Вконтакте Facebook Twitter Лента RSS

Углекислый газ выделяется в атмосферу. Углекислый газ (СО2). Углекислый газ в природе: естественные источники

1 Человек и климат.

2 Введение.

Взаимосвязь между энергопотреблением, экономической деятельностью и поступлением в атмосферу.

Потребление энергии и выбросы углекислого газа.

3 Углерод в природе.

Изотопы углерода.

4 Углерод в атмосфере.

Атмосферный углекислый газ.

Углерод в почве.

5 Прогнозы концентрации углекислого газа в атмосфере на будущее. Основные выводы.

6 Список литературы.


Введение.

Деятельность человека достигла уже такого уровня развития, при котором её влияние на природу приобретает глобальный характер. Природные системы - атмосфера, суша, океан, - а также жизнь на планете в целом подвергаются этим воздействиям. Известно, что на протяжении последнего столетия увеличивалось содержание в атмосфере некоторых газовых составляющих, таких, как двуокись углерода (), закись азота (), метан () и тропосферный озон (). Дополнительно в атмосферу поступали и другие газы, не являющиеся естественными компонентами глобальной экосистемы. Главные из них - фторхлоруглеводороды. Эти газовые примеси поглощают и излучают радиацию и поэтому способны влиять на климат Земли. Все эти газы в совокупности можно назвать парниковыми.

Представление о том, что климат мог меняться в результате выброса в атмосферы двуокиси углерода, появилось не сейчас. Аррениус указал на то, что сжигание ископаемого топлива могло привести к увеличению концентрации атмосферного и тем самым изменить радиационный баланс Земли. В настоящие время мы приблизительно известно, какое количество поступило в атмосферу за счёт сжигания ископаемого топлива и изменений в использовании земель (сведения лесов и расширения сельскохозяйственных площадей), и можно связать наблюдаемое увеличение концентрации атмосферного с деятельностью человека.

Механизм воздействия на климат заключается в так называемом парниковом эффекте. В то время как для солнечной коротковолновой радиации прозрачен, уходящую от земной поверхности длинноволновую радиацию этот газ поглощает и излучает поглощённую энергию по всем направлениям. Вследствие этого эффекта увеличение концентрации атмосферного приводит к нагреву поверхности Земли и нижней атмосферы. Продолжающийся рост концентрации в атмосфере может привести к изменению глобального климата, поэтому прогноз будущих концентраций углекислого газа является важной задачей.

Поступление углекислого газа в атмосферу

в результате промышленных

выбросов.

Основным антропогенным источником выбросов является сжигание всевозможных видов углеродосодержащего топлива. В настоящее время экономическое развитие обычно связывается с ростом индустриализации. Исторически сложилось, что подъём экономики зависит от наличия доступных источников энергии и количества сжигаемого ископаемого топлива. Данные о развитии экономики и энергетики для большинства стран за период 1860-1973 гг. Свидетельствуют не только об экономическом росте, но и о росте энергопотребления. Тем не менее одно не является следствием другого. Начиная с 1973 года во многих странах отмечается снижение удельных энергозатрат при росте реальных цен на энергию. Недавнее исследование промышленного использования энергии в США показало, что начиная с 1920 года отношение затрат первичной энергии к экономическому эквиваленту производимых товаров постоянно уменьшалось. Более эффективное использование энергии достигается в результате совершенствования промышленной технологии, транспортных средств и проектирования зданий. Кроме того, в ряде промышленно развитых стран произошли сдвиги в структуре экономики, выразившиеся в переходе от развития сырьевой и перерабатывающей промышленности к расширению отраслей, производящих конечный продукт.

Минимальный уровень потребления энергии на душу населения, необходимый в настоящее время для удовлетворения нужд медицины, образования и рекреации, значительно меняется от региона к региону и от страны к стране. Во многих развивающихся странах значительный рост потребления высококачественных видов топлива на душу населения является существенным фактором для достижения более высокого уровня жизни. Сейчас представляется вероятным, что продолжение экономического роста и достижение желаемого уровня жизни не связаны с уровнем энергопотребления на душу населения, однако этот процесс ещё недостаточно изучен.

Можно предположить, что до достижения середины следующего столетия экономика большинства стран сумеет приспособиться к повышенным ценам на энергию, уменьшая потребности в рабочей силе и в других видах ресурсов, а также увеличивая скорость обработки и передачи информации или, возможно, изменяя структуру экономического баланса между производством товаров и предоставлением услуг. Таким образом, от выбора стратегии развития энергетики с той или иной долей использования угля или ядерного топлива в энергетической системе будет непосредственно зависеть скорость промышленных выбросов .

Потребление энергии и выбросы

углекислого газа.

Энергия не производится ради самого производства энергии. В промышленно развитых странах основная часть вырабатываемой энергии приходится на промышленность, транспорт, обогрев и охлаждение зданий. Во многих недавно выполненных исследованиях показано, что современный уровень потребления энергии в промышленно развитых станах может быть существенно снижен за счёт применения энергосберегающих технологий. Было рассчитано, что если бы США перешли, при производстве товаров широкого потребления и в сфере услуг, на наименее энергоёмкие технологии при том же объёме производства, то количество поступающего в атмосферу уменьшилось бы на 25%. Результирующее уменьшение выбросов в целом по земному шару при этом составило бы 7%. Подобный эффект имел бы место и в других промышленно развитых странах. Дальнейшего снижения скорости поступления в атмосферу можно достичь путём изменения структуры экономики в результате внедрения более эффективных методов производства товаров и усовершенствований в сфере предоставления услуг населению.

Углерод в природе.

Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным.Химические превращения органических веществ связаны со способностью атома углерода образовывать длинные ковалентные цепи и кольца. Биогеохимический цикл углерода, естественно, очень сложный, так как он включает не только функционирование всех форм жизни на Земле, но и перенос неорганических веществ как между различными резервуарами углерода, так и внутри них. Основными резервуарами углерода являются атмосфера, континентальная биомасса, включая почвы, гидросферу с морской биотой и литосферой. В течение последних двух столетий в системе атмосфера - биосфера - гидросфера происходят изменения потоков углерода, интенсивность которых примерно на порядок величины превышает интенсивность геологических процессов переноса этого элемента. По этой причине следует ограничиться анализом взаимодействий в пределах этой системы, включая почвы.

Основные химические соединения и реакции.

Известно более миллиона углеродных соединений, тысячи из которых участвуют в биологических процессах. Атомы углерода могут находиться в одном из девяти возможных состояний окисления: от +IV до -IV. Наиболее распространённое явление - это полное окисление, т.е. +IV, примерами таких соединений могут служить и . Более 99% углерода в атмосфере содержится в виде углекислого газа. Около 97% углерода в океанах существует в растворённой форме (), а в литосфере - в виде минералов. Примером состояния окисления +II является малая газовая составляющая атмосферы , которая довольно быстро окисляется до . Элементарный углерод присутствует в атмосфере в малых количествах в виде графита и алмаза, а в почве - в форме древесного угля. Ассимиляция углерода в процессе фотосинтеза приводит к образованию восстановленного углерода, который присутствует в биоте, мёртвом органическом веществе почвы, в верхних слоях осадочных пород в виде угля, нефти и газа, захоронённых на больших глубинах, и в литосфере - в виде рассеянного недоокисленного углерода. Некоторые газообразные соединения, содержащие недоокисленный углерод , в частности метан, поступают в атмосферу при восстановлении веществ, происходящем в анаэробных процессах. Хотя при бактериальном разложении образуется несколько различных газообразных соединений, они быстро окисляются, и можно считать, что в систему поступает . Исключением является метан, поскольку он также влияет на парниковый эффект. В океанах содержится значительное количество растворённых соединений органического углерода, процессы окисления которых до известны ещё недостаточно хорошо.

Изотопы углерода.

В природе известно семь изотопов углерода, из которых существенную роль играют три. Два из них - и - являются стабильными, а один - - радиоактивным с периодом полураспада 5730 лет. Необходимость изучения различных изотопов углерода обусловлена тем, что скорости переноса соединений углерода и условия равновесия в химических реакциях зависят от того, какие изотопы углерода содержат эти соединения. По этой причине в природе наблюдается различное распределение стабильных изотопов углерода. Распределение же изотопа , с одной стороны, зависит от его образования в ядерных реакциях с участием нейтронов и атомов азота в атмосфере, а с другой - от радиоактивного распада.

Углерод в атмосфере.

Тщательные измерения содержания атмосферного были начаты в 1957 году Киллингом в обсерватории Мауна-Лоа. Регулярные измерения содержания атмосферного проводятся также на ряде других станций. Из анализа наблюдений можно заключить, что годовой ход концентрации обусловлен в основном сезонными изменениями цикла фотосинтеза и деструкции растений на суше; на него также влияет, хотя и меньшей степени, годовой ход температуры поверхности океана, от которого зависит растворимость в морской воде. Третьим, и, вероятно, наименее важным фактором является годовой ход интенсивности фотосинтеза в океане. Среднее за каждый данный год содержание в атмосфере несколько выше в северном полушарии, поскольку источники антропогенного поступления расположены преимущественно в северном полушарии. Кроме того, наблюдаются небольшие межгодовые изменения содержания , которые, вероятно, определяются особенностями общей циркуляции атмосферы. Из имеющихся данных по изменению концентрации в атмосфере основное значение имеют данные о наблюдаемом в течение последних 25 лет регулярном росте содержания атмосферного . Более ранние измерения содержания атмосферного углекислого газа (начиная с середины прошлого века) были, как правило, недостаточно полны. Образцы воздуха отбирались без необходимой тщательности и не производилась оценка погрешности результатов. С помощью анализа состава пузырьков воздуха из ледниковых кернов стало возможным получить данные для периода с 1750 по 1960 год. Было также выявлено, что определённые путём анализа воздушных включений ледников значения концентраций атмосферного для 50-х годов хорошо согласуются с данными обсерватории Мауна-Лоа. Концентрация в течение 1750-1800 годов оказалась близкой к значению 280 млн., после чего она стала медленно расти и к 1984 году составляла 3431 млн..

Углерод в почве.

По разным оценкам, суммарное содержание углерода составляет около

Г С. Главная неопределённость существующих оценок обусловлена недостаточной полнотой сведений о площадях и содержании углерода в торфяниках планеты.

Более медленный процесс разложения углерода в почвах холодных климатических зон приводит к большей концентрации углерода почв (на единицу поверхности) в бореальных лесах и травянистых сообществах средних широт по сравнению с тропическими экосистемами. Однако только небольшое количество (несколько процентов или даже меньше) детрита, поступающего ежегодно в резервуар почв, остаётся в них в течение длительного времени. Большая часть мёртвого органического вещества окисляется до за несколько лет. В чернозёмах около 98% углерода подстилки характеризуется временем оборота около 5 месяцев, а 2% углерода подстилки остаются в почве в среднем в течение 500-1000 лет. Эта характерная черта почвообразовательного процесса проявляется также в том, что возраст почв в средних широтах, определяемый радиоизотопным методом, составляет от нескольких сотен до тысячи лет и более. Однако скорость разложения органического вещества при трансформации земель, занятых естественной растительностью, в сельскохозяйственные угодья совершенно другая. Например, высказывается мнение, что 50% органического углерода в почвах, используемых в сельском хозяйстве Северной Америки, могло быть потеряно вследствие окисления, так как эти почвы начали эксплуатироваться до начала прошлого века или в самом его начале.

Изменения содержания углерода в

континентальных экосистемах.

За последние 200 лет произошли значительные изменения в континентальных экосистемах в результате возрастающего антропогенного воздействия. Когда земли, занятые лесами и травянистыми сообществами, превращаются в сельскохозяйственные угодья, органическое вещество, т.е. живое вещество растений и мёртвое органическое вещество почв, окисляется и поступает в атмосферу в форме . Какое-то количество элементарного углерода может также захораниваться в почве в виде древесного угля (как продукт, оставшийся от сжигания леса) и, таким образом, изыматься из быстрого оборота в углеродном цикле. Содержание углерода в различных компонентах экосистем изменяется, поскольку восстановление и деструкция органического вещества зависят от географической широты и типа растительности.

Были проведены многочисленные исследования, имевшие своей целью разрешить существующую неопределённость в оценке изменений запасов углерода в континентальных экосистемах. Основываясь на данных этих исследований, можно прийти к выводу о том, что поступление в атмосферу с 1860 по 1980 год составило г. С и что в 1980 году биотический выброс углерода был равен г. С/год. Кроме того, возможно влияние возрастающих атмосферных концентраций и выбросов загрязняющих веществ, таких, как и , на интенсивность фотосинтеза и деструкции органического вещества континентальных экосистем. По-видимому, интенсивность фотосинтеза растёт с увеличением концентрации в атмосфере. Наиболее вероятно, что этот рост характерен для сельскохозяйственных культур, а в естественных континентальных экосистемах повышение эффективности использования воды могло бы привести к ускорению образования органического вещества.

Прогнозы концентрации углекислого

газа в атмосфере на будущее.

Основные выводы.

За последние десятилетия было создано большое количество моделей глобального углеродного цикла, рассматривать которые в данной работе не представляется целесообразным из-за того, что они в достаточной мере сложны и объёмны. Рассмотрим лишь кратко основные их выводы. Различные сценарии, использованные для прогноза содержания в атмосфере в будущем, дали сходные результаты. Ниже приведёна попытка подвести общий итог наших сегодняшних знаний и предположений, касающихся проблемы антропогенного изменения концентрации в атмосфере.

· С 1860 по 1984 год в атмосферу поступило г. За счёт сжигания ископаемого топлива, скорость выброса в настоящее время (по данным на 1984 год) равна г. С/год.

· В течение этого же периода времени поступление в атмосферу за вырубки лесов и изменения характера землепользования составило г. С, интенсивность этого поступления в настоящее время равна г. С/год.

· С середины прошлого века концентрация в атмосфере увеличилась от до млн. в 1984 году.

· Основные характеристики глобального углеродного цикла хорошо изучены. Стало возможным создание количественных моделей, которые могут быть положены в основу прогнозов роста концентрации в атмосфере при использовании определённых сценариев выброса.

· Неопределённости прогнозов вероятных изменений концентрации в будущем, получаемых на основе сценариев выбросов, значительно меньше значительно меньше неопределённостей самих сценариев выбросов.

· Если интенсивность выбросов в атмосферу в течение ближайших четырёх десятилетий останется постоянной или будет возрастать очень медленно (не более 0,5% в год) и в более отдалённом будущем также будет расти очень медленно, то к концу XXI века концентрация атмосферного составит около 440 млн., т.е. не более, чем на 60% превысит доиндустриальный уровень.

· Если интенсивность выбросов в течение ближайших четырёх десятилетий будет возрастать в среднем на 1-2 % в год, т.е. также, как она возрастала с 1973 года до настоящего времени, а в более отдалённом будущем темпы её роста замедлятся, то удвоение содержания в атмосфере по сравнению с доиндустриальным уровнем произойдёт к концу XXI века.

Деятельность человека достигла уже таких масштабов, что общее содержание углекислого газа в атмосфере Земли достигло предельно допустимых значений. Природные системы - суша, атмосфера, океан, находятся под разрушительным воздействием.

Важные факты

Например, к ним относятся фторхлоруглеводороды. Эти примеси газов излучают и поглощают солнечную радиацию, что отражается на климате планеты. В совокупности СО 2 , иные газообразные соединения, оказывающиеся в атмосфере, называют парниковыми газами.

Историческая справка

Он предупреждал о том, что увеличение объемов сжигаемого топлива может привести к нарушению радиационного баланса Земли.

Современные реалии

Сегодня большее количество диоксида углерода в атмосферу поступает при сжигании топлива, а также в связи с теми изменениями, что происходят в природе из-за вырубки лесных угодий, увеличения площадей сельскохозяйственных угодий.

Механизм воздействия диоксида углерода на живую природу

Повышение содержания углекислого газа в атмосфере вызывает парниковый эффект. Если при коротковолновой солнечной радиации оксид углерода (IV) прозрачен, то длинноволновую радиацию он поглощает, излучая энергию по всем направлениям. В результате содержание углекислого газа в атмосфере существенно увеличивается, нагревается поверхность Земли, горячими становятся нижние слои атмосферы. При последующем увеличении количества диоксида углерода возможно глобальное изменение климата.

Именно поэтому важно прогнозировать общее содержание углекислого газа в атмосфере Земли.

Источники попадания в атмосферу

Среди них можно выделить промышленные выбросы. Содержание углекислого газа в атмосфере возрастанием в связи с антропогенными выбросами. Экономический рост напрямую зависит от количества сжигаемых природных ископаемых, так как многие производства являются энергозатратными предприятиями.

Результаты статистических исследований свидетельствуют о том, что с конца прошлого века во многих странах происходит снижение удельных затрат энергии при существенном росте цен на электроэнергию.

Эффективное ее использование достигается благодаря модернизации технологического процесса, транспортных средств, использованию новых технологий в строительстве производственных цехов. Некоторые развитые промышленные страны перешли от развития перерабатывающей и сырьевой отрасли к развитию тех направлений, которые занимаются изготовлением конечного продукта.

В крупных мегаполисах, обладающих серьезной производственной базой, выбросы диоксида углерода в атмосферу существенно выше, поскольку СО 2 часто является побочным продуктом отраслей, деятельность которых удовлетворяет запросы образования, медицины.

В развивающихся странах существенный рост использования высококачественного топлива на 1 жителя, считается серьезным фактором для перехода на более высокий уровень жизни. В настоящее время выдвигается идея, согласно которой продолжение экономического роста и повышение уровня жизни возможно без увеличения количества сжигаемого топлива.

В зависимости от региона содержание углекислого газа в атмосфере составляет от 10 до 35 %.

Связь между потребляемой энергией и выбросами СО2

Начнем с того, что энергия не производится только ради ее получения. В развитых промышленных странах большая ее часть используется в промышленности, для обогрева и охлаждения зданий, для транспорта. Исследования, проводимые крупными научными центрами, показали, что при использовании энергосберегающих технологий можно получить существенное снижение выбросов диоксида углерода в земную атмосферу.

Например, ученым удалось посчитать, что если бы США перешли на менее энергоемкие технологии при производстве товаров народного потребления, это бы позволило снизить количество углекислого газа, попадающего в атмосферу, на 25 %. В масштабах земного шара это позволило бы снизить проблему парникового эффекта на 7 %.

Углерод в природе

Анализируя проблему, касающуюся выбросов диоксида углерода в атмосферу Земли, отметим, что углерод, который входит в его состав, является жизненно важным для существования биологических организмов. Его способность образовывать сложные углеродные цепочки (ковалентные связи) приводит к появлению белковых молекул, необходимых для жизни. Биогенный цикл углерода является сложным процессом, поскольку в него входит не просто функционированием живых существ, но и перенос неорганических соединений между разными резервуарами углерода, а также внутри них.

К ним относится атмосфера, континентальная масса, в том числе почвы, а также гидросфера, литосфера. На протяжении двух последних столетий в системе биофера-атмосфера-гидросфера наблюдаются изменения потоков углерода, который по своей интенсивности существенно превышают скорость протекания геологических процессов переноса данного элемента. Именно поэтому нужно ограничиваться рассмотрением взаимоотношений внутри системы, включая и почву.

Серьезные исследования, касающиеся определения количественного содержания углекислого газа в земной атмосфере, стали проводиться с середины прошлого века. Первопроходцем в таких вычислениях стал Киллинг, работающий в известной обсерватории Мауна-Лоа.

Анализ наблюдений показал, что на изменения концентрации диоксида углерода в атмосфере влияет цикл фотосинтеза, деструкция растений на суше, а также годовое изменение температуры в Мировом океане. В ходе экспериментов удалось выяснить, что количественное содержание углекислого газ в северном полушарии существенно выше. Ученые предположили, что это связно с тем, что большая часть антропогенного поступления приходится именно на это земное полушарие.

Для проведения анализа были взяты без специальных методик, кроме того не учитывалась относительная и абсолютная погрешность вычислений. Благодаря анализу пузырьков воздуха, которые содержались в ледниковых кернах, исследователям удалось установить данные по содержанию в земной атмосфере углекислого газа в диапазоне 1750-1960 гг.

Заключение

На протяжении последних столетий произошли существенные изменения в континентальных экосистемах, причиной стало увеличение антропогенного воздействия. При повышении количественного содержания углекислого газа в атмосфере нашей планеты, возрастает парниковый эффект, что негативно отражается на существовании живых организмов. Именно поэтому важно переходить на энергосберегающие технологии, которые позволяют снижать поступление СО 2 в атмосферу.

Углекислый газ (СО2).

Углекислый газ, возможно, является самым важным из всех парниковых газов, выбрасываемых в атмосферу человеком, во-первых, потому что он вызывает сильный парниковый эффект и, во-вторых, потому что по вине человека этого газа образуется так много.

Углекислый газ, это очень «естественный» компонент атмосферы - настолько естественный, что мы лишь недавно стали задумываться об углекислом газе антропогенного происхождения как о загрязнителе. Углекислый газ может быть полезной вещью. Однако ключевой вопрос заключается в том, в какой момент СО2 становится слишком много? Или, иными словами, в каких количествах он начинает оказывать вредное воздействие на окружающую среду?

То, что кажется естественным с точки зрения человека сегодня, может значительно отличаться от того, что было естественным для Земли в процессе ее эволюционного развития. История человечества представляет собой лишь очень тонкий срез (не более нескольких миллионов лет) на геологическом пласте, насчитывающим более чем 4,6 миллиардов лет.

Некоторые экологи опасаются, что углекислый газ приведет к катастрофическим изменениям в климате, таким, например, какие описаны в книге Билла Маккибена «Конец природы».

Вероятнее всего, углекислый газ преобладал в ранней атмосфере Земли. Сегодня содержание СО2 в атмосфере составляет лишь около 0,03 процента, и самые пессимистические прогнозы предсказывают повышение его уровня до 0,09 процентов к 2100 году. Приблизительно 4,5 миллиардов лет назад, как полагают некоторые ученые, СО2 составлял 80 процентов состава атмосферы Земли, медленно понижаясь сначала до 30-20 процентов в следующие 2,5 миллиарда лет. Свободный кислород практически не встречался в ранней атмосфере и был ядовит для анаэробных форм жизни, существовавших в то время.

Существование человека, как мы знаем сегодня, в условиях избыточного содержания углекислого газа в атмосфере, было просто невозможно. К счастью для людей и животных, большая часть СО2 была удалена из атмосферы на поздних этапах истории Земли, когда обитатели морей, ранние формы альгае, выработали способность к фотосинтезу. В процессе фотосинтеза растения используют энергию Солнца для того, чтобы превратить углекислый газ и воду в сахар и кислород. В конце концов, альгае и другие, более совершенные жизненные формы, появившиеся в процессе эволюции (планктон, растения и деревья), погибали, связывая большую часть углерода в различных углеродных минералах (нефтяных сланцах, в угле и нефти) в земной коре. То, что осталось в атмосфере - это кислород, которым мы дышим сейчас.

Углекислый газ поступает в атмосферу из различных источников - большая часть которых естественные. Но количество СО2 обычно остается приблизительно на одном уровне, поскольку существуют механизмы, которые выводят углекислый газ из атмосферы (рисунок 5 дает упрощенную схему циркуляции СО2 в атмосфере).

Одним из главных природных механизмов циркуляции СО2 является обмен газами между атмосферой и поверхностью океанов. Этот обмен представляет собой очень тонкий, хорошо сбалансированный процесс с обратной связью. Количество углекислого газа, вовлеченного в него, поистине огромно. Ученые измеряют эти количества в гига тоннах (Ггт - миллиардах метрических тонн) углерода для удобства.

Углекислый газ легко растворяется в воде (процесс, в результате которого получается газированная вода). Он также легко выделяется из воды (в газированной воде мы видим это как шипение). Углекислый газ атмосферы непрерывно растворяется в воде на поверхности океанов и выделяется назад в атмосферу. Этот феномен практически полностью объясняется физическими и химическими процессами. Поверхностью мирового океана ежегодно выделяется 90 Ггт углерода, а поглощается 92 Ггт углерода. Когда ученые сопоставляют эти два процесса, то получается, что поверхность мирового океана, по сути, является поглотителем углекислого газа, то есть поглощает больше СО2, чем выделяет назад в атмосферу.

Величина потоков углекислого газа в цикле атмосфера / океан остается наиболее важным фактором, потому что незначительные изменения в существующем балансе могут иметь непредсказуемые последствия для других природных процессов.

Не менее важное значение в циркуляции углекислого газа в атмосфере играют биологические процессы. СО2 необходим для фотосинтеза. Растения «дышат» углекислым газом, поглощая около 102 Ггт углерода ежегодно. Однако растения, животные и другие организмы также выделяют СО2. Одна из причин образования углекислого газа объясняется метаболическим процессом - дыханием. При дыхании живые организмы сжигают вдыхаемый ими кислород. Люди и другие наземные животные, к примеру, вдыхают кислород для поддержания жизни и выдыхают углекислый газ назад в атмосферу в качестве отходов. По расчетам, все живые организмы на Земле ежегодно выдыхают около 50 Ггт углерода.

Когда растения и животные умирают, органические соединения углерода, находящиеся в них, включаются в состав почвы или ила в болотах. Природа компостирует эти продукты увядшей жизни подобно садовнику, разбивая их на составные части в процессе различных химических превращений и работы микроорганизмов. По расчетам ученых, при распаде обратно в атмосферу попадает около 50 Ггт углерода.

Таким образом, 102 Ггт углерода, поглощенные из атмосферы ежегодно, почти на сто процентов сбалансированы 102-мя Гг тоннами углерода, попадающими ежегодно в атмосферу в процессе дыхания и распада животных и растений. Необходимо отдавать себе полный отчет в величине потоков углерода в природе, поскольку незначительные отклонения в существующем балансе могут иметь далеко идущие последствия.

По сравнению с циклом атмосфера-океан и биологическим циклом, количество углекислого газа, выбрасываемого в атмосферу в результате человеческой деятельности, на первый взгляд кажется незначительным. При сжигании угля, нефти и природного газа человек выбрасывает в атмосферу приблизительно 5,7 Ггт углерода (по данным IPCC). При вырубке и сжигании лесов люди, добавляют еще 2 Гг тонны. Следует учесть, что существуют различные оценки количества углерода, попадающего в атмосферу в результате сведения лесов.

Эти количества несомненно играют определенную роль, потому что естественные углеродные циклы (атмосфера / океан и биологический цикл) долгое время находились в хорошо отрегулированном равновесии. По крайней мере, баланс сохранялся на временном отрезке, на котором происходило зарождение и развитие человечества. Промышленная и сельскохозяйственная деятельность человека, похоже внесли значительный перекос в углеродный баланс.

Различные научные исследования показали увеличение концентраций углекислого газа в атмосфере в последние несколько столетий. В течение этого времени население планеты росло в геометрической прогрессии, в промышленности стали применять паровой двигатель, автомобили с двигателями внутреннего сгорания распространились по всей планете, и фермеры-переселенцы расчистили от растительности огромные территории Америки, Австралии и Азии.

В течение того же времени, атмосферные концентрации углекислого газа увеличились с 280 частиц на миллион (ppmv) допромышленного периода (1750 год) до около 353 ррmv, что составляет приблизительно 25 процентов. Этого количества может оказаться достаточно, чтобы вызвать значительные изменения, в случае если климат действительно чувствителен к парниковым газам в той степени, в какой это предполагают ученые. Измерения в обсерватории Мануа Лоа на Гавайях, далеко удаленной от источников промышленных загрязнений, показывают стабильный рост концентраций СО2 между 1958 и 1990 годами (рисунок 6). В последние два года, однако, роста концентраций углекислого газа не наблюдалось.

Тесная связь между концентрациями углекислого газа и расчетными средними мировыми температурами просто поразительна (рисунок 7)! Однако, является ли эта корреляция случайной, до сих пор остается загадкой. Легко поддаться искушению и объяснить колебания температуры колебаниями концентраций СО2. Но связь может быть и обратной - изменение температуры может вызывать изменение концентраций углекислого газа.

Очень велика. Углекислый газ принимает участие в образовании всего живого вещества планеты и вместе с молекулами воды и метана создает так называемый «оранжерейный (парниковый) эффект».

Значение углекислого газа (CO 2 , двуокись или диоксид углерода ) в жизнедеятельности биосферы состоит прежде всего в поддержании процесса фотосинтеза, который осуществляется растениями .

Являясь парниковым газом , двуокись углерода в воздухе оказывает влияние на теплообмен планеты с окружающим пространством, эффективно блокируя переизлучамое тепло на ряде частот, и таким образом участвует в формировании .

В последнее время наблюдается увеличение концентрации углекислого газа в воздухе, что ведет к .

Углерод (С) в атмосфере содержится в основном в виде углекислого газа (СО 2) и в небольшом количестве в виде метана (СН 4), угарного газа и других углеводородов.

Для газов атмосферы применяют понятие «время жизни газа». Это время, за которое газ полностью обновляется, т.е. время, за которое в атмосферу поступает столько же газа, сколько в нем содержится. Так вот, для углекислого газа это время составляет 3-5 лет, для метана - 10-14 лет. СО окисляется до СО 2 в течение нескольких месяцев.

В биосфере значение углерода очень велико, так как он входит в состав всех живых организмов. В пределах живых существ углерод содержится в восстановленном виде, а вне пределов биосферы - в окисленном. Таким образом, формируется химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источники углерода в атмосфере.

Источником первичной углекислоты являются , при извержении которых в атмосферу выделяется огромное количество газов. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма.

Также углерод поступает в атмосферу в виде метана в результате анаэробного разложения органических остатков. Метан под воздействием кислорода быстро окисляется до углекислого газа. Основными поставщиками метана в атмосферу являются тропические леса и .

В свою очередь углекислый газ атмосферы является источником углерода для других геосфер - , биосферы и .

Миграция СО 2 в биосфере.

Миграция СО 2 протекает двумя способами:

При первом способе СО 2 поглощается из атмосферы в процессе фотосинтеза и участвует в образовании органических веществ с последующем захоронением в в виде полезных ископаемых: торфа, нефти, горючих сланцев.

При втором способе углерод участвует в создании карбонатов в гидросфере. СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Каким образом осуществляется геохимический круговорот углерода в природе и как углекислый газ возвращается снова в атмосферу

За последние три миллиона лет Земля пережила множество ритмических колебаний, входя и выходя из ледниковых периодов в рамках так называемых циклов Миланковича (в честь астрофизика из Сербии). Циклы Миланковича на орбите Земли меняют угол и количество попадающего на поверхность нашей планеты солнечного света. Но эти климатические качели были бы намного меньше, если бы не усиливающий эффект изменения концентрации парниковых газов. Климатические записи, такие как глыбы льда, точно показывают нам, как эти концентрации газов меняются с течением времени, так как они содержат пузырьки древнего воздуха. От нас зависит выяснение причин, по которым парниковые газы проникают в атмосферу и исчезают из неё. Например, куда из атмосферы пропадал весь углекислый газ, когда теплые периоды сменялись ледниковыми?

Углекислый газ в океане

Главным подозреваемым является Южный океан. Богатая углекислым газом вода поднимается на поверхность и обменивается им с атмосферой. Если эта вентиляция замедляется, уровень углекислого газа в атмосфере будет падать. Снижение подъёма глубинных вод, вызванное крышкой из воды меньшей плотности вблизи берегов Антарктиды, к примеру, может объяснить снижение углекислого газа до 40 частей на миллион с примерно 100 частей на миллион на протяжении последних оледенений.

При этом много факторов остаются неучтёнными. В конце 1980-х океанографы решили одну из головоломок. Они обнаружили районы океана, где присутствовало много критически важных питательных веществ азота и фосфора, но производительность фотосинтеза тут была низкой. Что удерживало фитопланктон? Ограниченный запас железа.

Железо в воздушной пыли может передаваться на большие расстояния из засушливых регионов; при попадании в океан оно питает рост морского фитопланктона. Джон Х. Мартин и его коллеги предположили, что это объясняет, куда во время ледниковых периодов девается часть углекислого газа. Если больше пыли и железа попадает в океаны, то усиливающаяся биологическая активность может привлечь углерод в глубины океана.

Антарктические ледяные шапки во время ледниковых периодов содержали в себе большие количества воздушной пыли, значительная часть которой, как полагают, пришла из Патагонии в Южной Америке. Огромная равнина осадочной породы, появляющаяся из-под тающего ледника, является идеальным источником пыли. Это особенно верно для Патагонии, где ветры сильны и дождевые потоки во время ледниковых периодов были особо ярко выражены. Чем больше ледники здесь, тем больше получается пыли в воздухе, дующем через Южный океан.

Рост фитопланктона, «оплодотворяемого» всем этим железом, будет перемещать углекислый газ из атмосферы в глубины океана. Углекислый газ, вернее его некоторую часть, забирает фитопланктон в процессе фотосинтеза, получая энергию и материал для роста клеток. Когда он умирает и опускается на дно, он забирает углерод с собой.

Отличная идея, но как её проверить?

Попытки проверить теорию предпринимались на протяжении многих лет, но результаты были расплывчатыми. Они в основном опирались на то, что фитопланктон, вероятно, использует молекулы нитратов, содержащие азот с 14 атомами (наиболее распространённый изотоп), а не азот-15. Точное соотношение азота-15 к азоту-14 в фитопланктоне зависит от того, сколько нитратов доступны, если есть дефицит, тогда используется любой изотоп. Если испытывающая нехватку железа часть океана оплодотворяется воздушной пылью, будет задействовано больше нитрата, и концентрация будет уменьшаться. Таким образом, соотношение изотопов азота (которое может быть записано в донных отложениях) говорит нам о том, сколько нитратов было использовано.

Новое исследование под руководством Альфредо Мартинес-Гарсиа в ETH Zrich обеспечивает ещё лучший тест гипотезы оплодотворения железом. Технический прогресс позволил исследователям измерить изотопы азота в оболочках планктона из карбоната кальция, называемых фораминиферы в ядрах осадка морского дна. Предыдущие исследования анализировали диатомовые водоросли или сам осадок. В обоих случаях были осложняющие анализ факторы, усложняющие интерпретацию результатов. Исследователи также извлекли записи продуктивности фотосинтеза и железа из ветра, которые охватывают период в 160 тысяч лет.

Корреляция между изотопами азота и железом была довольно сильной. Содержание железа повышалось по мере охлаждения климата при последнем оледенении, источником был ветер из Патагонии, а концентрация нитратов на поверхности океана, похоже, уменьшалась. Анализ также показал более высокие уровни фотосинтеза в те периоды.

Данные указывают на чётко определяемое воздействие оплодотворения железом, которое привело бы больше углерода из атмосферы в глубины океана. Тот же самый процесс шёл и на более коротких промежутках времени, способствуя изменениям СО 2 при более мелких колебаниях климата, длившихся всего несколько тысяч лет.

Подобные записи помогают прояснить роль Южного океана среди других частей климатической системы, которые трансформируют орбитальные циклы Миланковича в значительные изменения климата.

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции