этот метод считается недорогостоящим, поэтому он наиболее чаще применяем. Покрытия получаются пористыми и непосредственно зависят от подготовки основания и толщины слоя защитного покрытия. Чтобы данная работа была произведена с должным качеством, следует уменьшить процент проявления пор. Для этих целей применяется предварительное омеднение детали или нанесение покрытия многослойным.

Электрохимическое никелирование оснований производится по следующим этапам:

  • Электролит никелирования приготавливается по описанной схеме. Для этого на 200 мл воды нужно подготовить 60 граммов сульфата никеля, 7 граммов хлорида никеля, 6 граммов борной кислоты. Все компоненты тщательно развести в воде в предназначенной емкости. Чтобы покрыть стальную или медную поверхность следует использовать аноды из никеля, опускаемые непосредственно в электролит.
  • Далее деталь закрепить на проволоке и поместить между пластинками из никеля, а проволоки, проходящие он никелевых пластинок нужно соединить. Подключение деталей производится к отрицательному электрическому заряду, а проволочек к положительному.
  • После следует подключение реостата и микроамперметра к цепи регулирования источника тока. Чтобы обеспечить такое действие необходимо выбрать источники тока с показателем напряжения не больше 6 В. Действие силы тока на изделие должно длиться не более 20 минут.
  • После обрабатываемое изделие нужно помыть и просушить. В результате получилось матовое сероватое покрытие.
  • Для обеспечения блеска необходимо произвести полирование поверхностного слоя.

При всех положительных качествах производства данной операции, имеется существенный недостаток, о котором необходимо помнить. При электролитической обработке металлического изделия, покрытие получается неравномерным, то есть не заполняются раковины, а в местах выступающих шероховатостей никелировочный слой стекает.

Химический способ

Этот метод считается дорогостоящим относительно электролитического. Получается достаточно прочное и тонкое основание нанесенного слоя.

Никелирование деталей производится следующим образом:

  1. Берется 10%раствор цинка хлористого и разводится небольшими порциями в растворе никеля сернокислого до получения ярко-зеленого оттенка.
  2. Далее используя сосуд из фарфора, полученную смесь следует нагреть до закипания. Не нужно пугаться, что получиться муть, это никаким образом не повлияет на качество запланированных работ.
  3. Для никелировки следует опустить в кипящий раствор деталь, предварительно очищенную от пыли и обезжиренную содовым раствором.
  4. Процесс кипения должен длиться не менее часа, но по мере испарения жидкости в емкость необходимо понемногу добавлять дистиллированную воду. В случае если насыщенный зеленый цвет будет светлеть, то это значит, что необходимо добавить небольшую часть сернокислого никеля.
  5. После прохождения времени кипения следует вынуть деталь и промыть в воде с растворенным в ней мелом.
  6. Тщательно высушить на открытом воздухе.

Изделия из чёрного металла, покрытые этим методом получаются прочными и надежными при эксплуатации.

Анализ химического нанесения защитного слоя показывает, что происходящий процесс лежит в основе восстановления никеля из соляной жидкости при помощи натрия гипофосфита и иных элементов. Растворы могут быть как щелочными, так и кислыми.

Предназначение кислотных составов лучше подходит для обработки цветных или черных металлов. Щелочи предназначены для нанесения на нержавеющие поверхности.

Кислота провоцирует снижение разряда при увеличении температуры, но поверхность получается с меньшим показателем шероховатости. При применении такого состава обеспечивается хорошее сцепление покрытия с поверхностью.

Состав раствора на основе воды для покрытия никелем, используется для всех металлов. Можно применять не только дистиллированную воду, но и конденсат, образовавшийся в холодильнике. Химические реактивы лучше применять чистые с буквой “Ч” на упаковке.

Для получения раствора изначально все ингредиенты разводятся в воде, а затем добавляется гипофосфит натрия. Одного литра раствора достаточно для никелирования площади поверхности 10х10 см2.

О черном покрытии

Черное никелирование одновременно преследует две цели:

  • декоративность покрытия;
  • специализированное назначение.

При этом недостаточно обеспечиваются свойства защиты металла, на основании этого заключения следует наносить промежуточные слои из цинка, кадмия или никеля. При этом сталь нужно оцинковать, а цветные металлы – никелировать. Толщина покрытия довольно толстая до 2 мкм, поэтому оно хрупкое. Для ванн с содержанием никелевого раствора добавляется значительное количество роданида и цинка.

Состав – около 50% элемента никеля, а в оставшейся части содержится углерод, цинк, азот и сера.

Никелирование алюминия либо стальных конструкций производится приготовлением ванн с растворением всех компонентов, с последующим их фильтрованием. С борной кислотой, как правило, возникают проблемы при ее растворении, но ее можно отдельно развести в воде при температуре до 700С. Насыщенное никелирование этим цветом прямо пропорционально показателю плотности подаваемого тока.

О ваннах для никелирования

В домашних мастерских для ванн никелирования используется три составляющих: сульфат, борная кислота и хлорид. Сульфат – играет роль источника образование ионов никеля. Для функционирования анодов из никеля существенное влияние оказывает хлорид, при этом процент концентрации не учитывается.

Если в ванне недостаточно хлорида, то выделение никеля небольшое, снижается показатель выходного тока, и качество полученного покрытия оставляет желать лучшего.

Аноды растворяются почти в полном объеме для протекания процесса покрытия алюминиевых или медных изделий. Хлорид способствуют увеличению проводимости ванн при больших концентрациях цинка. Раствор борной кислоты обеспечивает нормальный уровень кислотности.

Видео: химическое никелирование.

О хромировании пластика

Хромирование пластика в домашних условиях производится следующим образом:

  1. Чтобы покрыть пластмассу необходимо присоединить конструктивные элементы или детали к трансформатору.
  2. Взять кисточку, присоединенную тоже к трансформатору и залить электролитом.
  3. На предварительно подготовленную поверхность нанести слой электролита, движениям и вверх-вниз.
  4. При необходимости нанесение слоя нужно повторить.

Чтобы хорошо лег слой покрытия, повторять процесс следует не менее 30 раз.

Поверхность пластмассовых деталей после обработки необходимо просушить и промыть водой. Хромирование поверхностей будет смотреться привлекательно, если натереть изделие куском войлока, так покрытию будет придан блеск.

Не всегда удается хромирование изделий из пластика, поэтому предпочтение отдается растворам на никеле.

Хромирование пластмассовых изделий достаточно трудоемкое и затратное, к примеру, цена на трансформатор немалая. Так что лучшим решением будет обращение в специализированную организацию.

При выполнении любой из работ по покрытию изделий происходят химические процессы, поэтому справочник химика 21 пригодится.

НИКЕЛИРОВАНИЕ , технический процесс нанесения на поверхность металлов б. или м. тонкой пленки металлического никеля или никелевых сплавов; цель этого нанесения - уменьшить коррозию металла, увеличить твердость наружного слоя, повысить или изменить отражательную способность поверхности, сообщить ей более красивый вид. Полученное впервые Беттгером в 1842 г. и промышленно осуществленное в США с 1860 г., никелирование в настоящее время сделалось одним из наиболее широко усвоенных промышленностью способов покрытия металлов.

Существующие многочисленные способы никелирования могут быть подразделены на две главные группы: способы контактные и способы гальванотехнические ; в настоящее время особенно часто прибегают к последним. Нанесение никелевой пленки применяется в отношении поверхностей различных металлов, причем в соответствии с характером никелирования их можно разделить на группы: 1) медные, латунные, бронзовые, цинковые, 2) железные, 3) оловянные, свинцовые и из сплавов типа британия-металла, 4) алюминиевые и из алюминиевых сплавов. Никелевые пленки представляют вполне удовлетворительную защиту железа от ржавления во внутренних помещениях.

Однако они недостаточны под открытым небом; кроме того на отполированные никелированные поверхности действуют горячие жиры, уксус, чай, горчица, вследствие чего столовая и кухонная никелированная посуда покрывается пятнами. В тех случаях когда требуется вполне надежная защита от воздействия непогоды и вместе с тем нарядный вид никелированной поверхности, на железо д. б. наложена двойная пленка - цинковая, а затем никелевая. Этот способ двойного покрытия (цинком, а затем никелем) применяется также в отношении т. н. корсетной стали. При необходимости получить особенно стойкие пленки, как например, на проволоках, откладывают одновременно никель и платину, причем содержание последней постепенно повышают от 25% до 100% и, наконец, прокаливают предмет в струе водорода при 900-1000°С. Крупные изделия, например, котлы для варки, барабаны центрифуг или вентиляторы, если по экономическим условиям не могут быть сделаны из чистого никеля, но недостаточно стойки при никелевой пленке по железу или меди, облицовываются слоем свинца в несколько мм, а по нему слоем никеля в 1-2 мм. Ржавление железных и стальных никелированных изделий объясняется присутствием электролита, остающегося в тонких порах никелевой пленки. Это явление устраняется, если изделия перед никелировкой выдержать в масле при 200°С, по охлаждении обезжирить, слабо омеднить, затем отникелировать в лимоннокислой никелевой ванне слабым током и наконец просушить в шкафу при 200°С; тогда влага удаляется из пор, которые закупориваются находящимся в них маслом.

Имеется ряд предложений накладывать двойные защитные пленки по литому железу, железным или стальным листам, проволокам и полосам в порядке обратном вышеуказанному, т. е. сначала покрывать изделия тонкой пленкой никеля контактным или электролитическим способом, а затем уже погружать в ванну с расплавленным цинком или оловом (Вивиен и Лефебр, 1860 г.). Предложено также добавлять некоторое количество никеля в сплав из 25-28 кг цинка, 47-49 кг свинца и 15 кг олова, служащий для покрытия железных листов горячим способом. Стойкость поверхностей алюминия и его сплавов против соли и морской воды м. б. достигнута гальваническим осаждением на них, после очистки их песчаною струей, последовательных слоев: никеля толщиною в 6 мкм, меди в 20 мкм и затем снова никеля в 50 мкм, после чего поверхность полируется. Стойкость алюминия против 15%- ной натровой щелочи достигается никелевой пленкой в 40 мкм толщиною. В некоторых случаях применяется покрытие не чистым никелем, а сплавом, например никелево-медным; для этого электролиз ведется в ванне, содержащей катионы в соотношении требуемого сплава; осажденная пленка затем переводится в сплав нагреванием изделия до краснокалильного жара.

Контактное никелирование . Стальные предметы, согласно указанию Ф. Штольба (1876 г.), после полировки и надлежащего обезжиривания кипятятся в ванне из 10-15%-ного водного раствора чистого хлористого цинка, к которому добавлено сернокислого никеля до образования зеленой мути от основной никелевой соли. Никелирование длится около 1ч. После этого предмет прополаскивается в воде с мелом, а ванна, после фильтрации и добавки никелевой соли, может применяться вновь. Получающаяся пленка никеля тонка, но держится прочно. Для повышения температуры ванны предложено или вести процесс под давлением (Ф. Штольба,. 1880 г.) или применять ванну с концентрированным раствором хлористого цинка. Во избежание ржавления предметов их выдерживают в течение 12 ч. в известковом молоке. Более сложная ванна для железных предметов, предварительно омедненных в ванне из 250 г сернокислой меди в 23 л воды с несколькими каплями серной кислоты, содержит 20 г винного камня, 10 г нашатыря, 5 г хлористого натрия, 20 г хлорного олова, 30 г сернокислого никеля и 50 г двойной сернокислой никелево-аммониевой соли.

Гальваническое никелирование . Обеднение никелевой ванны м. б. предупреждаемо достаточно легким растворением никелевых анодов. Вальцованные, и в особенности из чистого никеля, аноды растворяются трудно и потому при техническом никелировании пользуются в качестве анодов никелевыми брусками, содержащими до 10% железа. Однако такие аноды ведут к осаждению на предмете железа, а наличие железа в никелевой пленке влечет за собой целый ряд пороков никелирования. Как указано Калгане и Гаммоге (1908 г.), невозможно получить при анодах с железом осадок, вполне свободный от последнего. Но осадок никеля будет содержать уже только 0,10-0,14% железа, если в анодах содержание железа снижено до 7,5%; содержание железа в осадке можно еще уменьшить, заключая аноды в тканевые мешки, тогда как вращение электродов ведет к повышенному содержанию железа в осадке и к снижению его выхода. Присутствие железа в никелевой пленке ведет к отложению осадков с постепенно понижающимся содержанием железа и потому неоднородных в отношении механических свойств на различной глубине; К. Энгеман (1911 г.) считает эту неоднородность единственной причиной легкой отщепляемости никелевых пленок. Наличие железа м. б. причиною ряда других пороков никелирования (см. табл.), например, легкости ржавления пленок.

Порок Причина возникновения Мера борьбы
Осаждение никеля не происходит, газообразования нет Источник тока не работает Проверка и возобновление источника энергии
Провода приключены неправильно Переключение проводов
Ванна слишком холодна Нагрев ванны до температуры выше 15°С
Ванна слишком кисла Подливается водный раствор нашатырного спирта или водная взвесь углекислого никеля при непрерывном помешивании и частом испытании на конго-бумагу
Ванна содержит цинк Ванна делается щелочной посредством углекислого никеля, размешивается в течение нескольких часов, фильтруется и подкисляется 10%-ной серной кислотой
Неполное покрытие предмета никелевой пленкой Недостаточный ток Предметы подвешиваются на равных расстояниях от анодов, ванна подогревается не менее как до 20°С
Очень глубокие вогнутости поверхности предмета Устанавливаются небольшие вспомогательные аноды, вводимые в углубления предмета
Щелочность ванны Осторожное подкисление ванны 10%-ной серной кислотой при помешивании и постоянном испытании лакмусовой бумагой
Легкая отщепляемость белой или же желто-никелевой пленки при полировке Загрязненность поверхности предметов окислами и жиром Дополнительная очистка поверхности предметов
Слишком большое напряжение (выше 4 V ) Увеличивают число никелируемых предметов или снижают напряжение до 2,5-3 V
Слишком большая кислотность ванны Нейтрализация нашатырным спиртом или водной взвесью углекислого никеля
Бедность ванны никелем Удаление части электролита и добавка никелевой соли, пока ванна не станет нормального зеленого цвета
Несоответственные вязкость и поверхностное натяжение ванны Добавка глицерина или амилового спирта, или растительных отваров, или других коллоидов
Выделение водородных ионов Добавка окислителей или поглотителей водорода; применение несимметричного переменного тока
Несоответственная подготовка поверхности предметов Сообщение поверхностям шероховатости, механически или химически, покрытие их тонким слоем никеля из горячего раствора хлористого никеля или холодного концентрированного раствора этило-сернокислого никеля
Отставание никелевой пленки или разрыв ее при изгибе и растяжении предметов Присутствие капиллярных прослоек электролита Просушка и нагрев предметов до 250-270°С
Недостаточная обрабатываемость листов, покрытых толстым слоем никеля Вероятно та же Промывка, просушка без доступа воздуха и наконец, нагрев до слабого краснокалильного жара
Поверхность в ямочках и пленка пронизана бесчисленными порами Пыль и частички волокон, плавающие в ванне Ванну кипятят, фильтруют и устанавливают в ней правильную реакцию
Образование газовых пузырьков Постукивание по токоведущему стержню. Пузырьки удаляют; устанавливают слабокислую реакцию
Грубость и неровность поверхности Выделение водорода Введение связывающего водород свободного хлора в газообразном виде временами пропускаемой струей или в водном растворе; с несколько меньшим успехом хлор м. б. заменен бромом; весьма рекомендуется добавление раствора хлористого кобальта
Недостаточная гибкость пленки Высокое сопротивление ванны Добавка соли натрия
Желтизна пленки; поверхность становится матовой, а затем получает желтый и тёмно-жёлтый цвет Наличие примесей железа в ванне, содержание которых повышается в старых ваннах Избегать старых ванн, не слишком двигать ванны, работать со слабыми токами
Чернота пленка, темные полосы в местах отставания при правильной плотности тока Содержание в ванне посторонних металлов (до 1%) Удаление посторонних металлов

Недостаток проводящих солей

Добавление проводящих солей в количестве 2-3 кг на 100 л ванны: нашатырь, хлористый калий и хлористый натрий дают повышение проводимости на 84,31 и 18% соответственно
Бедность ванны солью никеля Добавка никелевой соли
Загар поверхности Слишком большая проводимость ванны из-за чрезмерной крепости ее Контроль концентрации ванны (например, постоянства плотности в 5° Вẻ) и плотности тока
Образование полос Загрязнения, производимые полировальным кругом в небольших углублениях Устранение затруднительно; достигается до известной степени мгновенным погружением в котел со щелоком или механической протиркой предметов
Изменения концентрации и возникновение потоков жидкости Уменьшение плотности тока и повышение температуры ванны
Образование пятен Недостаточная очистка готовых отникелированных изделий Тщательная промывка в проточной воде изделий после никелирования, затем погружение в кипящую вполне чистую воду, отряхивание изделий и просушка в нагретых опилках
Непрочное приставание никелевой пленки к железу Наличие ржавчины Тщательное освобождение от ржавчины. Гальваническое нанесение промежуточного слоя из цианкалиевой ванны, после чего пленка утолщается в кислой ванне

Электролитическая ванна для никелирования составляется гл. образом из двойной никелево-аммониевой соли, причем для устранения основных солей добавляют слабые кислоты. Большая кислотность ванны ведет к более твердым пленкам. Необходимо иметь в виду, что технический никелевый купорос не пригоден для ванн, т. к. часто содержит медь; ее следует удалить пропусканием сероводорода через водный раствор купороса. Применяются также хлористые соли, но при сульфатных ваннах осадки тверже, белее и более стойки, чем при хлоридных. Высокое сопротивление никелевой ванны выгодно снижать добавкой различных проводящих солей - особенно нашатыря и хлористого натрия - и нагреванием. Нейтрализация избыточной серной кислоты в старых растворах успешно производится углекислым никелем, который получается из теплого водного раствора сернокислого никеля, осаждаемого содой. Для белизны и гладкости пленок сделано большое количество предложений добавлять к никелевой ванне различные органические кислоты (винную, лимонную и т. д.) и их соли, например, уксусно-, лимонно- и виннокислые соли щелочных и щелочноземельных металлов (Кейт, 1878 г.), пропионовокислый никель, борно-виннокислые соли щелочных металлов. При необходимости получить толстые никелевые осадки предложено добавление борной, бензойной, салициловой, галловой или пирогалловой кислот, и кроме того 10 капель серной, муравьиной, молочной кислоты на 1 л ванны, чтобы предупредить поляризацию на изделии. Как указал Пауелл (1881 г.), прибавка бензойной кислоты (31 г на ванну из 124 г сернокислого никеля и 93 г лимоннокислого никеля в 4,5 л воды) избавляет от необходимости пользоваться химически чистыми солями и кислотами. Осадок никеля имеет хорошие свойства также и при простой ванне из никелево-аммонийного сульфата, но при условии щелочности раствора, что достигается добавкой аммиака. Весьма хорошие осадки получаются из нейтрального раствора фтористо-борнокислого никеля при комнатной температуре (при температуре выше 35°С раствор разлагается с образованием нерастворимой основной соли) и плотности тока 1,1-1,65 А/дм 2 . Приводим несколько рецептов ванн. 1) 50 ч. бисульфита натрия, 4 ч. азотнокислого окисного никеля и 4 ч. концентрированного нашатырного спирта растворяют в 150 ч. воды. 2) 10-12 ч. сернокислого никеля, 4 ч. двойной никелево-аммониевой сернокислой соли, 1-3 ч. борной кислоты, 2 ч. хлористого магния, 0,2-0,3 ч. лимоннокислого аммония, доливается до 100 ч. (всего) воды. Ток плотностью 1,6 А/дм 2 отлагает пленку со скоростью 2 мкм/ч.; повышая температуру до 70°С, можно снизить сопротивление ванны в два-три раза и тем ускорить никелирование. 3) Электролит из 72 г двойной никелево-аммониевой сернокислой соли, 8 г сернокислого никеля, 48 г борной кислоты и 1 л воды особенно благоприятен для мягкости и непористости осадка, т. к. снижает выделение водорода.

Получение никелевых пленок особого вида . 1) Белая пленка по цинку, олову, свинцу и британия-металлу получается в ванне из 20 г двойной никелево-аммониевой сернокислой соли и 20 г углекислого никеля, растворенных в 1 л кипящей воды, и нейтрализованной при 40°С уксусной кислотою; ванна должна поддерживаться нейтральной. 2) Матово-белая пленка получается в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 15 г перекристаллизованного сернокислого никеля, 7,4 г нашатыря, 23 г хлористого натрия и 15 г борной кислоты на 1 л воды; ванна д. б концентрирована до 10° Вẻ; напряжение от 2 до 2,5 V. 3) Черная пленка получается на поверхностях, тщательно обезжиренных или покрытых тонким слоем белого никеля путем электролиза в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 1,5 г роданистого аммония и около 1 г сернокислого цинка на 1 л воды 4) Черная пленка получается также в электролите из 9 г двойной никелево-аммониевой сернокислой соли в 1 л воды с последующей добавкой 22 г роданистого калия, 15 г углекислой меди и 15 г белого мышьяка, предварительно растворенного в углекислом аммонии; глубина черного тона вырастает с содержанием в растворе мышьяка. 5) Глубоко синяя пленка получается в ванне из равных частей двойной и простой сернокислых солей никеля, доведенной до 12° Bẻ, причем на литр добавляют 2 ч. аммиачного отвара лакричного корня; электролиз длится 1 час при 3,5 V, а затем еще 1/2 часа при 1,4 V. 6) Коричневая пленка получается так: электролиз при напряжении 0,75-1 V ведется в ванне из 180 г двойной никелево-аммониевой сернокислой соли и 60 г сернокислого никеля, растворенных в возможно малом количестве кипящей воды, добавленной до 50 см 3 и смешанной затем с растворами 30 г сернокислого никеля и 60 г роданистого натрия, каждый в 0,5 л воды, после чего добавляют раствор до 4,5 л. Полученной пленке черного цвета придают коричневый оттенок, погружая изделие на несколько секунд в ванну из 100,6 г перхлората железа и 7,4 г соляной кислоты в 1 л воды: после промывки и просушки поверхность изделия для закрепления тона лакируют.

Никелирование алюминия и его сплавов . Предложено несколько процессов. 1) Подготовка поверхности алюминиевых изделий состоит в обезжиривании, затем очистке пемзой и наконец погружении в 3%-ный водный раствор цианистого калия; после электролиза в никелевой ванне изделия промываются холодной водой. 2) После промывки 2%-ным раствором цианистого калия изделия погружаются в раствор из 1 г хлористого железа (феррохлорид) на 0,5 л воды и технической соляной кислоты, пока поверхность не станет серебряно-белой, и затем никелируются в течение 5 мин. при напряжении 3 V. 3) Полировка изделий, удаление полировочного состава бензином, выдержка в течение нескольких минут в теплом водном растворе фосфорнокислого натрия, соды и смолы, промывка, погружение на короткое время в смесь из равных частей 66%-ной серной кислоты (содержащей несколько хлористого железа) и 38%-ной азотной кислоты, новая промывка и электролиз в ванне, содержащей никелевую соль, горькую соль и борную кислоту; напряжение 3-3,25 V. 4) По Ж. Канаку и Э. Тассилли: протравка изделия кипящей калиевой щелочью, чистка щеткой в известковом молоке, 0,2%-ная цианкалиевая ванна, ванна из 1 г железа в 500 г соляной кислоты и 500 г воды, промывка, никелирование в ванне из 1 л воды, 500 г хлористого никеля и 20 г борной кислоты при напряжении 2,5 V и плотности тока 1 А/дм 2 , наконец полировка матово-серого осадка. Железная ванна служит для огрубления поверхности алюминия и тем содействует прочности, с какою удерживается пленка на металле. 5) По Фишеру, ванна для никелирования составляется из 50 г сернокислого никеля и 30 г нашатыря в 1 л воды при плотности тока 0,1-0,15 А/дм 2 , за 2-3 часа получается толстый осадок, который обладает высоким блеском после полировки стеариновым маслом и венской известью. 6) Горячая ванна (60°С) составляется из 3400 г двойной никелево-аммониевой сернокислой соли, 1100 г сернокислого аммония и 135 г молочного сахара в 27 л воды. 7) Холодная ванна содержит азотнокислый никель, цианистый калий и фосфорнокислый аммоний.

Контроль никелевой пленки . Распознавание состава металлической пленки на предмете, по Л. Ловитону (1886 г.), может производиться посредством нагревания предмета в наружном пламени бунзеновской горелки: никелевая пленка синеет, получает черный отблеск и сохраняется невредимою; серебро не изменяется в пламени, но чернеет при обработке разбавленным раствором сернистого аммония; наконец оловянное покрытие быстро становится от серо-желтого до серого и исчезает при обработке указанным реагентом. Проверка качества никелевой пленки на железе и меди в отношении пор и изъянов может производиться при помощи т. н. ферроксилового испытания и с особым удобством при помощи ферроксиловой бумаги, покрытой гелем агар-агара с железисто-синеродистым калием и хлористым натрием. Наложенная в смоченном виде на испытуемую поверхность и по прошествии 3-5 мин. закрепленная в воде, эта бумага дает документальное изображение малейших пор, которое м. б. сохраняемо.

Регенерация никеля со старых изделий . Удаление никелевого покрытия с изделий из железа и других неамальгамируемых металлов производится следующими способами: а) парами ртути под вакуумом или под обыкновенным давлением; б) нагреванием обрезков с серой, после чего слой металла легко удаляется молотками; в) нагреванием обрезков с веществами, отдающими серу при высокой температуре) при внезапном охлаждении пленка никеля соскакивает; г) обработкой нагретой до 50-60°С серной или азотной кислотой; железо переходит в раствор, и никель остается почти нерастворенным; однако несмотря на свою простоту этот способ мало применим, т. к. полученный никель сохраняет еще значительное содержание железа, не удаляемое и при повторной обработке кислотою (Т. Флейтман); д) длительным нагреванием при доступе воздуха или водяного пара, после чего обрезки подвергаются механическим ударам и никель отскакивает; е) электролитическим растворением: железный покрываемый никелем предмет делают анодом в ванне, содержащей углекислый аммоний; если покрытие состоит из сплава никеля, то необходимо регулировать напряжение, причем при 0,5 V осаждается медь, а при напряжении большем 2 V - никель; при этом процессе железо не разъедается; ж) железные или стальные обрезки делают анодом в ванне из водного раствора натриевой селитры, тогда как катод состоит из угольной палки; напряжение не должно превосходить 20 V; з) с цинковых кружек никель удаляется электролизом предметов, сделанных анодом в 50°-ной серной кислоте; кислота этой концентрации обладает свойством растворять только никель, серебро и золото, но не другие металлы, если идет ток; напряжение применяется 2-5 V; в качестве катодов служат железные листы, на которых никель осаждается в виде пыли; цинк не растворяется, хотя бы кружки и оставались в электролите долгое время.

Покрывая никелем детали из цветных металлов и стали, повышают их сопротивление воздействию коррозионных процессов и механического износа. Никелирование в домашних условиях доступно каждому и характеризуется несложной технологией.

1 Никелирование металлических поверхностей – азы технологии

Никелирование заключается в нанесении на поверхность обрабатываемого изделия тонкого никелевого покрытия, толщина которого, как правило, составляет 1–50 мкм. Этой операции детали подвергают с целью их защиты или для получения характерного (матово-черного или блестящего) внешнего вида никелируемой поверхности. Покрытие, независимо от оттенка, надежно предохраняет металлические предметы от коррозии на открытом воздухе, в растворах солей, щелочей, слабых органических кислот.

Как правило, никелируют детали, изготовленные из стали или таких металлов и сплавов из них, как медь, алюминий, цинк, реже – титан, марганец, молибден, вольфрам. Нельзя обрабатывать химическим никелированием поверхности изделий из свинца, олова, кадмия, висмута, сурьмы. Никелевые покрытия используют в различных промышленных отраслях для защитно-декоративных и специальных целей или в качестве подслоя.

Эту технологию применяют при восстановлении поверхности изношенных деталей различных механизмов и автомобилей, покрытия измерительного и медицинского инструментов, предметов и изделий домашнего обихода, химической аппаратуры, деталей, эксплуатируемых под незначительными нагрузками в условиях воздействия крепких растворов щелочей или сухого трения. Существует 2 метода нанесения покрытий из никеля – электролитический и химический.

Второй несколько дороже, чем первый, однако позволяет получать равномерное по толщине и качеству покрытие на всей поверхности детали, при условии, если обеспечен доступ раствора ко всем ее участкам. Никелирование в домашних условиях является вполне осуществимой задачей. Перед началом работ изделие тщательно очищают от загрязнений и ржавчины (если есть), обрабатывают мелкой наждачной бумагой, чтобы снять оксидную пленку, промывают водой, затем обезжиривают и еще раз промывают.

2 Секреты увеличения стойкости и срока службы никелевых покрытий

Перед никелированием стали желательно выполнять меднение изделия (покрывать подслоем меди). Эта технология используется в промышленности, как отдельный процесс, а также как подготовительный перед серебрением, хромированием, никелированием. Меднение, предваряющее нанесение других слоев, позволяет выровнять дефекты поверхности и обеспечивает надежность и долговечность внешнего защитного покрытия. Медь держится на стали очень прочно, а другие металлы осаждаются на нее гораздо лучше, чем на чистую сталь. Помимо этого, никелевые покрытия не сплошные и на 1 см2 имеют сквозные (до металла подложки) поры:

  • несколько десятков – для однослойных покрытий никелем;
  • несколько – для трехслойных.

В результате этого коррозионным процессам подвергается металл подложки, находящийся под никелем, при этом возникают условия, провоцирующие отслаивание защитного покрытия. Поэтому, даже при предварительном омеднении, многослойном никелировании, а особенно при однослойном на чистую сталь, необходима обработка поверхности защитного покрытия из никеля специальными составами, которые закрывают поры. При самостоятельной обработке в домашних условиях возможны следующие способы:

  • протереть деталь с покрытием кашицеобразной смесью воды с окисью магния и сразу же погрузить ее на 1–2 минуты в 50 % состав соляной кислоты;
  • протереть 2–3 раза поверхность детали легко проникающим смазочным составом;
  • сразу после обработки еще не остывшее изделие погрузить в рыбий жир (невитаминизированный, лучше старый, который уже непригоден по прямому назначению).

В двух последних случаях излишки смазки (жира) удаляют с поверхности через сутки бензином. В случае обработки больших поверхностей (молдингов, бамперов автомашин) рыбий жир используют следующим образом. В жаркую погоду им протирают деталь 2 раза с промежутком в 12–14 часов, а через 2 суток удаляют излишки бензином.

3 Электролитическое никелирование в домашних условиях

Этот способ требует подготовки электролита, состав которого следующий:

  • 140 г сернокислого никеля;
  • 50 г сернокислого натрия;
  • 30 г сернокислого магния;
  • 5 г поваренной соли (хлористого натрия);
  • 20 г борной кислоты;
  • 1000 г воды.

Химикаты растворяют по отдельности в воде, полученные растворы фильтруют, после чего смешивают. Готовый электролит наливают в емкость. Для гальванического никелирования необходимы электроды из никеля (аноды), которые опускают в ванну с электролитом (одного электрода недостаточно, так как полученное покрытие будет неравномерным). Между анодами на проволочке подвешивают деталь. Медные проводники, идущие от никелевых пластин, соединяют в одну цепь и подключают к положительному выводу источника постоянного тока, провод от детали – к отрицательному.

Для управления силой тока в цепь включают сопротивление (реостат) и миллиамперметр (прибор). Напряжение источника тока должно быть не больше 6 В, плотность тока необходимо поддерживать на уровне 0,8–1,2 А/дм2 (площади поверхности изделия), температура электролита комнатная 18–25 оC. Ток подают 20–30 минут. За это время образуется никелевый слой толщиной примерно 1 мкм. Затем деталь вынимают, как следует промывают водой и просушивают. Полученное покрытие будет серовато-матового цвета. Чтобы слой никеля приобрел блеск, поверхность детали полируют.

Если нет сернокислого натрия и магния, то берут больше сернокислого никеля, доводя его количество в электролите до 250 г, а также борной кислоты – 30 г, натрия хлористого – 25 г. Никелирование в этом случае проводят при значениях плотности тока в пределах 3–5 А/дм2, раствор нагревают до 50–60 оC.

Недостатки электролитического метода:

  • на рельефных, неровных поверхностях никель осаждается неравномерно;
  • невозможность нанесения покрытия в глубоких и узких полостях, отверстиях и тому подобного.

4 Химическое никелирование изделий в домашних условиях

Все составы для проведения химического никелирования универсальны – пригодны для обработки любых металлов. Готовят растворы, соблюдая определенную последовательность. В воде растворяют все химреактивы (исключая гипофосфит натрия). Посуда должна быть эмалированная. Затем раствор нагревают, доводя его температуру до рабочей, после чего растворяют гипофосфит натрия. Деталь завешивают в жидком составе, температуру которого поддерживают на необходимом уровне. В 1 л подготовленного раствора возможно провести никелирование изделия, площадь поверхности которого до 2 дм2.

Используют следующие составы растворов, г/л:

  • Натрий янтарно-кислый – 15, никель хлористый – 25, натрия гипофосфит – 30 (кислотность раствора pH – 5,5). Рабочая температура смеси – 90–92 °С, скорость наращивания покрытия – 18–25 мкм/ч.
  • Никель сернокислый – 25, натрий янтарно-кислый – 15, натрия гипофосфит – 30 (pH – 4,5). Температура – 90 °С, скорость – 15–20 мкм/ч.
  • Никель хлористый – 30, кислота гликолевая – 39, натрия гипофосфит – 10 (рН – 4,2). 85–89 °С, 15–20 мкм/ч.
  • Никель сернокислый – 21, натрий уксуснокислый – 10, свинца сульфид – 20, натрия гипофосфит – 24 (pH – 5). 90 °С, до 90 мкм/ч.
  • Никель хлористый – 21, натрий уксуснокислый – 10, натрия гипофосфит – 24 (pH – 5,2). 97 °С, до 60 мкм/ч.
  • Никель хлористый – 30, кислота уксусная – 15, свинца сульфид – 10–15, натрия гипофосфит – 15 (pH – 4,5). 85–87 °С, 12–15 мкм/ч.
  • Никель хлористый – 30, аммоний хлористый – 30, натрий янтарно-кислый – 100, аммиак (25 % раствор) – 35, натрия гипофосфит – 25 (pH – 8–8,5). 90 °С, 8–12 мкм/ч.
  • Никель хлористый – 45, аммоний хлористый – 45, натрий лимоннокислый – 45, натрия гипофосфит – 20 (pH – 8,5). 90°С, 18–20 мкм/ч.
  • Никель сернокислый – 30, аммоний сернокислый – 30, натрия гипофосфит – 10 (pH – 8,2–8,5). 85 °С, 15–18 мкм/ч.
  • Никель хлористый – 45, аммоний хлористый – 45, натрий уксуснокислый – 45, натрия гипофосфит – 20 (pH – 8–9). 88–90 °С, 18–20 мкм/ч.

По истечении нужного времени изделие промывают в воде, содержащей небольшое количество распущенного мела, затем просушивают и полируют. Полученное таким способом покрытие сталь и железо держат достаточно прочно.

В основе химического процесса никелирования лежит реакция, при которой никель восстанавливается из раствора солей на его основе в присутствии гипофосфита натрия и при помощи остальных химических реактивов. Применяемые составы делят на щелочные (уровень pH превышает 6,5) и кислые (показатель рН составляет 4–6,5). Последние лучше использовать для обработки черных металлов, меди, латуни, а щелочные предназначены для никелирования .

Использование кислых составов позволяет получать на полированном изделии более гладкую, равномерную поверхность, чем с помощью щелочных. У кислых растворов есть и другая немаловажная особенность – вероятность их саморазряда при превышении значений рабочей температуры меньше, чем у щелочных. Никелирование, своими руками выполненное, с использованием щелочных составов гарантирует более прочное и надежное сцепление слоя никеля с металлом, на который произведено его нанесение.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции