Вконтакте Facebook Twitter Лента RSS

Большая энциклопедия нефти и газа. Ядерный синтез вместо расщепления (путь спасения для человечества?)

​Ученые Принстонской лаборатории физики плазмы предложили идею самого долговечного устройства для ядерного синтеза, которое сможет работать более 60 лет. В данный момент это трудноосуществимая задача: ученые бьются над тем, чтобы заставить термоядерный реактор проработать в течение нескольких минут - а тут годы. Несмотря на сложность, строительство термоядерного реактора - одна из самых перспективных задач науки, которая может принести огромную пользу. Рассказываем, что нужно знать о термоядерном синтезе.

1. Что такое термоядерный синтез?

Не пугайтесь этого громоздкого словосочетания, на деле все довольно просто. Термоядерный синтез - это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких - это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

2. Зачем нам термоядерный синтез?

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях - можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Поэтому ученые учатся проводить термоядерные реакции.

Исследования термоядерного синтеза и строительство реакторов позволяют расширить высокотехнологичное производство, которое полезно и в других сферах науки и хай-тека.

3. Какие бывают термоядерные реакции?

Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей).

Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций.

Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

4. Что нужно для управляемой термоядерной реакции?

Удержать плазму!

Непонятно? Сейчас поясним.

Во-первых, атомные ядра. В ядерной энергетике используются изотопы - атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) - радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода - протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп - бор-11. 80% бора на Земле - это необходимый ядерщикам изотоп.

Во-вторых, очень высокая температура. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму - это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К - это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.

5. Какие реакции наиболее перспективны?

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Вот как выглядят самые интересные реакции.

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV) - реакция дейтерий-тритий.

2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%

2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50% - это так называемое монотопливо из дейтерия.

Реакции 1 и 2 чреваты нейтронным радиоактивным загрязнением. Поэтому наиболее перспективны "безнейтронные" реакции.

3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV) - дейтерий реагирует с гелием-3. Проблема в том, что гелий-3 чрезвычайно редок. Однако безнейтронный выход делает эту реакцию перспективной.

4) p+ 11 B -> 3 4 He + 8.7 MeV - бор-11 реагирует с протием, в результате получаются альфа-частицы, которые можно поглотить алюминиевой фольгой.

6. Где провести такую реакцию?

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается - таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках.

Импульсные системы. В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой. В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки - простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки. В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы.

7. Кто сейчас учится проводить термоядерные реакции?

Многие страны строят свои термоядерные реакторы. Свои экспериментальные реакторы есть в Казахстане, Китае, США и Японии. Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X.

Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция). Его строительство предполагалось закончить в 2016 году, однако размеры необходимого финансового обеспечения выросли, а сроки экспериментов сдвинулись на 2025 год. В деятельности ИТЭР участвует Евросоюз, США, Китай, Индия, Япония, Южная Корея и Россия . Основную долю в финансировании играет ЕС (45%), остальные участники поставляют высокотехнологичное оборудование. В частности, Россия производит сверхпроводниковые материалы и кабели, радиолампы для нагрева плазмы (гиротроны) и предохранители для сверхпроводящих катушек, а также компоненты для сложнейшей детали реактора - первой стенки, которая должна выдержать электромагнитные силы, нейтронное излучение и излучение плазмы.

8. Почему мы до сих пор не пользуемся термоядерными реакторами?

Современные установки токамак - не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Дело в том, что ученые пока не научились удерживать плазму в реакторе на длительный срок.

На данный момент одним из самых больших достижений в области ядерного синтеза считается успех немецких ученых, которым удалось нагреть водородный газ до 80 миллионов градусов по Цельсию и поддерживать облако плазмы водорода в течение четверти секунды. А в Китае водородную плазму нагрели до 49.999 миллионов градусов и продержали ее 102 секунды. Российским ученым из (Институт ядерной физики имени Г. И. Будкера, Новосибирск) удалось добиться стабильного нагрева плазмы до десяти миллионов градусов Цельсия. Однако недавно американцы предложили способ удержания плазмы в течение 60 лет - и это внушает оптимизм.

Кроме того, ведутся споры относительно рентабельности термоядерного синтеза в промышленности. Неизвестно, покроют ли выгоды от производства электроэнергии затраты на термоядерный синтез. Предлагается экспериментировать с реакциями (например, отказаться от традиционной реакции дейтерий-тритий или монотоплива в пользу других реакций), конструкционными материалами - а то и отказаться от идеи промышленного термоядерного синтеза, используя лишь его для отдельных реакций в реакциях деления. Однако ученые все равно продолжают эксперименты.

9. Безопасны ли термоядерные реакторы?

Относительно. Тритий, который используется в термоядерных реакциях, радиоактивен. Кроме того, нейроны, выделяющиеся в результате синтеза, облучают конструкцию реактора. Сами элементы реактора покрываются радиоактивной пылью из-за воздействия плазмы.

Тем не менее, термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Радиоактивных веществ в реакторе относительно мало. Кроме того, сама конструкция реактора предполагает отсутствие "дыр", через которые может просочиться радиация. Вакуумная камера реактора должна быть герметичной, иначе реактор просто не сможет работать. При строительстве термоядерных реакторов применяются испытанные ядерной энергетикой материалы, а в помещениях поддерживается пониженное давление.

  • Когда появятся термоядерные электростанции?

    Ученые чаще всего говорят, что-то вроде “через 20 лет мы решим все принципиальные вопросы”. Инженеры из атомной индустрии говорят про вторую половину 21 века. Политики рассуждают про море чистой энергии за копейки, не утруждая себя датами.

  • Как ученые ищут темную материю в недрах Земли

    Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. ​Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.

  • Что мешает развитию внутреннего рынка радиационных технологий?

    ​Ученые из институтов СО РАН, побывавшие в странах Юго-Восточной Азии, рассказывали о том, как простые продавцы рыбы на тамошних базарах с помощью нехитрой китайской "технологии" продлевали сроки хранения своего товара.

  • Супер-фабрика С-тау

    ​В программе ОТР "Большая наука. Великое в малом" директор Института ядерной физики имени Г. И. Будкера СО РАН академик Павел Логачев рассказал о том, какую роль в развитии научных исследований играет "Фабрика С-тау" и чем обусловлено ее название.

  • Управляемый термоядерный синтез - интереснейший физический процесс, который (пока в теории) может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома - выделение из него энергии в ядерных реакторах в процессе распада - термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов. Особые надежды возлагают на реактор ИТЭР, на создание которого затратили безумное количество средств. Скептики, однако, делают ставку на разработки частных корпораций.

    В 2018 году ученые сообщили суровую новость: несмотря на беспокойство на тему глобального потепления, за счет угля было выработано 38% мировой электроэнергии в 2017 году - то есть, ровно столько же, сколько и при появлении первых тревожных предупреждений о климате 20 лет назад. Хуже того, выбросы парникового газа выросли на 2,7% в прошлом году - это крупнейшее увеличение за семь лет. Такой застой привел к тому, что даже политики и экологи начали задумываться о том, что нам нужно больше ядерной энергии.

    В детстве я любил читать журнал «Наука и Жизнь», в деревне лежала подшивка начиная с 60-х годов. Там часто рассказывали про термоядерный синтез в радостном ключе - вот уже почти, и оно будет! Многие страны, чтобы успеть на раздачу бесплатной энергии строили у себя Токамаки (и настроили их суммарно 300 штук по всему миру).

    Годы шли… Сейчас 2013-й год, а человечество до сих пор получает бОльшую часть энергии от сжигания угля, как в 19-м веке. Почему так получилось, что мешает создать термоядерный реактор, и чего нам ждать в будущем - под катом.

    Теория

    Ядро атома, как мы помним, состоит в первом приближении из протонов и нейтронов (=нуклонов). Для того, чтобы от атома оторвать все нейтроны и протоны - нужно затратить определенную энергию - энергию связи ядра. Эта энергия отличается у различных изотопов, и естественно, при ядерных реакциях баланс энергии должен сохраняться. Если построить график энергии связи для всех изотопов (из расчета на 1 нуклон), получим следующее:


    Отсюда мы видим, что получать энергию мы можем или разделяя тяжелые атомы (вроде 235 U), или соединяя легкие.

    Наиболее реалистичные и интересные в практическом отношении следующие реакции синтеза:

    1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV)
    2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%
    2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50%
    3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV)
    4) p+ 11 B -> 3 4 He + 8.7 MeV

    В этих реакциях используется Дейтерий (D) - его можно получать прямо из морской воды, Тритий (T) - радиоактивный изотоп водорода, сейчас его получают как отход на обычных ядерных реакторах, можно специально производить из лития. Гелий-3 - вроде-бы на Луне, как мы все уже знаем. Бор-11 - природный бор на 80% состоит из бора-11. p (Протий, атом водорода) - обычный водород.

    Для сравнения, при делении 235 U выделяется ~202.5 MeV энергии, т.е. гораздо больше чем при реакции синтеза из расчета на 1 атом (но из расчета на килограмм топлива - конечно термоядерное топливо дает больше энергии).

    По реакциям 1 и 2 - получается много очень высокоэнергетических нейтронов, которые всю конструкцию реактора делают радиоактивной. А вот реакции 3 и 4 - «без-нейтронные» (aneutronic) - не дают наведенной радиации. К сожалению, побочные реакции все равно остаются, например из реакции 3 - дейтерий будет и сам с собой реагировать, и небольшое нейтронное излучение все-же будет.

    Реакция 4 интересна тем, что в результате получаем 3 альфа-частицы, с которых теоретически можно напрямую энергию снимать (т.к. они фактически представляют собой движущиеся заряды = ток).

    В общем, интересных реакций достаточно. Вопрос лишь в том, насколько просто их осуществить в реальности?

    О сложности проведения реакции Человечество относительно легко освоило деление 235 U: никакой сложности тут нет - поскольку нейтроны не обладают зарядом, они могут буквально «проползать» сквозь ядро даже с очень маленькой скоростью. В большинстве реакторов деления и используются как раз такие, тепловые нейтроны - у которых скорость движения сравнима со скоростью теплового движения атомов.

    А вот при реакции синтеза - у нас есть 2 ядра имеющие заряд, и они отталкиваются друг от друга. Для того, чтобы сблизить их на нужное для реакции расстояние - нужно, чтобы они двигались с достаточной скоростью. Скорости такой можно либо достичь в ускорителе (когда все атомы в результате двигаются с одной оптимальной скоростью), или нагреванием (когда атомы летают как попало в случайных направлениях и случайной скоростью).

    Вот график, показывающий скорость реакции (сечение) в зависимости от скорости (=энергии) сталкивающихся атомов:

    Вот то же, но построенное от температуры плазмы, с учетом того, что атомы там летают со случайной скоростью:


    Сразу видим, что реакция D+T - самая «легкая» (ей нужны жалкие 100 миллионов градусов), D+D - примерно в 100 раз медленее при тех же температурах, D+ 3 He идет быстрее чем конкурирующая D+D только при температурах порядка 1 млрд градусов.

    Таким образом, только реакция D+T хотя бы отдаленно доступна человеку, со всеми её недостатками (радиоактивность трития, сложности с его получением, наведенная нейтронами радиация).

    Но как вы понимаете, взять и нагреть что-то до ста миллионов градусов и оставить реагировать не выйдет - любые нагретые предметы излучают свет, и таким образом быстро остывают. Плазма нагретая до сотни миллионов градусов - светит в рентгеновском диапазоне, и что самое печальное - она прозрачна для него. Т.е. плазма с такой температурой фатально быстро остывает, и чтобы поддерживать температуру нужно постоянно вкачивать гигантскую энергию на поддержание температуры.

    Впрочем, из-за того, что в термоядерном реакторе газа очень мало (например в ITER - всего пол грамма), все получается не так плохо: чтобы нагреть 0.5г водорода до 100 млн градусов нужно потратить примерно столько же энергии, сколько для нагревания 186 литров воды на 100 градусов.

    Проект завершился 30 сентября 2012 года. Оказалось, в компьютерной модели были неточности. По новой оценке, достигнутая в NIF мощность импульса 1.8 мегаджоуля - 33-50% от требуемой, чтобы выделилось столько же энергии, сколько было затрачено.

    Sandy Z-machine Идея такая: возьмем большую кучу высоковольтных конденсаторов, и резко разрядим их через тоненькие вольфрамовые проволочки в центре машины. Проволочки мгновенно испаряются, через них продолжает течь огромный ток в 27 миллионов ампер на протяжении 95 наносекунд. Плазма, нагретая до миллионов и миллиардов(!) градусов - излучает рентгеновское излучение, и обжимает им капсулу с дейтерий-тритиевой смесью в центре (энергия импульса рентгеновского излучения - 2.7 мегаджоуля).

    Планируется апгрейд системы с использованием российской силовой установки (Linear Transformer Driver - LTD). В 2013-м году ожидаются первые тесты, в которых получения энергия сравнится с затрачиваемой (Q=1). Возможно, у этого направления в будущем появится шанс сравниться и превзойти токамаки.

    Dense Plasma Focus - DPF - «схлопывает» бегущую по электродам плазму с получением гигантских температур. В марте 2012 на установке, действующей по этому принципу была достигнута температура 1.8 млрд градусов.

    Levitated Dipole - «вывернутый» токамак , в центре вакуумной камеры висит торообразный сверхпроводящий магнит который и удерживает плазму. В такой схеме плазма обещает быть стабильной сама по себе. Но финансирования у проекта сейчас нет, похоже непосредственно реакцию синтеза на установке не проводили.

    Farnsworth–Hirsch fusor Идея проста - размещаем две сферические сетки в вакуумной камере наполненной дейтерием, или дейтерий-тритиевой смесью, прикладываем между ними потенциал в 50-200 тысяч вольт. В электрическом поле атомы начинают летать вокруг центра камеры, иногда сталкиваясь между собой.

    Выход нейтронов есть, но он довольно мал. Большие потери энергии на тормозное рентгеновское излучение, внутренняя сетка быстро раскаляется и испаряется от столкновений с атомами и электронами. Хотя конструкция интересна с академической точки зрения (собрать её может любой студент), КПД генерации нейтронов намного ниже линейных ускорителей.

    Polywell - хорошие напоминание о том, что не все работы по термоядерному синтезу публичны. Работа финансировалась ВМФ США, и была засекречена, пока не были получены отрицательные результаты.

    Идея - развитие Farnsworth–Hirsch fusor. Центральный отрицательный электрод, с которым было больше всего проблем, мы заменяем облаком электронов, удерживаемых магнитным полем в центре камеры. Все тестовые модели имели обычные, а не сверхпроводящие магниты. Реакция давала единичные нейтроны. В общем, никакой революции. Возможно, увеличение размеров и сверхпроводящие магниты и изменили бы что-то.

    Мюонный катализ - радикально отличающаяся идея. Берем отрицательно-заряженный мюон, и заменяем им электрон в атоме. Поскольку мюон в 207 раз тяжелее электрона - в молекуле водорода 2 атома будут намного ближе друг к другу, и произойдет реакция синтеза. Единственная проблема - если в результате реакции образуется гелий (шанс ~1%), и мюон улетит с ним - больше в реакциях он участвовать не сможет (т.к. гелий не образует химического соединения с водородом).

    Проблема тут в том, что генерация мюона на данный момент требует больше энергии, чем может получится в цепочке реакций, и таким образом пока энергию тут не получить.

    «Холодный» термоядерный синтез (сюда не включен «холодный» мюонный катализ) - давно является пастбищем псевдоученых. Научно подтвержденных и независимо повторяемых положительных результатов нет. А сенсации на уровне желтой прессы были уже не раз и до E-Cat-а Андреа Росси.

    Авария на японской станции Фукусима во второй раз продемонстрировала всему миру опасность атомной энергетики. В странах Европы прошли демонстрации против использования атомных станций. И все же, нет оснований считать, что АЭС больше не будут строиться. Жители Земли потребляют все больше и больше энергии. Для некоторых регионов, где запасы природного угля, нефти и газа минимальны, атомная энергия необходима. К сожалению, альтернативные источники энергии, такие как энергия солнечного света, ветра, волн и т.д. не способны принципиально заменить огромное количество потребляемой человечеством энергии (16 ТВт). Их доля в мировом производстве энергии пока составляет всего 0,5%.

    Между тем, современный мир стоит перед очень серьезным энергетическим кризисом. Проблема связана с тем, что по всем серьезным прогнозам запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (программа CCS) для предотвращения серьезных изменений в климате планеты.

    Сейчас крайне необходим новый мощный источник энергии. Настало время прорыва. Иначе человечество может само себя уничтожить в борьбе за оставшиеся под землей запасы нефти и газа.

    Самой серьезной альтернативой современным источникам энергии ученые считают управляемый термоядерный синтез.

    Ядерный синтез, являющийся основой существования Солнца и звезд, потенциально представляет собой неистощимый источник энергии для развития вселенной вообще.

    Эксперименты, проводимые в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества, но и гораздо большее количество энергии.

    Пример термоядерной реакции — дейтерий + тритий

    Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

    Именно эту реакцию предполагается использовать в будущих термоядерных реакторах. Но осуществить эту реакцию и сделать ее управляемой очень сложно. Для инициирования (зажигания) реакции синтеза необходимо нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов Цельсия, что примерно в десять раз выше температуры в центре Солнца. При этой температуре наиболее «энергетические» дейтроны и тритоны (ядра дейтерия и трития) сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

    Осуществление процесса ядерного синтеза в лаборатории связано с очень сложными проблемами. Для решения задачи нагрева и удержания газовой смеси ядер D и T были придуманы «магнитные бутылки», получившие название «Токамак» , которые предотвращают взаимодействие плазмы со стенками реактора. Началом современной эпохи в изучении возможностей термоядерного синтеза следует считать 1969 год, когда на российской установке Токамак Т3 в плазме объемом около 1 м 3 была достигнута температура 3 10 6 °C. После этого ученые во всем мире признали конструкцию токамака наиболее перспективной для магнитного удержания плазмы. Уже через несколько лет было принято смелое решение о создании установки JET (Joint European Torus) со значительно большим объемом плазмы (~100 м 3). Эта установка начала работать в 1983 году и остается пока крупнейшим в мире токамаком, обеспечивающим нагрев плазмы до температуры 150 10 6 °C.

    В настоящее время во Франции начинается строительство международного экспериментального термоядерного реактора ITER. Расшифровывается аббревиатура как International Tokamak Experimental Reactor, но в настоящее время название ITER официально не считается аббревиатурой, а связывается с латинским словом iter — путь.

    На рисунке - проект строительства реактора ITER в местечке Кадараш, Франция

    Задачи, стоящие на пути создания термоядерных реакторов и преимущества ядерной энергетики очень подробно и доступно для понимания были изложены в лекции «На пути к термоядерной энергетике», прочитанной председателем Совета ITER Кристофером Ллуэллин-Смитом в ФИАНе. (http:///elementy.ru/lib/430807)

    ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергетических нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и разрушают материалы, из которых он создан. Вторая основная проблема состоит в обеспечении высокой прочности конструкционных материалов реактора при длительной (в течение нескольких лет) бомбардировке нейтронами и под воздействием потока тепла. Третья и, возможно, самая главная проблема состоит в обеспечении высокой надежности работы. Таким образом, проектирование и постройка термоядерных станций требуют от физиков и инженеров решения целого ряда разнообразных и очень сложных технологических задач.

    Однако, несмотря на все сложности, проблема стоит того, чтобы ей заниматься самым серьезным образом. Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Например, количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 ГВт составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

    Дейтерий является устойчивым изотопом водорода. Примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

    Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO 2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

    Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

    Термоядерная энергетика не только обещает человечеству, в принципе, возможность производства огромного количества энергии в будущем (без выбросов CO 2 и без загрязнения атмосферы), но и обладает повышенной безопасностью. Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных происшествий или аварий. Кроме того, загрузка «топливом» должна производиться непрерывно, что позволяет легко останавливать ее работу, не говоря уже о том, что в случае аварии и резкого изменения условий окружения термоядерное «пламя» должно просто погаснуть.

    В чем состоят связанные с ядерной энергетикой опасности? Во-первых, стоит отметить, что оболочка реактора при длительном нейтронном облучении может стать радиоактивной. Однако при подборе для оболочки материалов с заданными свойствами можно обеспечить распад радиоактивных продуктов с периодом полураспада порядка 10 лет, а полная замена всех компонентов могла бы осуществляться через 100 лет. В случае полного отказа контура охлаждения радиоактивность стенок будет продолжать выделять тепло, но максимальная температура будет значительно ниже того значения, при котором установка расплавится.

    Во-вторых, тритий является радиоактивным и имеет относительно небольшой период полураспада (12 лет). Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом примерно как десять почтовых марок). Поэтому, даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития, например, при землетрясении и падении самолета на станцию), в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

    Основное препятствие на пути развития исследований в области ядерного синтеза состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и исследовать в малых размерах, поскольку для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

    За последние два десятилетия наблюдался и значительный прогресс в теоретическом понимании поведения плазмы. В этой области необходимо отметить два результата, имеющих особую важность в рассматриваемых задачах:

    1. Была обнаружена способность горячей плазмы (предсказанная ранее в лаборатории Culham, Великобритания) к самогенерации собственного тока, что получило название «зашнуровки» плазмы. Например, можно ожидать, что примерно 80% от тока величиной 15 MA, необходимого для удержания плазмы в реакторе ITER, будет возникать на основе этого эффекта, в результате чего поддержание рабочего режима реактора потребует намного меньше энергии, а само управление его работой станет гораздо более простым.

    2. В Институте физики плазмы в Гархинге (Garching, Германия) в экспериментах по термоядерному слиянию наблюдался режим «высокого удержания», позволяющий значительно повысить давление в системе (то есть увеличить эффективность работы установки) при некоторых значениях магнитного поля в установке.

    Реактор ITER создается консорциумом, в который входят Европейское Сообщество, Япония, Россия, США, Китай, Южная Корея и Индия. Общая численность населения этих стран составляет около половины всего населения Земли, так что проект можно назвать глобальным ответом на глобальный вызов. Основные компоненты и узлы реактора ITER уже созданы и испытаны, а строительство уже начато в местечке Кадараш (Франция). Запуск реактора запланирован на 2019 год, а получение дейтерий-водородной плазмы — на 2026 год, так как ввод реактора в действие требует длительных и серьезных испытаний для плазмы из водорода и дейтерия.

    Как сказал Кристофер Ллуэллин-Смит, председатель Совета ИТЭР: «Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но я лично полагаю, что вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.»

    На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству» . Возможно, это время пришло.

    Из четырёх основных источников ядерной энергии в настоящее время удалось довести до промышленной реализации только два: энергия радиоактивного распада утилизируется в источниках тока, а цепная реакция деления - в атомных реакторах. Третий источник ядерной энергии - аннигиляция элементарных частиц пока не вышел из области фантастики. Четвертый же источник - управляемый термоядерный синтез, УТС, находится на повестке дня. Этот источник по своему потенциалу хотя и меньше третьего, но существенно превышает второй.

    Термоядерный синтез в лабораторных условиях осуществить достаточно просто, но добиться воспроизводства энергии до сих пор не удалось. Однако работы в этом направлении ведутся, отрабатываются и радиохимические методики, в первую очередь - технологии получения тритиевого топлива для установок УТС.

    В данной главе рассмотрены некоторые радиохимические аспекты термоядерного синтеза и обсуждены перспективы использования установок для УТС в атомной энергетике.

    Управляемый термоядерный синтез - реакция слияния лёгких атомных ядер в более тяжёлые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. В отличие от взрывного термоядерного синтеза (используемого в водородной бомбе) носит управляемый характер. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться -Н и 3 Н, а в более отдалённой перспективе 3 Не и “В.

    Надежды на управляемый термоядерный синтез связаны с двумя обстоятельствами: i) полагают, что звезды существует за счёт стационарной термоядерной реакции, и 2) неконтролируемый термоядерный процесс удалось довольно просто реализовать во взрыве водородной бомбы. Кажется, нет никаких принципиальных препятствий для поддержания управляемой реакции ядерного синтеза. Однако интенсивные попытки реализовать в лабораторных условиях УТС с получением энергетического выигрыша окончились полным провалом.

    Тем не менее, сейчас УТС рассматривается как важное технологическое решение, направленное на замену ископаемого топлива в производстве энергии. Всемирная потребность в энергии требующая увеличения производства электроэнергии и исчерпаемость невобновляемого сырья стимулирует поиск новых решений.

    В термоядерных реакторах используется энергия, выделяющаяся при слиянии лёгких атомных ядео. Напоимео:

    Реакция слияния ядер трития и дейтерия является перспективной для осуществления управляемого термоядерного синтеза, так как ее сечение даже при низких энергиях достаточно велико. Эта реакция обеспечивает удельную теплотворную способность 3,5-ю 11 Дж/г. Основная реакция D+T=n+a имеет наибольшее сечение о т ах =5 барн в резонансе при энергии дейтронов Е пШ х= 0,108 МэВ, по сравнению с реакциями D+D=n+3He a,„ a *=0,i05 барн; Е тах = 1,9 МэВ, D+D=p+T о тах = 0,09 барн; Е тах = 2,0 Мэв, а также с реакцией 3He+D=p+a a m ах=0,7 барн; Еотах= 0,4 МэВ. В последней реакции выделяется 18,4 МэВ. В реакции (3) сумма энергий п+а равна 17,6 МэВ, энергия образующихся нейтронов?„=14,1 МэВ; а энергия возникших а-частиц 3,5 МэВ. Если в реакциях T(d,n)a и:} He(d,p)a резонансы довольно узкие, то в реакциях D(d,n)3He и D(d,p)T имеют место очень широкие резонансы с большими значениями сечений в области от 1 до ю МэВ и линейным ростом от 0,1 МэВ до 1 МэВ.

    Замечание. Проблемы легко зажигаемого DT топлива заключаются в том, что тритий не встречается в природе и его надо получать из лития в бридерном бланкете термоядерного реактора; тритий радиоактивен (Ti/ 2 =12,6 лет), в системе DT - реактора содержится от ю до юо кг трития; 8о% энергии в реакции DT выделяется с 14-МэВ-ными нейтронами, которые наводят искусственную радиоактивность в конструкциях реактора и производят радиационные разрушения.

    На рис. 1 представлены энергетические зависимости сечений реакций (1 - з). Графики для сечений реакций (1) и (2) практически одинаковые - при росте энергии сечение возрастает и при больших энергиях вероятность реакции стремится к постоянному значению. Сечение реакции (3) сначала возрастает, достигает максимума ю барн при энергиях порядка 90 МэВ, а затем с ростом энергии уменьшается.

    Рис. 1. Сечения некоторых термоядерных реакций как функция энергии частиц в системе центра масс: 1 - ядерная реакция (3); 2 - реакции (1) и (2).

    Вследствие большого сечения рассеяния при бомбардировке ядер трития ускоренными дейтронами энергетический баланс процесса термоядерного синтеза по D - Т реакции может быть отрицательным, т.к. на ускорение дейтронов затрачивается больше энергии, чем выделяется при синтезе. Положительный энергетический баланс возможен, если бомбардирующие частицы после упругого столкновения будут способны вновь участвовать в реакции. Для преодоления электрического отталкивания ядра должны обладать большой кинетической энергией. Эти условия могут быть созданы в высокотемпературной плазме, в которой атомы или молекулы находятся в полностью ионизированном состоянии. Например, D-T - реакция начинает протекать только при температурах выше ю 8 К. Лишь при таких температурах выделяется больше энергии на единицу объёма и в единицу" времени, чем затрачивается. Поскольку на одну реакцию синтеза D-Т приходится ~Ю5 обычных столкновений ядер, проблема УТС состоит в решении двух задач: нагрева вещества до необходимых температур и его удержания на время, достаточное для «сжигания» заметной части термоядерного топлива.

    Считается, что управляемый термоядерный синтез может быть реализован при выполнении критерия Лоусона (лт>10‘4 с см-з, где п - плотность высокотемпературной плазмы, т - время удержания её в системе).

    При выполнении этого критерия энергия, выделяющаяся при УТС, превышает энергию, вводимую в систему.

    Плазму необходимо удерживать внутри заданного объёма, т. к. в свободном пространстве плазма моментально расширяется. Вследствие высоких температур плазму нельзя поместить в резервуар из какого-либо


    материала. Для удержания плазмы приходится использовать магнитное поле высокой напряженности, которое создают с помощью сверхпроводящих магнитов.

    Рис. 2. Принципиальная схема токамака.

    Если не ставить целью получения энергетического выигрыша, то в лабораторных условиях УТС осуществить достаточно просто. Для этого достаточно опустить в канал любого медленного реактора, работающего на реакции деления урана, ампулу с дейтеридом лития (можно использовать литий с природным изотопным составом (7% 6 Li), но лучше, если он обогащён стабильным изотопом 6 Li). Под действием тепловых нейтронов идёт следующая ядерная реакция:

    В результате этой реакции, возникают «горячие» атомы трития. Энергии атома отдачи трития (~з МэВ) достаточно для протекания реакции взаимодействия трития с находящимся в LiD дейтерием:

    Для энергетических целей этот метод не годится: затраты энергии на процесс превышают выделяющуюся энергию. Поэтому" приходится искать друтие варианты осуществления УТС, варианты, обеспечивающие большой энергетический выигрыш.

    УТС с энергетическим выигрышем пытаются реализовать или в квазистационарных (т>1 с, тг >юи см "О, или в импульсных системах (t*io -8 с, п>ю 22 см*з). В первых (токамак, стелларатор, зеркальная ловутпка и т.п.) удержание и термоизоляция плазмы осуществляются в магнитных полях различной конфигурации. В импульсных системах плазма создаётся при облучении твёрдой мишени (крупинки смеси дейтерия и трития) сфокусированным излучением мощного лазера или электронными пучками: при попадании в фокус пучка малых твёрдотельных мишеней происходит последовательная серия термоядерных микровзрывов.

    Среди различных камер для удержания плазмы перспективной является камера с тороидальной конфигурацией. При этом плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. В токамаке ток, индуцированный в плазме, является как бы вторичной обмоткой трансформатора. Магнитное поле, удерживая плазму, создаётся как за счёт тока, протекающего через обмотку вокруг камеры, так и за счёт тока, индуцированного в плазме. Для получения устойчивой плазмы используется внешнее продольное магнитное поле.

    Термоядерный реактор - устройство для получения энергии за счёт реакций синтеза лёгких атомных ядер, происходящих в плазме при очень высоких температурах (>ю 8 К). Основное требование, которому должен удовлетворять термоядерный реактор, заключается в том, чтобы энерговыделение в результате

    термоядерных реакций с избытком компенсировало затраты энергии от внешних источников на поддержание реакции.

    Рис. з. Основные компоненты реактора для управляемого термоядерного синтеза.

    Термоядерный реактор типа ТО- КАМАК (Тороидальная Камера с Магнитными Катушками) состоит из вакуумной камеры, образующей канал, где циркулирует плазма, магнитов, создающих поле и систем нагрева плазмы. К этому прилагаются вакуумные насосы, постоянно откачивающие газы из канала, система доставки топлива по мере его выгорания и дивертор - система, через которую полученная в результате термоядерной реакции энергия выводится из реактора. Тороидальная плазма находится в вакуумной оболочке. а-Частицы, образующиеся в плазме в результате термоядерного синтеза и находящиеся в ней, повышают её температуру. Нейтроны через стенку вакуумной камеры проникают в зону бланкета, содержащего жидкий литий, или соединение лития, обогащённое по 6 Li. При взаимодействии с литием кинетическая энергия нейтронов превращается в тепло, одновременно генерируется тритий. Бланкет помещён в специальную оболочку, которая защищает магнит от вылетающих нейтронов, у- излучения и потоков тепла.

    В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом у него появляется собственное магнитное поле - сгусток плазмы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками.

    Дивертор - совокупность устройств (специальные полоидальные магнитные катушки; контактирующие с плазмой панели - нейтрализаторы плазмы), с помощью которых область непосредственного контакта стенки с плазмой максимально удалена от основной горячей плазмы. Служит для отвода тепла из плазмы в виде потока заряженных частиц и для откачки нейтрализованных на диверторных пластинах продуктов реакции: гелия и протия. Очищает плазму от загрязняющих примесей, мешающих протеканию реакции синтеза.

    Термоядерный реактор характеризуется коэффициентом усиления мощности, равным отношению тепловой мощности реактора к мощности затрат на её производство. Тепловая мощность реактора складывается:

    • - из мощности, выделяемой при термоядерной реакции в плазме;
    • - из мощности, которая вводится в плазму для поддержания температуры горения термоядерной реакции или стационарного тока в плазме;
    • - из мощности, выделяющейся в бланкете - оболочке, окружающей плазму, в которой утилизуется энергия термоядерных нейтронов и которая служит защитой магнитных катушек от радиационных воздествий. Бланкет термоядерного реактора - одна из основных частей термоядерного реактора, специальная оболочка, окружающая плазму, в которой происходят термоядерные реакции и которая служит для утилизации энергии термоядерных нейтронов.

    Бланкет со всех сторон охватывает кольцо плазмы, и родившиеся при D-Т синтезе основные носители энергии - 14-МэВ-ные нейтроны - отдают её бланкет}", нагревая его. В бланкете находятся теплообменники, по которым пропускают воду. При работе токамака в составе электростанции пар вращает паровую турбину, а она - ротор генератора.

    Основная задача бланкета - съём энергии, трансформация её в тепло и передача его на электрогенераторные системы, а также защита операторов и окружающей среды от ионизирующего излучения, создаваемого термоядерным реактором. За бланкетом в термоядерном реакторе располагается слой радиационной защиты, функции которого заключаются в дальнейшем ослаблении потока нейтронов и образующихся при реакциях с веществом у-квантов для обеспечения работоспособности электромагнитной системы. Затем следует биологическая защита, за которой может работать персонал станции.

    «Активный» бланкет - бридер, предназначен для наработки одного из компонентов термоядерного топлива. В реакторах, расходующих тритий, в бланкет включают бридерные материалы (соединения лития), призванные обеспечить эффективную наработку трития.

    При работе термоядерного реактора на дейтерий-тритиевом топливе необходимо пополнять количество топлива (D+T) в реакторе и удалять 4Не из плазмы. В результате реакций в плазме происходит выгорание трития, а основная часть энергии синтеза передаётся нейтронам, для которых плазма прозрачна. Это приводит к необходимости размещения между плазмой и электромагнитной системой специальной зоны, в которой воспроизводится выгорающий тритий и происходит поглощение основной части энергий нейтронов. Такая зона и называется бридерным бланкетом. В нём воспроизводится сгоревший в плазме тритий.

    Тритий в бланкете можно нарабатывать, облучая литий потоками нейтронов по ядерным реакциям: 6 Li(n,a)T+4,8 МэВ и 7 Li(n,n’a) - 2,4 МэВ.

    При наработке трития из лития следует учитывать, что природный литий состоит из двух изотопов: 6 Li (7,52%) и 7 Li (92,48%). Сечение поглощения тепловых нейтронов чистым 6 Li 0=945 барн, а сечение активации по реакции (п,р) - 0,028 барн. У природного лития сечение выведения нейтронов, образующихся при делении урана, равно 1,01 барн, а сечение поглощения тепловых нейтронов о а =70,4 барн.

    Спектры энергии у-излучения при радиационном захвате тепловых нейтронов 6 Li характеризуются величинами: средняя энергия у-квантов, испускаемых на один поглощённый нейтрон, в диапазоне энергий 6^-7 МэВ =0,51 МэВ, в диапазоне энергий 7-г8 МэВ - 0,94 МэВ. Полная энергия

    В термоядерном реакторе, работающем на D-Т топливе, в результате реакции:

    у-излучения на один захват нейтрона равна 1,45 МэВ. У 7 Li сечение поглощения равно 0,047 барн, а сечение активации - 0,033 барна (при энергиях нейтронов выше 2,8 МэВ). Сечение выведения нейтронов деления LiH природного состава =1,34 барн, металлического Li - 1,57 барн, LiF - 2,43 барна.

    образуются термоядерные нейтроны, которые, покидая объём плазмы, попадают в область бланкета, содержащую литий и бериллий, где протекают следующие реакции:

    Таким образом, термоядерный реактор будет сжигать дейтерий и литий, а в результате реакций будет образовываться инертный газ гелий.

    При D-Т реакции в плазме происходит выгорание трития и образуется нейтрон с энергией 14,1 МэВ. В бланкете необходимо, чтобы этот нейтрон породил не менее одного атома трития для покрытия его потерь в плазме. Коэффициент воспроизводства трития к ("количество образующегося в бланкете трития в расчёте на один падающий термоядерный нейтрон) зависит от спектра нейтронов в бланкете, величины поглощения и утечки нейтронов. При юо% покрытии плазмы бланкетом необходимо значение к> 1,05.

    Рис. 4. Зависимости сечения ядерных реакций образования трития от энергии нейтронов: 1 - реакция 6 Li(n,t)‘»He, 2 - реакция 7 Li(n,n’,0 4 He.

    У ядра 6 Li сечение поглощения тепловых нейтронов с образованием трития очень велико (953 барн при 0,025 эВ). При низких энергиях сечение поглощения нейтронов в Li идёт по закону (l/u) и в случае природного лития достигает значения 71 барн для тепловых нейтронов. У 7 Li сечение взаимодействия с нейтронами равно всего 0,045 барн. Поэтому для повышения производительности бридера природный литий следует обогащать по изотопу 6 Li. Однако увеличение содержания 6 Li в смеси изотопов мало влияет на коэффициент воспроизводства трития: имеет место возрастание на 5% при увеличении обогащения изотопом 6 Li до 50% в смеси. В реакции 6 Li(n, Т)»Не поглотятся все замедлившиеся нейтроны. Кроме сильного поглощения в тепловой области небольшое поглощение (

    Зависимость сечения реакции 6 Li(n,T) 4 He от энергии нейтронов приведена на рис. 7. Как это характерно для многих других ядерных реакций, сечение реакции 6 Li(n,f) 4 He уменьшается по мере увеличения энергии нейтронов (за исключением резонанса при энергии 0,25 МэВ).

    Реакция с образованием трития на изотопе?Li идёт на быстрых нейтронах при энергии?„>2.8 МэВ. В этой реакции

    производится тритий и нет потери нейтрона.

    Ядерная реакция на 6 Li не может дать расширенного воспроизводства трития и только компенсирует выгоревший тритий

    Реакция на?1л приводит к появлению одного ядра трития на каждый поглощённый нейтрон и регенерации этого нейтрона, который затем поглощается при замедлении и даёт ещё одно ядро трития.

    Замечание. В природном Li коэффициент воспроизводства трития к «2. Для Li, LiFBeF 2 , Li 2 0, LiF, У^РЬвз k= 2,0; 0,95; 1,1; 1,05 и i,6, соответственно. Расплавленная соль LiF (66%) + BeF 2 (34%) носит название флайб (FLiBe ), её использование предпочтительно по условиям безопасности и уменьшения потерь трития.

    Поскольку не каждый нейтрон D-T-реакции участвует в образовании атома трития, необходимо размножить первичные нейтроны (14,1 МэВ) с помощью (п, 2н) или (п, зп)-реакции, на элементах, имеющих достаточно большое сечение при взаимодействии быстрых нейтронов, например, на у Ве, Pb, Mo, Nb и многих других материалах с Z> 25. Для бериллия порог (п, 2п) реакции 2,5 МэВ; при 14 МэВ 0=0,45 барн. В результате, в вариантах бланкета с жидким или керамическим литием (LiA10 2) возможно достижение к* 1.1+1.2. В случае окружения камеры реактора урановым бланкетом размножение нейтронов может быть существенно увеличено за счёт реакций деления и (п,2п), (п,зл) реакций.

    Замечание 1. Наведённая активность лития при облучении нейтронами практически отсутствует, так как образующийся радиоактивный изотоп 8 Li (cr-излучение с энергией 12,7 МэВ и /?-излучение с энергией ~6 МэВ) обладает весьма малым периодом полураспада - 0,875 с. Низкая активация лития и короткий период полураспада облегчают биологическую защиту установки.

    Замечание 2. Активность трития, содержащегося в бланкете термоядерного DT- реактора ~*ю 6 Ки, поэтому использование DT-топлива не исключает теоретической возможности аварии масштаба нескольких процентов от Чернобыльской (выброс составил 510 7 Ки). Выброс трития с образованием Т 2 0 может приводить к радиоактивным осадкам, попаданию трития в грунтовые воды, водоёмы, живые организмы, растения с накоплением, в конечном счёте, в продуктах питания.

    Выбор материала и агрегатного состояния бридера представляет собой серьёзную проблему. Материал бридера должен обеспечить высокий процент превращения лития в тритий и лёгкое извлечение последнего для последующей передачи в систему подготовки топлива.

    К основные функциям бридерного бланкета относятся: формирование плазменной камеры; производство трития с коэффициентом k>i; превращение кинетической энергии нейтрона в тепло; утилизация тепла, образующегося в бланкете в процессе работы термоядерного реактора; радиационная защита электромагнитной системы; биологическая защита от радиации.

    Термоядерный реактор на D-T-топливе в зависимости от материала бланкета может быть «чистым» или гибридным. Бланкет «чистого» термоядерного реактора содержит Li, в нём под действием нейтронов получается тритий и происходит усиление термоядерной реакции с 17,6 МэВ до 22,4

    МэВ. В бланкете гибридного («активного») термоядерного реактора не только производится тритий, но и имеются зоны, в которые помещается отвальный 2 з 8 и для получения 2 39Ри. При этом в бланкете выделяется энергия равная 140 МэВ на один нейтрон. Энергетическая эффективность гибридного термоядерного реактора в шесть раз выше, чем чистого. Одновременно достигается лучшее поглощение термоядерных нейтронов, что повышает безопасность установки. Однако наличие делящихся радиоактивных веществ создаёт радиационную обстановку, аналогичную существующей в ядерных реакторах деления.

    Рис. 5.

    Существуют две концепции чистого бридерного бланкета, основанные на применении жидких тритий-воспроизводящих материалов, или на применении твёрдых литий содержащих материалов. Варианты конструкций бланкетов связаны с типом выбранных теплоносителей (жидкометаллические, жидкосолевые, газовые, органические, вода) и классом возможных конструкционных материалов.

    В жидкостном варианте бланкета литий является теплоносителем, а тритий - воспроизводящим материалом. Секция бланкета состоит из первой стенки, бридерной зоны (расплавленная соль лития, рефлектора (сталь или вольфрам) и лёгкой компоненты защиты (например, гидрид титана). Основная особенность литиевого самоохлаждаемого бланкета - отсутствие дополнительного замедлителя и размножителя нейтронов. В бланкете с жидким бридером можно использовать следующие соли: Li 2 BeF 4 (Т пл = 459°), LiBeF 3 {T wx . =380°), FLiNaBe (7^=305-320°). Среди приведённых солей Li 2 BeF 4 обладает наименьшей вязкостью, но наибольшей T wl . Перспек- тина эвтектика Pb-Li и расплав FLiNaBe, который выступает ещё и в качестве самоохладителя. Размножителями нейтронов в таком бридере служат сферические гранулы Be диаметром 2 мм.

    В бланкете с твёрдым бридером в качестве бридерного материала используется литийсодержащая керамика, а размножителем нейтронов служит бериллий. В состав такого бланкета входят такие элементы, как первая стенка с коллекторами теплоносителя; зона размножения нейтронов; зона воспроизводства трития; каналы охлаждения зон размножения и воспроизводства трития; железоводная защита; элементы крепления бланкета; магистрали подвода и отвода теплоносителя и газа-носителя трития. Конструкционные материалы - ванадиевые сплавы и сталь ферритного или ферритно-мартенситного класса. Радиационная защита изготовлена из стальных листов. В качестве теплоносителя используется газообразный гелий под давлением юМПа с температурой входа 300 0 , выходная температура теплоносителя 650 0 .

    Радиохимическая задача заключается в выделении, очистке и возвращении в топливный цикл трития. При этом важным является выбор функциональных материалов для систем регенерации компонентов топлива (бридерных материалов). Материал размножителя (бридера) должен обеспечить съём энергии термоядерного синтеза, генерацию трития и эффективное его извлечение для последующей очистки и трансформации в реакторное топливо. Для этой цели требуется материал с высокой температурной, радиационной и механической стойкостью. Не менее важны и диффузионные характеристики материала, обеспечивающие высокую подвижность трития и, как следствие, хорошую эффективность извлечения трития из бридерного материала при сравнительно низких температурах.

    Рабочими веществами бланкета могут служить: керамика Li 4 Si0 4 (или Li 2 Ti0 3) - воспроизводящий материал и бериллий - размножитель нейтронов. И бридер и бериллий используются в форме слоя монодисперс- ных пэбблов (гранул с формой, близкой к сферической). Диаметры гранул Li 4 Si0 4 и Li 2 Ti0 3 варьируются в диапазонах 0.2-Ю.6 мм и о.8-м мм, соответственно, а гранулы бериллия имеют диаметр 1 мм. Доля эффективного объёма слоя гранул - 63%. Для воспроизводства трития, керамический бридер обогащают изотопом 6 Li. Типичный уровень обогащения по 6 Li: 40% для Li 4 Si0 4 и 70% для Li 2 Ti0 3 .

    В настоящее время наиболее перспективным считается метатитанат лития 1л 2 ТЮ 3 из-за сравнительно большой скорости высвобождения трития при сравнительно низких температурах (от 200 до 400 0), радиационной и химической стойкости. Было продемонстрировано, что гранулы из тита- ната лития, обогащённого до 96% 6 Li в условиях интенсивного нейтронного облучения и термических воздействий, позволяют в течение двух лет генерировать литий практически с постоянной скоростью. Извлечение трития из облучённой нейтронами керамики проводят программированным нагревом бридерного материала в режиме непрерывной откачки.

    Предполагается, что в ядерной индустрии установки термоядерного синтеза могут быть использованы по трём направлениям:

    • - гибридные реакторы, в которых бланкет содержит делящиеся нуклиды (уран, плутоний), деление которых управляется мощным потоком высокоэнергетических (14 МэВ) нейтронов;
    • - инициаторы горения в электроядерных подкритических реакторах;
    • - трансмутация долгоживущих экологически опасных радионуклидов с целью обезвреживания РАО.

    Высокая энергия термоядерных нейтронов предоставляет большие возможности выделения энергетических групп нейтронов для сжигания конкретного радионуклида в резонансной области сечений.

    © 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции